Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.437
Filtrar
1.
J Cancer Res Clin Oncol ; 145(10): 2433-2444, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31485767

RESUMO

PURPOSE: The clinical importance of cancer stem cells (CSCs) in head and neck squamous cell carcinoma (HNSCC) is well recognized. However, a reliable method for the detection of functioning CSC has not yet been established. We hypothesized that YAP1, a transcriptional coactivator, and SOX2, a master transcription factor of SCC, may cooperatively induce stemness through transcriptional reprogramming. METHODS: We immunohistochemically examined the expression of SOX2 and YAP1 in the CD44 variant 9 (CD44v9)-positive invasion front. A CSC-inducible module was identified through a combination of siRNAs and sphere formation assays. YAP1 and SOX2 interactions were analyzed in vitro. RESULTS: The triple overexpression of SOX2, YAP1, and CD44v9 was significantly associated with poor prognosis. TCGA data revealed that the CSC-inducible module, which was related to EMT and angiogenesis, was significantly correlated with poor prognosis. The KLF7 expression, representatively chosen from the module, also correlated with poor prognosis and was essential for sphere formation and CSC propagation. Sphere stress-activated YAP1 enhanced SOX2 activity. CONCLUSIONS: The stress-triggered activation of YAP1/SOX2 transcriptionally reprograms HNSCC for the acquisition of stemness. Triple SOX2, YAP1, and CD44v9 immunostaining assays may be useful for the selection of high-risk patients with functioning CSCs, and YAP1 targeting may lead to the development of a CSC-targeting therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Estresse Fisiológico , Ativação Transcricional , Biomarcadores , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Estresse Fisiológico/genética
3.
Life Sci ; 234: 116788, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445935

RESUMO

Livin is an important member of the human inhibitor of apoptosis proteins (IAPs) family. IAPs are proteins with antiapoptotic abilities, and their functions are different from the Bcl-2 (B-cell lymphoma-2) family proteins. However, the precise role of Livin in colon cancer progression remains unclear. The purpose of this study is to assess the effect of overexpression Livin in colon cancer cells and to examine its molecular mechanism. We demonstrated that Livin induced a colon cancer phenotype, including proliferation and migration, by regulating H2A.XY39ph (histone family 2A variant (H2AX) phosphorylated on the 39th serine site). We elucidated that Livin degraded Jumonji-C domain-containing 6 protein (JMJD6), which was mediated by the proteasome murine double minute 2 (MDM2), thereby regulating H2A.XY39ph. Above all, the overexpression of JMJD6 recovered H2A.XY39ph in colon cancer cells with a high level of Livin, thus inhibiting colon cancer malignancy progression. These results reveal a previously unrecognized role for Livin in regulating the tumor-initiating capacity in colon cancer and provide a novel treatment strategy in cancer via the interruption of H2A.XY39ph function and the interaction between H2A.XY39ph and JMJD6.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias do Colo/patologia , Histonas/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Neoplasias/metabolismo , Mapas de Interação de Proteínas , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Neoplasias/genética , Proteólise
4.
Anticancer Res ; 39(7): 3317-3321, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262852

RESUMO

Hippo signaling is a key regulator of organ size, tissue hemostasis and regeneration. Dysregulation of the Hippo pathway has been recognized in a variety of human cancers, including pancreatic cancer. YES-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the two major downstream effectors of the Hippo pathway. YAP and TAZ have been found to promote pancreatic tumor development and progression, even in the absence of mutant Kirsten RAS (KRAS). Pancreatic cancer is associated with an abundant stromal reaction leading to tumor growth and immune escape. It has been found that YAP and TAZ modulate behavior of pancreatic stellate cells and recruitment of tumor-associated macrophages and myeloid-derived suppressor cells. Moreover, YAP and TAZ are associated with chemoresistance and poor prognosis in pancreatic cancer. This review dissects the role of Hippo signaling in pancreatic cancer, focusing on molecular mechanisms and prospects for future intervention.


Assuntos
Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Fosfoproteínas/metabolismo , Transdução de Sinais
5.
Gene ; 712: 143956, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31271843

RESUMO

Gastric cancer represents a common malignancy of digestive tract with high incidence and mortality. Increasing evidence suggests that the growth of gastric tumor cells relies largely on aerobic glycolysis. Currently, many potential anti-cancer candidates are derived from natural products. Here, we evaluated the effects of oleanolic acid (OA), a triterpenoid component widely found in the plants of Oleaceae family, on aerobic glycolysis and proliferation in human MKN-45 and SGC-7901 gastric cancer cells. Our results demonstrated that OA reduced the viability and proliferation of gastric cancer cells and inhibited the expression of cyclin A and cyclin-dependent kinase 2. OA blocked glycolysis in these cells evidenced by decreases in the uptake and consumption of glucose, intracellular lactate levels and extracellular acidification rate. Glycolysis inhibitor 2-deoxy-d-glucose, similar to OA, suppressed gastric cancer cell proliferation. OA also decreased the expression and intracellular activities of glycolysis rate-limiting enzymes hexokinase 2 (HK2) and phosphofructokinase 1 (PFK1). Moreover, OA downregulated the expression of hypoxia inducible factor-1α (HIF-1α) and decreased its nuclear abundance. Upregulation of HIF-1α by deferoxamine rescued OA-inhibited HK2 and PFK1. Furthermore, OA reduced the nuclear abundance of yes-associated protein (YAP) in gastric tumor cells. YAP inhibitor verteporfin, similar to OA, downregulated the expression of HIF-1α and glycolytic enzymes in gastric cancer cells; whereas overexpression of YAP abrogated all these effects of OA. Collectively, inhibition of YAP was responsible for OA blockade of HIF-1α-mediated aerobic glycolysis and proliferation in human gastric tumor cells. OA could be developed as a promising candidate for gastric cancer treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Oleanólico/farmacologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Neoplasias Gástricas/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ciclo do Ácido Cítrico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise , Humanos , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Estômago/patologia , Neoplasias Gástricas/tratamento farmacológico
6.
Zhonghua Gan Zang Bing Za Zhi ; 27(7): 572-577, 2019 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-31357789

RESUMO

The transcriptional coactivator Yes-associated protein (YAP) is involved in the regulation of various cellular physiological activities and plays an important role in controlling the size of tissues and organs for maintaining the homeostasis. YAP not only affects the transcriptional expression of its downstream target genes, but also interacts with multiple signaling pathways to form complex regulatory networks to perform specific biological functions. In addition to Hippo signaling pathway mediated protein phosphorylation, the regulatory mechanisms of YAP activity also takes part in multiple fields. YAP activity alteration can affect the morphological characteristics and physiological functions of liver tissue, and participate in the occurrence and development of liver diseases, such as liver fibrosis and primary liver cancer. This paper mainly discusses the close relationship between YAP and liver pathophysiology, in order to provide reference for further exploring its potential application in molecular targeted therapy of liver diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Fosfoproteínas/metabolismo , Transdução de Sinais , Humanos
7.
DNA Cell Biol ; 38(9): 955-961, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31361513

RESUMO

The chromatin-remodeling complex ATRX/DAXX is one of the major epigenetic factors that controls heterochromatin maintenance due to its role in histone deposition. ATRX is involved in nucleosome configuration and maintenance of higher order chromatin structure, and DAXX is a specific histone chaperone for H3.3 deposition. Dysfunctions in this complex have been associated with telomere shortening, which influences cell senescence. However, data about this complex in brain tissue related to aging are still scarce. Therefore, in the present study, we analyzed ATRX and DAXX expressions in autopsied human brain specimens and the telomere length. A significant decrease in gene and protein expressions was observed in the brain tissues from the elderly compared with those from the young, which were related to short telomeres. These findings may motivate further functional analysis to confirm the ATRX-DAXX complex involvement in telomere maintenance and brain aging.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Envelhecimento/genética , Encéfalo/metabolismo , Proteínas Nucleares/genética , Proteína Nuclear Ligada ao X/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/crescimento & desenvolvimento , Humanos , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Homeostase do Telômero , Proteína Nuclear Ligada ao X/metabolismo
8.
Nat Commun ; 10(1): 2510, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175290

RESUMO

Metastasis-associated recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC), however, the underlying mechanisms remain largely elusive. In this study, we report that expression of choroideremia-like (CHML) is increased in HCC, associated with poor survival, early recurrence and more satellite nodules in HCC patients. CHML promotes migration, invasion and metastasis of HCC cells, in a Rab14-dependent manner. Mechanism study reveals that CHML facilitates constant recycling of Rab14 by escorting Rab14 to the membrane. Furthermore, we identify several metastasis regulators as cargoes carried by Rab14-positive vesicles, including Mucin13 and CD44, which may contribute to metastasis-promoting effects of CHML. Altogether, our data establish CHML as a potential promoter of HCC metastasis, and the CHML-Rab14 axis may be a promising therapeutic target for HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Neoplasias Primárias Múltiplas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/secundário , Células HEK293 , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Mucinas/metabolismo , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Transplante de Neoplasias , Neoplasias Primárias Múltiplas/patologia , RNA Mensageiro/metabolismo , Carga Tumoral
9.
Nat Commun ; 10(1): 2864, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253807

RESUMO

The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune synapse by tethering LAT-vesicles to the Golgi. Finally, in a model of ectopic expression of LAT in ciliated cells, we show that GMAP210 tethering activity controls the delivery of LAT to the cilium. Hence, our results reveal a function for the golgin GMAP210 conveying specific vesicles to the immune synapse.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo de Golgi/fisiologia , Leucócitos Mononucleares/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Vesículas Transportadoras/fisiologia , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transdução de Sinais , Linfócitos T/fisiologia
10.
Sheng Li Xue Bao ; 71(3): 405-414, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31218331

RESUMO

The present study was aimed to investigate the expression relationship of Hippo signaling molecules and ovarian germline stem cell (OGSC) markers in the development schedule of OGSCs during ovarian aging in women and mice. The ovaries of 2-month-old mature (normal control) and 12-month-old (physiological ovarian aging) KM mice were sampled, and the ovarian cortex samples of young (postpuberty to 35 years old), middle age (36-50 years old) and menopausal period (51-60 years old) women were obtained with consent. The mice model of pathological ovarian aging was established by intraperitoneal injection of cyclophosphamide/busulfan (CY/BUS). HE staining was used to detect the changes of follicles at different stages, and the localization and expression changes of Hippo signaling molecules and OGSCs related factors (MVH/OCT4) were detected by immunohistochemistry and immunofluorescence staining. Western blot was used to detect the protein expression levels of the major molecules in the Hippo signaling pathway and OGSCs related factors. The results showed that there were not any normal follicles, but a few atresia follicles in the ovaries from physiological and pathological ovarian aging mice. Compared with the normal control mice, both the physiological and pathological ovarian aging mice showed decreased protein expression levels of the main Hippo signaling molecules (pYAP1) and MVH/OCT4; Whereas only the pathological ovarian aging mice showed increased ratio of pYAP1/YAP1. In comparison with the young women, the middle age and menopausal women showed looser structure of ovarian surface epithelium (OSE) and less ovarian cortical cells. The protein expression level of LATS2 in the OSE was the highest in young women, MST1 expression was the lowest in the menopausal period women, and the expression levels of YAP1 and pYAP1 were the highest in middle age women. Compared with the young women, the middle age and menopausal period women exhibited significantly decreased ratio of OSE pYAP1/YAP1, whereas there was no significant difference between them. The expression level of MVH protein in OSE from the young women was significantly higher than those of the middle age and menopausal period women. These results indicate that there is an expression relationship between the main molecules of Hippo signaling pathway and OGSCs related factors, which suggests that Hippo signaling pathway may regulate the expression levels of OGSCs related factors, thus participating in the process of physiological and pathological degeneration of ovarian.


Assuntos
Envelhecimento , Células-Tronco de Oogônios/metabolismo , Ovário , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Animais , Epitélio , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Fator 3 de Transcrição de Octâmero/metabolismo , Folículo Ovariano , Fosfoproteínas/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
11.
Gene ; 712: 143935, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31247220

RESUMO

As seen in other types of cancer, development of drug resistance in NSCLC treatment causes adverse effects on disease fighting process. Recent studies have shown that one of the drug resistance development mechanisms is that cancer cells may acquire the ability to escape from cell death. Therefore, development of anticancer drugs which have the strategy to redirect cancer cells to any cell death pathways may provide positive results for cancer treatments. Autophagy may be a target mechanism of alternative cancer treatment strategy in cases of blocked apoptosis. There is also a complex molecular link between autophagy and apoptosis, has not been fully understood yet. The dicyano compound which we used in our study caused cell death in NSCLC cell lines. When we analyzed the cells which were treated with dicyano compound by transmission electron microscope, we observed autophagosome structures. Upon this result, we investigated expression levels of autophagic proteins in the dicyano compound-treated cells by immunoblotting and observed that expression levels of autophagic proteins were increased significantly. The TUNEL assay and qRT-PCR for pro-apoptotic and anti-apoptotic gene expression, which we performed to assess apoptosis in the dicyano compound-treated cells, showed that the cell death does not occur through apoptotic pathway. We showed that the dicyano compound, which was developed in our laboratories, may play a role in molecular link between apoptosis and autophagy and may shed light on development of new anticancer treatment strategies.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Galactose/química , Neoplasias Pulmonares/metabolismo , Triazóis/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/tratamento farmacológico , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Naftiridinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
12.
Microbiol Immunol ; 63(7): 285-288, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31166044

RESUMO

Phosphatidylinositol-4 kinase III ß (PI4KB) is a host factor that is required for enterovirus (EV) replication. In this study, the importance of host proteins that interact with PI4KB in EV replication was analyzed by trans complementation with PI4KB mutants in a PI4KB-knockout cell line. Ectopically expressed PI4KB mutants, which lack binding regions for ACBD3, RAB11, and 14-3-3 proteins, rescued replication of poliovirus and enterovirus 71. These findings suggest that interaction of PI4KB with these host proteins is not essential for EV replication once PI4KB has been expressed and that PI4KB is functionally independent from these host proteins regarding EV replication.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Enterovirus/metabolismo , Domínios e Motivos de Interação entre Proteínas , Replicação Viral/fisiologia , 1-Fosfatidilinositol 4-Quinase/genética , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Linhagem Celular , Infecções por Enterovirus , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/metabolismo , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poliovirus/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
13.
Nat Commun ; 10(1): 2394, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160584

RESUMO

To understand the molecular processes that link Aß amyloidosis, tauopathy and neurodegeneration, we screened for tau-interacting proteins by immunoprecipitation/LC-MS. We identified the carboxy-terminal PDZ ligand of nNOS (CAPON) as a novel tau-binding protein. CAPON is an adaptor protein of neuronal nitric oxide synthase (nNOS), and activated by the N-methyl-D-aspartate receptor. We observed accumulation of CAPON in the hippocampal pyramidal cell layer in the AppNL-G-F -knock-in (KI) brain. To investigate the effect of CAPON accumulation on Alzheimer's disease (AD) pathogenesis, CAPON was overexpressed in the brain of AppNL-G-F mice crossbred with MAPT (human tau)-KI mice. This produced significant hippocampal atrophy and caspase3-dependent neuronal cell death in the CAPON-expressing hippocampus, suggesting that CAPON accumulation increases neurodegeneration. CAPON expression also induced significantly higher levels of phosphorylated, oligomerized and insoluble tau. In contrast, CAPON deficiency ameliorated the AD-related pathological phenotypes in tauopathy model. These findings suggest that CAPON could be a druggable AD target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Agregação Patológica de Proteínas/metabolismo , Células Piramidais/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Atrofia , Caspase 3/metabolismo , Morte Celular , Cromatografia Líquida , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Hipocampo/patologia , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/patologia , Células Piramidais/patologia , Tauopatias , Proteínas tau/metabolismo
14.
Biol Res ; 52(1): 31, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182157

RESUMO

BACKGROUND: The purpose of the present study was to investigate the role of the methylation status of the DACT1 gene on the invasion and metastasis of nasopharyngeal carcinoma cells. METHODS: The levels of methylation and expression of the DACT1 gene in nasopharyngeal carcinoma tissues and CNE2 cells were determined by methylation-specific PCR and RT-PCR, respectively. CNE2 cells were treated with 5-aza-2-deoxycytidine, and the variation in the methylation status of the DACT1 gene was detected, as well as the influence of methylation on invasiveness of nasopharyngeal carcinoma cells. RESULTS: The DACT1 gene was hyper-methylated in 44 of 62 cases of nasopharyngeal carcinoma. The DACT1 gene was hyper-methylated in 32 of 38 cases of nasopharyngeal carcinoma with lymph node metastasis, and the DACT1 gene was hyper-methylated in 7 of 24 cases of nasopharyngeal carcinoma without lymph node metastasis. The DACT1 mRNA level was weakly expressed or not expressed in all nasopharyngeal carcinoma tissues with hyper-methylated DACT1 genes; however, the DACT1 mRNA level was highly expressed in nasopharyngeal carcinoma tissues with low expression of the methylated DACT1 gene. The DACT1 gene was hyper-methylated and not expressed in CNE2 cells that did not have 5-aza-2-deoxycytidine treatment. After 5-aza-2-deoxycytidine treatment, the DACT1 gene was demethylated and the expression of DACT1 was restored. Moreover, the invasion ability was inhibited in CNE2 cells treated with 5-aza-2-deoxycytidine. CONCLUSION: The expression of DACT1 was related to the methylation status. High expression of DACT1 may inhibit the invasion and metastasis of nasopharyngeal carcinoma cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Metilação de DNA/genética , Carcinoma Nasofaríngeo/secundário , Neoplasias Nasofaríngeas/patologia , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metilação de DNA/fisiologia , Feminino , Humanos , Masculino , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas
15.
Life Sci ; 231: 116551, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31185236

RESUMO

Octreotide (OCT) shows clinical efficacies in the treatment of liver cirrhosis complicated with gastrointestinal hemorrhage. Experiments were designed to investigate its function mechanism associated with endoplasmic reticulum stress (ERS)-induced autophagy and microRNA (miR). Protein associated with ERS and autophagy was detected by western blot. miR-101 was examined by qRT-PCR. Besides, miR-101 or G protein-coupled receptor 78 (GPR78)-silenced Caco-2 cells were established by transfection. Furthermore, western blot was used to determine TGF-beta activated kinase 1 (TAK1), AMPK, mTOR, p70S6K as well as their phosphorylated forms. Lipopolysaccharide (LPS) enforced the expression of GPR78. Besides, LPS triggered the production of Beclin-1 and LC3-II while mitigated the accumulation of p62. Then all these above results were reversed by OCT pretreatment. Moreover, miR-101 expression was downregulated by LPS while upregulated by OCT. Further, miR-101 knockdown strengthened ERS and promoted autophagy. GPR78 silence retarded autophagy process. In the end, OCT mitigated phosphorylation of TAK1, AMPK while enhanced the phosphorylated expression of mTOR and p70S6K in LPS-treated Caco-2 cells. The anti-autophagy property of OCT was mediated by miR-101-induced suppression of GPR78 in LPS-treated Caco-2 cells.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , MicroRNAs/metabolismo , Octreotida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Proteína Beclina-1/genética , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Octreotida/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
16.
Gene ; 706: 69-76, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31054365

RESUMO

The receptor for activated c-kinase (RACK1, Asc1 in yeast) is a eukaryotic ribosomal protein located in the head region of the 40S subunit near the mRNA exit channel. This WD-repeat ß-propeller protein acts as a signaling molecule and is involved in metabolic regulation, cell cycle progression, and translational control. However, the exact details of the RACK1 recruitment and stable association with the 40S ribosomal subunit remain only partially known. X-ray analyses of the yeast, Saccharomyces cerevisiae, ribosome revealed that the RACK1 propeller blade (4-5) interacts with the eukaryote-specific C-terminal domain (CTD) of ribosomal protein S3 (uS3 family). To check the functional significance of this interaction, we generated mutant yeast strains harboring C-terminal deletions of uS3. We found that deletion of the 20 C-terminal residues (interacting with blade 4-5) from the uS3-CTD abrogates RACK1 binding to the ribosome. Strains with truncated uS3-CTD exhibited compromised cellular growth and protein synthesis similar to that of RACK1Δ strain, thus suggesting that the uS3-CTD is crucial not only for the recruitment and association of RACK1 with the ribosome, but also for its intracellular function. We suggest that eukaryote-specific RACK1-uS3 interaction has evolved to act as a link between the ribosome and the cellular signaling pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores de Quinase C Ativada/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação ao GTP/genética , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , Receptores de Quinase C Ativada/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/química , Ribossomos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
17.
Nat Commun ; 10(1): 2356, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142743

RESUMO

Centrosomes control cell motility, polarity and migration that is thought to be mediated by their microtubule-organizing capacity. Here we demonstrate that WNT signalling drives a distinct form of non-directional cell motility that requires a key centrosome module, but not microtubules or centrosomes. Upon exosome mobilization of PCP-proteins, we show that DVL2 orchestrates recruitment of a CEP192-PLK4/AURKB complex to the cell cortex where PLK4/AURKB act redundantly to drive protrusive activity and cell motility. This is mediated by coordination of formin-dependent actin remodelling through displacement of cortically localized DAAM1 for DAAM2. Furthermore, abnormal expression of PLK4, AURKB and DAAM1 is associated with poor outcomes in breast and bladder cancers. Thus, a centrosomal module plays an atypical function in WNT signalling and actin nucleation that is critical for cancer cell motility and is associated with more aggressive cancers. These studies have broad implications in how contextual signalling controls distinct modes of cell migration.


Assuntos
Aurora Quinase B/metabolismo , Movimento Celular , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Desgrenhadas/metabolismo , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Via de Sinalização Wnt , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma de Células de Transição/metabolismo , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Prognóstico , Mapas de Interação de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Bexiga Urinária/metabolismo
18.
Nat Commun ; 10(1): 2201, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101814

RESUMO

Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease. It is thought that many common variant gene loci of weak effect act additively to predispose to common autoimmune diseases, while the contribution of rare variants remains unclear. Here we describe that rare coding variants in lupus-risk genes are present in most SLE patients and healthy controls. We demonstrate the functional consequences of rare and low frequency missense variants in the interacting proteins BLK and BANK1, which are present alone, or in combination, in a substantial proportion of lupus patients. The rare variants found in patients, but not those found exclusively in controls, impair suppression of IRF5 and type-I IFN in human B cell lines and increase pathogenic lymphocytes in lupus-prone mice. Thus, rare gene variants are common in SLE and likely contribute to genetic risk.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Proteínas de Membrana/genética , Quinases da Família src/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Criança , Modelos Animais de Doenças , Feminino , Frequência do Gene , Células HEK293 , Voluntários Saudáveis , Humanos , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Sequenciamento Completo do Exoma , Quinases da Família src/metabolismo
19.
Chem Biol Interact ; 307: 105-115, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054283

RESUMO

Neutral endopeptidase (NEP) is an enzyme implicated in development of different tumors, e.g. colorectal cancer (CRC). In this study, the anti-cancer effects of NEP inhibitors, thiorphan (synthetic compound) and sialorphin (naturally occurring pentapeptide) on CRC cells were investigated. Moreover, we synthesized some derivatives of sialorphin (alanine scan analogues: AHNPR, QANPR, QHAPR, QHNAR; N-acetylated sialorphin; C-amidated sialorphin, and C-amidated alanine scan analogues) to examine the biological activity of these inhibitors on CRC cells. The cytotoxic activity of the NEP inhibitors against CRC cell lines (SW620 and LS180) and normal human fibroblasts (HSF) was evaluated. Additionally, the influence of NEP inhibitors on proliferation, cell cycle progression, induction of apoptosis, and the level of phosphorylation of MAP kinases and mTORC1 signaling pathway proteins in CRC cells were examined. The NEP inhibitors were non-cytotoxic to HSF cells; however, most of them slightly decreased the viability and inhibited proliferation of CRC cells. The N-acetylation or C-amidation of sialorphin or its alanine scan analogues resulted in decreased or abolished anti-proliferative activity of the NEP inhibitors towards the CRC cells. Additionally, thiorphan and sialorphin enhanced the anti-proliferative activity of other CRC-cell growth inhibitors (atrial natriuretic peptide-ANP and melphalan-MEL). The mechanisms involved in the anti-proliferative effects of the tested inhibitors were mediated via NEP and associated with induction of cell cycle arrest in the G0/G1 phase, increased activity of ERK1/2, and a reduced level of phosphorylation of mTOR (Ser2448), 4E-BP1, and p70S6K. However, the NEP inhibitors did not induce apoptosis in the CRC cells. These results have indicated that thiorphan and sialorphin or its derivatives AHNPR, QANPR, QHAPR, and QHNAR have the potential to be used as agents in treatment of patients with CRC.


Assuntos
Proliferação de Células/efeitos dos fármacos , Endopeptidases/metabolismo , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Tiorfano/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Endopeptidases/química , Endopeptidases/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peptídeos/síntese química , Peptídeos/química , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteases/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tiorfano/química
20.
Curr Top Microbiol Immunol ; 421: 159-177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123889

RESUMO

The human pathogen Helicobacter pylori interacts intimately with gastric epithelial cells to induce inflammatory responses that are a hallmark of the infection. This inflammation is a critical precursor to the development of peptic ulcer disease and gastric cancer. A major driver of this inflammation is a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI), present in a subpopulation of more virulent H. pylori strains. The cagPAI T4SS specifically activates signalling pathways in gastric epithelial cells that converge on the transcription factor, nuclear factor-κB (NF-κB), which in turn upregulates key immune and inflammatory genes, resulting in various host responses. It is now clear that H. pylori possesses several mechanisms to activate NF-κB in gastric epithelial cells and, moreover, that multiple signalling pathways are involved in these responses. Two of the dominant signalling pathways implicated in NF-κB-dependent responses in epithelial cells are nucleotide-binding oligomerisation domain 1 (NOD1) and a newly described pathway involving alpha-kinase 1 (ALPK1) and tumour necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA). Although the relative roles of these two pathways in regulating NF-κB-dependent responses still need to be clearly defined, it is likely that they work cooperatively and non-redundantly. This chapter will give an overview of the various mechanisms and pathways involved in H. pylori induction of NF-κB-dependent responses in gastric epithelial cells, including a 'state-of-the-art' review on the respective roles of NOD1 and ALPK1/TIFA pathways in these responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/imunologia , Imunidade Inata , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Humanos , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA