Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.636
Filtrar
1.
Zhonghua Xue Ye Xue Za Zhi ; 41(4): 297-301, 2020 Apr 14.
Artigo em Chinês | MEDLINE | ID: mdl-32447933

RESUMO

Objective: To investigate the clinical characteristics and prognosis in adult acute myeloid leukemia (AML) patients with FLT3-ITD and CEBPA double-mutated (CEBPAdm) co-mutation. Methods: Clinical data and prognostic factors were retrospectively analyzed in adult AML patients with FLT3-ITD and CEBPAdm co-mutation at The First Affiliated Hospital of Zhengzhou University from January 2016 to September 2018. Results: Among 599 non-acute promyelocytic leukemia (APL) patients, 268 received gene mutation detection, who were divided into 4 groups including 19 FLT3-ITD positive (FLT3-ITD(+)) and CEBPAdm positive (CEBPAdm(+)) cases (group A) , 84 FLT3-ITD(+) and CEBPAdm(-) cases (group B) , 95 FLT3-ITD(-) and CEBPAdm(+) cases (group C) , 70 double negative mutation cases (group D) . Gender, platelet count, FAB classification, induction treatment regimen and fusion gene mutation were comparable among four groups (P>0.05) , while age onset, peripheral white blood cell (WBC) count, hemoglobin, percentage of blasts in peripheral blood, percentage of blasts in bone marrow, complete remission rate (CR(1) rate) after the first induction chemotherapy, the relapse rate, the median progression-free survival (PFS) time, and median overall survival (OS) time were significantly different between groups (P<0.05) . When compared in pairs, gender, age onset, hemoglobin, platelet count, FAB classification in group A were not statistically different compared to group B, C and D (P>0.05) , while patients in group A had higher WBC count, blasts in peripheral blood, minimal residual disease (MRD) in bone marrow. The CR(1) rates of group A, B, C, and D were 50.0%、32.4%、59.8%、39.0% respectively (P=0.003) , and the relapse rates were 55.6%, 50.0%, 21.1%, 40.0% (P<0.001) . As to survival, the median OS in each group was 6.25, 3.0, 15.5, 10.5 months respectively (P<0.001) , and the median PFS was 5.0, 4.0, 10.0, 6.7 months (P=0.032) . Conclusion: Adult AML patients with FLT3-ITD and CEBPAdm co-mutation have a higher leukemia load and low CR(1) rate, which translates into poor prognosis with high relapse rate and short survival time.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms/genética , Adulto , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , Indução de Remissão , Estudos Retrospectivos
2.
PLoS Genet ; 16(5): e1008823, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453789

RESUMO

The development of type 2 diabetes mellitus (T2DM) depends on interactions between genetic and environmental factors, and a better understanding of gene-diet interactions in T2DM will be useful for disease prediction and prevention. Ascorbic acid has been proposed to reduce the risk of T2DM. However, the links between ascorbic acid and metabolic consequences are not fully understood. Here, we report that glucose transporter 10 (GLUT10) maintains intracellular levels of ascorbic acid to promote adipogenesis, white adipose tissue (WAT) development and protect mice from high-fat diet (HFD)-induced metabolic dysregulation. We found genetic polymorphisms in SLC2A10 locus are suggestively associated with a T2DM intermediate phenotype in non-diabetic Han Taiwanese. Additionally, mice carrying an orthologous human Glut10G128E variant (Glut10G128E mice) with compromised GLUT10 function have reduced adipogenesis, reduced WAT development and increased susceptibility to HFD-induced metabolic dysregulation. We further demonstrate that GLUT10 is highly expressed in preadipocytes, where it regulates intracellular ascorbic acid levels and adipogenesis. In this context, GLUT10 increases ascorbic acid-dependent DNA demethylation and the expression of key adipogenic genes, Cebpa and Pparg. Together, our data show GLUT10 regulates adipogenesis via ascorbic acid-dependent DNA demethylation to benefit proper WAT development and protect mice against HFD-induced metabolic dysregulation. Our findings suggest that SLC2A10 may be an important HFD-associated susceptibility locus for T2DM.


Assuntos
Tecido Adiposo Branco/metabolismo , Ácido Ascórbico/metabolismo , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Proteínas Facilitadoras de Transporte de Glucose/genética , Células 3T3-L1 , Adipogenia , Adulto , Idoso , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Metilação de DNA/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hemoglobina A Glicada/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação , PPAR gama/genética
3.
Zhonghua Xue Ye Xue Za Zhi ; 41(2): 100-105, 2020 Feb 14.
Artigo em Chinês | MEDLINE | ID: mdl-32135624

RESUMO

Objective: To analyze the prognostic value of CD7 expression in newly diagnosed acute myeloid leukemia (AML) patients, and to further explore the correlation between CD7 expression and CEBPA mutation, and to clarify the prognostic value of CD7(+) in AML patients with wild-type (WT) or mutant-type (MT) CEBPA. Methods: The clinical data of 298 newly diagnosed non-M(3) AML patients between January 2010 and December 2016 were analyzed retrospectively. The clinical characteristics and prognosis of CD7(+) and CD7(-) patients were respectively compared in all patients, and in patients with WT and MT CEBPA. The relationship between CD7 expression and CEBPA mutation was determined by chi-square, and the effects of CEBPA mutation on survival and prognosis in CD7(+) group by Kaplan-Meier method. Results: In CD7(+) group, the frequencies of CEBPA mutation were 10.1% (single site) and 33.9% (double site) , significantly higher than those of the CD7(-) group (5.3% and 4.2%) (P=0.000) . Subgroup prognostic analysis showed a lower CR rate (P=0.001) and a higher RR (P=0.023) in CD7(+) group comparing to those of CD7(-) group in AML patients with wild type CEBPA. There were no statistical difference between CD7(+) group and CD7(-) group in overall survival (OS) and disease free survival (P>0.05) , while in the CEBPA mutant group the CD7(+) group has higher OS (P=0.019) and DFS (P=0.010) . Based on the CD7 expression and CEBPA mutation, 298 cases were divided into 3 subgroups, named as CD7(+)-CEBPA MT group, CD7(-) and CD7(+)-CEBPA WT group. The 3-year OS of the 3 groups were 80.2%, 48.0% and 30.6%, respectively (P<0.001) , and the 3-year DFS were 74.1%, 37.4% and 22.2%, respectively (P<0.001) . Conclusion: The CEBPA mutation rate was higher in CD7(+) AML patients then that of CD7(-) patients. CD7 expression has opposite prognostic significance in AML patients carrying the wild-type or mutant-type CEBPA. Based on CD7 expression and CEBPA mutation, a new risk stratification model can be established, which is helpful to guide the clinical individualized treatment for AML patients.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Leucemia Mieloide Aguda , Intervalo Livre de Doença , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , Estudos Retrospectivos
4.
Cancer Invest ; 38(4): 240-249, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32212938

RESUMO

We evaluated the value of UHRF1, a regulator of methylation, as a biomarker for lung cancer. UHRF1 is expressed at higher levels in both lung adenocarcinoma (AD) and squamous cell carcinoma (SQ); however, a meta-analysis showed that UHRF1 expression is correlated with worse survival in patients with AD but not in those with SQ. UHRF1 knockdown suppressed the growth of lung cancer cell lines through G1 cell cycle arrest in some cell lines. These results suggest that UHRF1 may server as a diagnostic marker for AD and SQ and as a prognostic marker for AD in lung cancer.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Biomarcadores Tumorais/análise , Proteínas Estimuladoras de Ligação a CCAAT/análise , Carcinoma de Células Escamosas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Ubiquitina-Proteína Ligases/análise , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Metilação de DNA , Conjuntos de Dados como Assunto , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico , Interferência de RNA , Análise de Sobrevida , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Biochem J ; 477(4): 817-831, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32016357

RESUMO

Inorganic phosphate (Pi) homeostasis is regulated by intestinal absorption via type II sodium-dependent co-transporter (Npt2b) and by renal reabsorption via Npt2a and Npt2c. Although we previously reported that vitamin A-deficient (VAD) rats had increased urine Pi excretion through the decreased renal expression of Npt2a and Npt2c, the effect of vitamin A on the intestinal Npt2b expression remains unclear. In this study, we investigated the effects of treatment with all-trans retinoic acid (ATRA), a metabolite of vitamin A, on the Pi absorption and the Npt2b expression in the intestine of VAD rats, as well as and the underlying molecular mechanisms. In VAD rats, the intestinal Pi uptake activity and the expression of Npt2b were increased, but were reduced by the administration of ATRA. The transcriptional activity of reporter plasmid containing the promoter region of the rat Npt2b gene was reduced by ATRA in NIH3T3 cells overexpressing retinoic acid receptor (RAR) and retinoid X receptor (RXR). On the other hand, CCAAT/enhancer-binding proteins (C/EBP) induced transcriptional activity of the Npt2b gene. Knockdown of the C/EBP gene and a mutation analysis of the C/EBP responsible element in the Npt2b gene promoter indicated that C/EBP plays a pivotal role in the regulation of Npt2b gene transcriptional activity by ATRA. EMSA revealed that the RAR/RXR complex inhibits binding of C/EBP to Npt2b gene promoter. Together, these results suggest that ATRA may reduce the intestinal Pi uptake by preventing C/EBP activation of the intestinal Npt2b gene.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Intestino Delgado/metabolismo , Rim/metabolismo , Regiões Promotoras Genéticas , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Transcrição Genética/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Hipofosfatemia Familiar/metabolismo , Hipofosfatemia Familiar/patologia , Hipofosfatemia Familiar/prevenção & controle , Intestino Delgado/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Camundongos , Células NIH 3T3 , Ratos , Ratos Wistar , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
6.
Nat Commun ; 11(1): 785, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034145

RESUMO

Extracellular signals such as TGF-ß can induce epithelial-to-mesenchymal transition (EMT) in cancers of epithelial origin, promoting molecular and phenotypical changes resulting in pro-metastatic characteristics. We identified C/EBPα as one of the most TGF-ß-mediated downregulated transcription factors in human mammary epithelial cells. C/EBPα expression prevents TGF-ß-driven EMT by inhibiting expression of known EMT factors. Depletion of C/EBPα is sufficient to induce mesenchymal-like morphology and molecular features, while cells that had undergone TGF-ß-induced EMT reverted to an epithelial-like state upon C/EBPα re-expression. In vivo, mice injected with C/EBPα-expressing breast tumor organoids display a dramatic reduction of metastatic lesions. Collectively, our results show that C/EBPα is required for maintaining epithelial homeostasis by repressing the expression of key mesenchymal markers, thereby preventing EMT-mediated tumorigenesis. These data suggest that C/EBPα is a master epithelial "gatekeeper" whose expression is required to prevent unwarranted mesenchymal transition, supporting an important role for EMT in mediating breast cancer metastasis.


Assuntos
Neoplasias da Mama/patologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Glândulas Mamárias Humanas/patologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Glândulas Mamárias Humanas/metabolismo , Camundongos SCID , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(2): 200-204, 2020 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-32034755

RESUMO

Many recent studies have proved that ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an important nuclear protein associated with tumorigenesis, which plays a significant role in epigenetic regulation, especially in DNA methylation and histone methylation. For its particular domains, UHRF1 plays a critical role in biological behaviors including cell proliferation, cell cycle, and apoptosis. Overexpression of UHRF1 in various tumors is closely associated with the angiogenesis in tumors. This paper will provide a review of the regulation of UHRF1 in DNA methylation and histone methylation, and discuss the potential epigenetic role of UHRF1 in angiogenesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Metilação de DNA , Neovascularização Patológica/genética , Ubiquitina-Proteína Ligases/genética , Epigênese Genética , Humanos , Neoplasias/genética , Neoplasias/patologia
8.
Proc Natl Acad Sci U S A ; 117(2): 1223-1232, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31892538

RESUMO

The LEAFY COTYLEDON1 (LEC1) transcription factor is a central regulator of seed development, because it controls diverse biological programs during seed development, such as embryo morphogenesis, photosynthesis, and seed maturation. To understand how LEC1 regulates different gene sets during development, we explored the possibility that LEC1 acts in combination with other transcription factors. We identified and compared genes that are directly transcriptionally regulated by ABA-RESPONSIVE ELEMENT BINDING PROTEIN3 (AREB3), BASIC LEUCINE ZIPPER67 (bZIP67), and ABA INSENSITIVE3 (ABI3) with those regulated by LEC1. We showed that LEC1 operates with specific sets of transcription factors to regulate different gene sets and, therefore, distinct developmental processes. Thus, LEC1 controls diverse processes through its combinatorial interactions with other transcription factors. DNA binding sites for the transcription factors are closely clustered in genomic regions upstream of target genes, defining cis-regulatory modules that are enriched for DNA sequence motifs that resemble sequences known to be bound by these transcription factors. Moreover, cis-regulatory modules for genes regulated by distinct transcription factor combinations are enriched for different sets of DNA motifs. Expression assays with embryo cells indicate that the enriched DNA motifs are functional cis elements that regulate transcription. Together, the results suggest that combinatorial interactions between LEC1 and other transcription factors are mediated by cis-regulatory modules containing clustered cis elements and by physical interactions that are documented to occur between the transcription factors.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Sementes/crescimento & desenvolvimento , Soja/crescimento & desenvolvimento , Soja/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Motivos de Nucleotídeos , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro , Soja/embriologia , Soja/genética , Fatores de Transcrição/genética
9.
BMB Rep ; 53(2): 112-117, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31964471

RESUMO

A recent study suggested that methylation of ubiquitin-like with PHD and RING finger domain 1 (UHRF1) is regulated by SET7 and lysine-specific histone demethylase 1A (LSD1) and is essential for homologous recombination (HR). The study demonstrated that SET7-mediated methylation of UHRF1 promotes polyubiquitination of proliferating cell nuclear antigen (PCNA), inducing HR. However, studies on mediators that interact with and recruit UHRF1 to damaged lesions are needed to elucidate the mechanism of UHRF1 methylationinduced HR. Here, we identified that poly [ADP-ribose] polymerase 1 (PARP1) interacts with damage-induced methylated UHRF1 specifically and mediates UHRF1 to induce HR progression. Furthermore, cooperation of UHRF1-PARP1 is essential for cell viability, suggesting the importance of the interaction of UHRF1-PARP1 for damage tolerance in response to damage. Our data revealed that PARP1 mediates the HR mechanism, which is regulated by UHRF1 methylation. The data also indicated the significant role of PARP1 as a mediator of UHRF1 methylation-correlated HR pathway. [BMB Reports 2020; 53(2): 112-117].


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dano ao DNA/genética , Recombinação Homóloga/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/genética , Sobrevivência Celular/genética , Dano ao DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Células HCT116 , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
10.
Cancer Invest ; 38(1): 52-60, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31873045

RESUMO

UHRF1 promotes melanoma progression by inducing cell proliferation, and is correlated with poor prognosis of melanoma patients. However, the regulation mechanism has not been fully elaborated. Here, we detected hsa-let-7b expression and its role in melanoma. Through Targetscan and miRanda predication, 30 overlapped miRNAs were found; further survival analysis revealed that hsa-let-7b was the only miRNA that affected the overall survival. Overexpressed hsa-let-7b could significantly inhibit the proliferation ability of A375 and A2058 cells, and this phenomenon was reversed after co-transfection with pLenti-UHRF1. In conclusion, hsa-let-7b regulates melanoma cells proliferation in vitro by targeting UHRF1.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , MicroRNAs/metabolismo , Neoplasias Cutâneas/genética , Ubiquitina-Proteína Ligases/genética , Proliferação de Células/genética , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Pele/patologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Análise de Sobrevida
11.
J Assist Reprod Genet ; 36(12): 2563-2573, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31802345

RESUMO

BACKGROUND: UHRF1 plays an important role in maintaining DNA methylation patterns during spermatogenesis. This study was performed to evaluate the association between UHRF1 gene variations and infertility in males with oligozoospermia in a Chinese population. METHODS: In this case-control study of 735 Chinese men, single-nucleotide polymorphism (SNP) genotypes and alleles in the UHRF1 gene were assessed by direct sequencing. The effects of the mutations on UHRF1 transcription were investigated using a dual-luciferase reporter gene assay. RESULTS: We identified 24 SNPs, including nine SNPs in the promoter region, three in the 5' untranslated region, five in introns, and seven in exons. Interestingly, the genotype frequencies of SNP rs2656927 (P = 0.014) and rs8103849 (P < 0.001) significantly differed between men with oligozoospermia in case group 1 and normozoospermic men. Moreover, four variants (three were novel) were detected only in the patient group, with two in introns and the others in the promoter region. The results of the luciferase assay showed that the -1615C>T-C and -1562A>G-A alleles increased luciferase activity compared with the -1615C>T-T and -1562A>G-G alleles. CONCLUSIONS: We detected two SNPs in the UHRF1 gene showing a significant difference between the case and control groups. Two screened SNPs affected UHRF1 promoter activity, improving the understanding of the pathophysiology of oligozoospermia.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Predisposição Genética para Doença , Infertilidade Masculina/genética , Oligospermia/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Alelos , China/epidemiologia , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos , Humanos , Infertilidade Masculina/patologia , Masculino , Pessoa de Meia-Idade , Oligospermia/epidemiologia , Oligospermia/patologia , Polimorfismo de Nucleotídeo Único/genética , Análise do Sêmen , Espermatogênese/genética
12.
Nat Commun ; 10(1): 5455, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784538

RESUMO

Acute Myeloid Leukemia (AML) develops due to the acquisition of mutations from multiple functional classes. Here, we demonstrate that activating mutations in the granulocyte colony stimulating factor receptor (CSF3R), cooperate with loss of function mutations in the transcription factor CEBPA to promote acute leukemia development. The interaction between these distinct classes of mutations occurs at the level of myeloid lineage enhancers where mutant CEBPA prevents activation of a subset of differentiation associated enhancers. To confirm this enhancer-dependent mechanism, we demonstrate that CEBPA mutations must occur as the initial event in AML initiation. This improved mechanistic understanding will facilitate therapeutic development targeting the intersection of oncogene cooperativity.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Leucemia Mieloide Aguda/genética , Receptores de Fator Estimulador de Colônias/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Humanos , Células K562 , Mutação com Perda de Função , Camundongos , Mutação
13.
Lipids Health Dis ; 18(1): 230, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31883537

RESUMO

BACKGROUND: Adipogenesis is the process of adipocytes formation from unspecialized progenitor cells called mesenchymal stromal cells. Numerous mechanisms including epigenetic regulation modulate the correct progress of this process. Dietary exposures occurring over a specific period of time might cause long-lasting and even permanent changes in gene expression regulated by epigenetic mechanisms. For that reason, we investigated the adipogenesis of 3 T3-L1 cells with the excess of saturated and monounsaturated fatty acids and their influence on global and site-specific DNA methylation in these cells. MATERIALS AND METHODS: 3T3-L1 cells were cultured in vitro to obtain 100% of confluence, then the adipogenesis was induced by a differentiation cocktail with the addition of the excess of 0.25 mM and 0.5 mM of palmitic (16:0), stearic (18:0) and oleic (18:1n-9) acids. DNA and RNA were extracted at five-time points to assess the adipogenesis process. The phenotype of mature adipocytes (insulin sensitivity, adipokines secretion, fat content) was estimated in fully mature adipocytes. DNA methylation was investigated both during adipogenesis and in mature adipocytes. RESULTS: Oleic acids stimulated expression of C/ebpα and Pparγ, which was correlated with lower methylation levels at promoters sites. Furthermore, cells cultured with an excess of oleic acid were characterized by higher lipid accumulation rate, higher leptin, and lower adiponectin secretion. Moreover, in all experimental cells, insulin signaling and glucose utilization were impaired. CONCLUSION: Oleic acid affected the methylation of Pparγ and C/ebpα promoters, what correlated with higher expression. Furthermore, examined free fatty acids influenced the phenotype of mature adipocytes, especially insulin signaling pathway and adipokine secretion.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Metilação de DNA/efeitos dos fármacos , Obesidade/genética , Ácido Oleico/metabolismo , PPAR gama/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipocinas/biossíntese , Adipocinas/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Glucose/metabolismo , Humanos , Insulina/genética , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Ácido Oleico/farmacologia , Transdução de Sinais
14.
Elife ; 82019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31637998

RESUMO

Monocyte counts are increased during human tuberculosis (TB) but it has not been determined whether Mycobacterium tuberculosis (Mtb) directly regulates myeloid commitment. We demonstrated that exposure to Mtb directs primary human CD34+ cells to differentiate into monocytes/macrophages. In vitro myeloid conversion did not require type I or type II IFN signaling. In contrast, Mtb enhanced IL-6 responses by CD34+ cell cultures and IL-6R neutralization inhibited myeloid differentiation and decreased mycobacterial growth in vitro. Integrated systems biology analysis of transcriptomic, proteomic and genomic data of large data sets of healthy controls and TB patients established the existence of a myeloid IL-6/IL6R/CEBP gene module associated with disease severity. Furthermore, genetic and functional analysis revealed the IL6/IL6R/CEBP gene module has undergone recent evolutionary selection, including Neanderthal introgression and human pathogen adaptation, connected to systemic monocyte counts. These results suggest Mtb co-opts an evolutionary recent IFN-IL6-CEBP feed-forward loop, increasing myeloid differentiation linked to severe TB in humans.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Interferons/metabolismo , Interleucina-6/metabolismo , Monócitos/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Antígenos CD34 , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular , Proliferação de Células , Citocinas/genética , Citocinas/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Hidrolases , Interferons/genética , Interleucina-6/genética , Macrófagos/microbiologia , Monócitos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Células Mieloides/fisiologia , Proteômica , Receptores de Interleucina-6 , Índice de Gravidade de Doença , Transcriptoma , Tuberculose/metabolismo
15.
Nat Commun ; 10(1): 4705, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624244

RESUMO

DNA methylation, repressive histone marks, and PIWI-interacting RNA (piRNA) are essential for the control of retrotransposon silencing in the mammalian germline. However, it remains unknown how these repressive epigenetic pathways crosstalk to ensure retrotransposon silencing in the male germline. Here, we show that UHRF1 is responsible for retrotransposon silencing and cooperates with repressive epigenetic pathways in male germ cells. Conditional loss of UHRF1 in postnatal germ cells causes DNA hypomethylation, upregulation of retrotransposons, the activation of a DNA damage response, and switches in the global chromatin status, leading to complete male sterility. Furthermore, we show that UHRF1 interacts with PRMT5, an arginine methyltransferase, to regulate the repressive histone arginine modifications (H4R3me2s and H3R2me2s), and cooperates with the PIWI pathway during spermatogenesis. Collectively, UHRF1 regulates retrotransposon silencing in male germ cells and provides a molecular link between DNA methylation, histone modification, and the PIWI pathway in the germline.


Assuntos
Proteínas Argonauta/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Metilação de DNA , Proteína-Arginina N-Metiltransferases/genética , Retroelementos/genética , Espermatozoides/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas Argonauta/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Feminino , Inativação Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Espermatogênese/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Int J Mol Sci ; 20(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487963

RESUMO

The TORC2 gene is a member of the transducer of the regulated cyclic adenosine monophosphate (cAMP) response element binding protein gene family, which plays a key role in metabolism and adipogenesis. In the present study, we confirmed the role of TORC2 in bovine preadipocyte proliferation through cell cycle staining flow cytometry, cell counting assay, 5-ethynyl-2'-deoxyuridine staining (EdU), and mRNA and protein expression analysis of proliferation-related marker genes. In addition, Oil red O staining analysis, immunofluorescence of adiponectin, mRNA and protein level expression of lipid related marker genes confirmed the role of TORC2 in the regulation of bovine adipocyte differentiation. Furthermore, the transcription start site and sub-cellular localization of the TORC2 gene was identified in bovine adipocytes. To investigate the underlying regulatory mechanism of the bovine TORC2, we cloned a 1990 bp of the 5' untranslated region (5'UTR) promoter region into a luciferase reporter vector and seven vector fragments were constructed through serial deletion of the 5'UTR flanking region. The core promoter region of the TORC2 gene was identified at location -314 to -69 bp upstream of the transcription start site. Based on the results of the transcriptional activities of the promoter vector fragments, luciferase activities of mutated fragments and siRNAs interference, four transcription factors (CCAAT/enhancer-binding protein C/BEP, X-box binding protein 1 XBP1, Insulinoma-associated 1 INSM1, and Zinc finger protein 263 ZNF263) were identified as the transcriptional regulators of TORC2 gene. These findings were further confirmed through Electrophoretic Mobility Shift Assay (EMSA) within nuclear extracts of bovine adipocytes. Furthermore, we also identified that C/EBP, XBP1, INSM1 and ZNF263 regulate TORC2 gene as activators in the promoter region. We can conclude that TORC2 gene is potentially a positive regulator of adipogenesis. These findings will not only provide an insight for the improvement of intramuscular fat in cattle, but will enhance our understanding regarding therapeutic intervention of metabolic syndrome and obesity in public health as well.


Assuntos
Adipócitos/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Adipócitos/citologia , Adipogenia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Bovinos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Regiões Promotoras Genéticas , Ativação Transcricional , Transcriptoma
17.
Genes (Basel) ; 10(9)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500202

RESUMO

The buffalo (Bubalus bubalis.L) is prevalent in China and the increasing demand for meat production has changed its role from being a beast of burden to a meat source. The low fat deposition level has become one of the main barriers for its use in meat production. It is urgent to reveal factors involved in fat deposition in buffalo. This study performed RNA sequencing to investigate both long noncoding RNAs (lncRNAs) and mRNAs of adipose tissues in young and adult buffalos. A total of 124 lncRNAs and 2008 mRNAs showed differential expression patterns between young and adult samples. Coexpression analysis and functional enrichment revealed 585 mRNA-lncRNA pairs with potential function in fat deposition. After validation by qRT-PCR, we focused on a lncRNA transcribed from the ubiquinone oxidoreductase subunit C2 (NDUFC2) antisense (AS) strand which showed high correlation with thyroid hormone responsive protein (THRSP). NDUFC2-AS lncRNA is highly expressed in adipose tissue and maturation adipocytes and mainly exists in the nucleus. Functional assays demonstrated that NDUFC2-AS lncRNA promotes adipogenic differentiation by upregulating the expression levels of THRSP and CCAAT enhancer binding protein alpha (C/EBPα) in buffalo. These results indicate that NDUFC2-AS lncRNA promotes fat deposition in buffalo.


Assuntos
Adipócitos/metabolismo , Adipogenia , Búfalos/genética , RNA Longo não Codificante/genética , Adipócitos/citologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Complexo I de Transporte de Elétrons/genética , Feminino , Masculino
18.
RNA Biol ; 16(12): 1785-1793, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31434544

RESUMO

Obesity is becoming a global problem. Research into the detailed mechanism of adipocyte development is crucial for the treatment of excess fat. Zinc finger protein 217 plays roles in adipogenesis. However, the underlying mechanism remains unclear. Here, we demonstrated that ZFP217 knockdown prevented the mitotic clonal expansion process and caused adipogenesis inhibition. Depletion of ZFP217 increased the expression of the m6A methyltransferase METTL3, which upregulated the m6A level of cyclin D1 mRNA. METTL3 knockdown rescued the siZFP217-inhibited MCE and promoted CCND1 expression. YTH domain family 2 recognized and degraded the methylated CCND1 mRNA, leading to the downregulation of CCND1. Consequently, cell-cycle progression was blocked, and adipogenesis was inhibited. YTHDF2 knockdown relieved siZFP217-inhibited adipocyte differentiation. These findings reveal that ZFP217 knockdown-induced adipogenesis inhibition was caused by CCND1, which was mediated by METTL3 and YTHDF2 in an m6A-dependent manner. We have provided novel insight into the underlying molecular mechanisms by which m6A methylation is involved in the ZFP217 regulation of adipogenesis.


Assuntos
Adenosina/análogos & derivados , Adipócitos/metabolismo , Adipogenia/genética , Metiltransferases/genética , Transativadores/genética , Células 3T3-L1 , Adenosina/metabolismo , Adipócitos/citologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Células Clonais , Ciclina D1/genética , Ciclina D1/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Metiltransferases/metabolismo , Camundongos , Mitose , PPAR gama/genética , PPAR gama/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Transfecção
19.
EMBO J ; 38(18): e101426, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31373033

RESUMO

Steroid hormones are key gene regulators in breast cancer cells. While estrogens stimulate cell proliferation, progestins activate a single cell cycle followed by proliferation arrest. Here, we use biochemical and genome-wide approaches to show that progestins achieve this effect via a functional crosstalk with C/EBPα. Using ChIP-seq, we identify around 1,000 sites where C/EBPα binding precedes and helps binding of progesterone receptor (PR) in response to hormone. These regions exhibit epigenetic marks of active enhancers, and C/EBPα maintains an open chromatin conformation that facilitates loading of ligand-activated PR. Prior to hormone exposure, C/EBPα favors promoter-enhancer contacts that assure hormonal regulation of key genes involved in cell proliferation by facilitating binding of RAD21, YY1, and the Mediator complex. Knockdown of C/EBPα disrupts enhancer-promoter contacts and decreases the presence of these architectural proteins, highlighting its key role in 3D chromatin looping. Thus, C/EBPα fulfills a previously unknown function as a potential growth modulator in hormone-dependent breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos , Transplante de Neoplasias , Progestinas/farmacologia , Regiões Promotoras Genéticas , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Transcrição YY1/metabolismo
20.
Food Funct ; 10(8): 5188-5202, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31380532

RESUMO

Quercetin possesses various health beneficial functions, but its poor bioavailability limits these functions. Enzymatically modified isoquercitrin (EMIQ) is a quercetin glycoside with a greater bioavailability than quercetin. In this study, we investigated whether EMIQ regulates energy metabolism in mice and its underlying molecular mechanism. Male C57BL/6 mice were fed a normal diet with different doses of EMIQ or quercetin (0.02%, 0.1% and 0.5%) for two weeks. Supplementation with 0.1% EMIQ significantly decreased white adipose tissue (WAT) weight. Supplementation with 0.02% and 0.1% EMIQ promoted phosphorylation of adenosine monophosphate activated protein kinase (AMPK) in the WAT, liver, and muscle. In the WAT, 0.1% EMIQ downregulated peroxisome proliferator-activated receptor (PPAR)γ, CCAAT-enhancer-binding protein (C/EBP)α, C/EBPß, and sterol regulatory element-binding protein 1 expression, as well as upregulated mitochondrial uncoupling protein (UCP) 2 and carnitine palmitoyltransferase-1 expression. Supplementation with 0.1% EMIQ also promoted the expression of thermogenesis-associated factors including PPARγ coactivator α (PGC-1α), UCP1, PR-domain containing protein 16, and sirtuin 1 in the WAT. In the liver, EMIQ promoted the phosphorylation of acetyl-CoA carboxylase, and increased the expression of PPARα, constitutive androstane-receptor, and farnesoid X receptor. Furthermore, supplementation with 0.02% or 0.1% EMIQ suppressed the plasma glucose level accompanied by the translocation of glucose transporter 4 to the plasma membrane of the muscle. Our results suggest that EMIQ is a potential food additive for the regulation of energy metabolism through AMPK phosphorylation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/efeitos dos fármacos , Quercetina/análogos & derivados , Proteínas Quinases Ativadas por AMP/genética , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , PPAR gama/metabolismo , Quercetina/química , Quercetina/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA