Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.743
Filtrar
1.
Nat Commun ; 11(1): 5079, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033234

RESUMO

Tumor heterogeneity and lack of knowledge about resistant cell states remain a barrier to targeted cancer therapies. Basal cell carcinomas (BCCs) depend on Hedgehog (Hh)/Gli signaling, but can develop mechanisms of Smoothened (SMO) inhibitor resistance. We previously identified a nuclear myocardin-related transcription factor (nMRTF) resistance pathway that amplifies noncanonical Gli1 activity, but characteristics and drivers of the nMRTF cell state remain unknown. Here, we use single cell RNA-sequencing of patient tumors to identify three prognostic surface markers (LYPD3, TACSTD2, and LY6D) which correlate with nMRTF and resistance to SMO inhibitors. The nMRTF cell state resembles transit-amplifying cells of the hair follicle matrix, with AP-1 and TGFß cooperativity driving nMRTF activation. JNK/AP-1 signaling commissions chromatin accessibility and Smad3 DNA binding leading to a transcriptional program of RhoGEFs that facilitate nMRTF activity. Importantly, small molecule AP-1 inhibitors selectively target LYPD3+/TACSTD2+/LY6D+ nMRTF human BCCs ex vivo, opening an avenue for improving combinatorial therapies.


Assuntos
Carcinoma Basocelular/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA de Neoplasias/metabolismo , Resistencia a Medicamentos Antineoplásicos , Matriz Extracelular/metabolismo , Ontologia Genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Folículo Piloso/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Proteína Smad3/metabolismo , Transativadores/metabolismo , Regulação para Cima
2.
Adv Exp Med Biol ; 1268: 171-191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32918219

RESUMO

The prevalent keratinocyte-derived neoplasms of the skin are basal cell carcinoma and squamous cell carcinoma. Both so-called non-melanoma skin cancers comprise the most common cancers in humans by far. Common risk factors for both tumor entities include sun exposure, DNA repair deficiencies leading to chromosomal instability, or immunosuppression. Yet, fundamental differences in the development of the two different entities have been and are currently unveiled. The constitutive activation of the sonic hedgehog signaling pathway by acquired mutations in the PTCH and SMO genes appears to represent the early basal cell carcinoma developmental determinant. Although other signaling pathways are also affected, small hedgehog inhibitory molecules evolve as the most promising basal cell carcinoma treatment options systemically as well as topically in current clinical trials. For squamous cell carcinoma development, mutations in the p53 gene, especially UV-induced mutations, have been identified as early events. Yet, other signaling pathways including epidermal growth factor receptor, RAS, Fyn, or p16INK4a signaling may play significant roles in squamous cell carcinoma development. The improved understanding of the molecular events leading to different tumor entities by de-differentiation of the same cell type has begun to pave the way for modulating new molecular targets therapeutically with small molecules.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Carcinoma Basocelular/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Terapia de Alvo Molecular , Transdução de Sinais , Neoplasias Cutâneas/metabolismo
3.
Anticancer Res ; 40(9): 5107-5114, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878799

RESUMO

BACKGROUND/AIM: Epithelial-mesenchymal transition (EMT) via Sonic Hedgehog (Shh) signaling may be one of the mechanisms of progression of castration-resistant prostate cancer (CRPC). In this study, we investigated the possible therapeutic effect of vismodegib, a new Shh inhibitor, in a mouse CRPC model. MATERIALS AND METHODS: We determined cell proliferation, apoptosis and the expression of EMT-related genes for three prostate cancer cell lines; androgen-dependent LNCaP and independent C4-2B and PC-3 in the presence of vismodegib in vitro. Fifty mg/kg of vismodegib were orally administered into mice bearing C4-2B and PC-3 tumors, respectively every other week for 3 weeks. RESULTS: Vismodegib significantly inhibited cell proliferation and induced cell apoptosis in all cell lines in vitro (p<0.05). Vismodegib significantly inhibited EMT in CRPC cells and tumor growth in C4-2B-bearing mice compared to controls in vivo (p<0.05). Higher expression of caspase-3 and lower expression of vimentin in PC-3 and C4-2B tumors were induced by vismodegib in immunohistochemical analysis. CONCLUSION: Vismodegib inhibited cell proliferation via apoptosis and also suppressed EMT, showing anti-tumor effects in mice. Further mechanistic studies are needed to investigate the feasibility of vismodegib for CRPC treatment.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Proteínas Hedgehog/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Imunofenotipagem , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Dermatol ; 38(4): 467-476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32972605

RESUMO

Basal cell nevus syndrome, also known as Gorlin syndrome, is a hereditary cancer syndrome associated with multiple basal cell carcinomas, congenital defects, and nondermatologic tumors. This disease is autosomal dominant with variable expressivity and is caused by abnormalities in the sonic hedgehog signaling pathway. Management requires a multidisciplinary approach and should include the biopsychosocial needs of patients and their families. Genetic testing is necessary to confirm an unclear diagnosis, evaluate at-risk relatives, and assist with family planning.


Assuntos
Síndrome do Nevo Basocelular/genética , Síndrome do Nevo Basocelular/terapia , Terapia de Alvo Molecular , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/terapia , Adulto , Síndrome do Nevo Basocelular/diagnóstico , Síndrome do Nevo Basocelular/patologia , Feminino , Testes Genéticos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Comunicação Interdisciplinar , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/patologia , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Receptor Patched-2/genética , Receptor Patched-2/metabolismo , Equipe de Assistência ao Paciente , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Pele/patologia , Adulto Jovem
5.
PLoS One ; 15(7): e0225351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735563

RESUMO

Endothelial cilia are found in a variety of tissues including the cranial vasculature of zebrafish embryos. Recently, endothelial cells in the developing mouse retina were reported to also possess primary cilia that are potentially involved in vascular remodeling. Fish carrying mutations in intraflagellar transport (ift) genes have disrupted cilia and have been reported to have an increased rate of spontaneous intracranial hemorrhage (ICH), potentially due to disruption of the sonic hedgehog (shh) signaling pathway. However, it remains unknown whether the endothelial cells forming the retinal microvasculature in zebrafish also possess cilia, and whether endothelial cilia are necessary for development and maintenance of the blood-retinal barrier (BRB). In the present study, we found that the endothelial cells lining the zebrafish hyaloid vasculature possess primary cilia during development. To determine whether endothelial cilia are necessary for BRB integrity, ift57, ift88, and ift172 mutants, which lack cilia, were crossed with the double-transgenic zebrafish strain Tg(l-fabp:DBP-EGFP;flk1:mCherry). This strain expresses a vitamin D-binding protein (DBP) fused to enhanced green fluorescent protein (EGFP) as a tracer in the blood plasma, while the endothelial cells forming the vasculature are tagged by mCherry. The Ift mutant fish develop a functional BRB, indicating that endothelial cilia are not necessary for early BRB integrity. Additionally, although treatment of zebrafish larvae with Shh inhibitor cyclopamine results in BRB breakdown, the Ift mutant fish were not sensitized to cyclopamine-induced BRB breakdown.


Assuntos
Barreira Hematorretiniana/metabolismo , Cílios/metabolismo , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/fisiologia , Células Endoteliais/citologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Larva/metabolismo , Mutagênese , Vasos Retinianos/citologia , Transdução de Sinais , Alcaloides de Veratrum/farmacologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(33): 20127-20138, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747535

RESUMO

Medulloblastoma is the most common malignant brain tumor in children. Here we describe a medulloblastoma model using Induced pluripotent stem (iPS) cell-derived human neuroepithelial stem (NES) cells generated from a Gorlin syndrome patient carrying a germline mutation in the sonic hedgehog (SHH) receptor PTCH1. We found that Gorlin NES cells formed tumors in mouse cerebellum mimicking human medulloblastoma. Retransplantation of tumor-isolated NES (tNES) cells resulted in accelerated tumor formation, cells with reduced growth factor dependency, enhanced neurosphere formation in vitro, and increased sensitivity to Vismodegib. Using our model, we identified LGALS1 to be a GLI target gene that is up-regulated in both Gorlin tNES cells and SHH-subgroup of medulloblastoma patients. Taken together, we demonstrate that NES cells derived from Gorlin patients can be used as a resource to model medulloblastoma initiation and progression and to identify putative targets.


Assuntos
Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Células-Tronco Neurais/fisiologia , Anilidas/farmacologia , Animais , Síndrome do Nevo Basocelular/genética , Síndrome do Nevo Basocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Galectina 1/genética , Galectina 1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Humanos , Camundongos , Neoplasias Experimentais , Receptor Patched-1/genética , Piridinas/farmacologia
7.
Gene ; 762: 145044, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32777528

RESUMO

OBJECTIVE: Gastric cancer is the most common malignant tumor. Most patients suffering from gastric cancer die of metastasis. The role of Atrial natriuretic peptide (ANP) in inhibiting and eliminating kinds of cancer cells has been reported. Aberrant activation of Hedgehog (Hh) signaling pathway contributes to initiation and progression of various malignancies. We have previously reported that the inhibitor of Hh, cyclopamine, reduces the metastatic activity of MGC-803 via inhibiting the expression of matrix metalloproteinases (MMP)-9. It remains to be further demonstrated that ANP has the suppressive effects on invasion and metastasis in gastric cancer via Hh-mediated MMP-9 production. METHODS: Transwell, western blot, qRT-PCR were used after application of ANP on MGC-803 gastric cancer cells to determine the levels of cell migration and invasion, protein levels of MMP-9 and Hh, as well as mRNAs of MMP-9 and Hh, respectively. RESULTS: It was demonstrated that the migration and invasion were significantly lower, MMP-9 and Hh as well as their mRNAs were lower as well, in ANP-treated MGC-803 gastric cancer cells than those in control. CONCLUSIONS: The expression of MMP-9 induced by aberrant activation of Hh in MGC-803 was inhibited by ANP, which may contribute to the inhibition of cell migration and invasion. These results suggested the potential of ANP to be used in gastric cancer therapy as an inhibitor targetting Hh signaling pathway to inhibit the proliferation as well as invasion and metastasis of gastric cancer.


Assuntos
Fator Natriurético Atrial/farmacologia , Proteínas Hedgehog/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proteínas Hedgehog/genética , Humanos , Metaloproteinase 9 da Matriz/genética , Transdução de Sinais/efeitos dos fármacos
8.
Life Sci ; 257: 118027, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622951

RESUMO

AIM: Glioblastoma is an extremely aggressive glioma, resistant to radio and chemotherapy usually performed with temozolomide. One of the main reasons for glioblastoma resistance to conventional therapies is due to the presence of cancer stem-like cells. These cells could recapitulate some signaling pathways important for embryonic development, such as Sonic hedgehog. Here, we investigated if the inhibitor of the Sonic hedgehog pathway, cyclopamine, could potentiate the temozolomide effect in cancer stem-like cells and glioblastoma cell lines in vitro. MAIN METHODS: The viability of glioblastoma cells exposed to cyclopamine and temozolomide treatment was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while the induction of apoptosis was assessed by western blot. The stemness properties of glioma cells were verified by clonogenic and differentiation assay and the expression of stem cell markers were measured by fluorescence microscopy and western blot. KEY FINDINGS: The glioblastoma viability was reduced by cyclopamine treatment. Cyclopamine potentiated temozolomide treatment in glioblastoma cell lines by inducing apoptosis through activation of caspase-3 cleaved. Conversely, the combined treatment of cyclopamine and temozolomide potentiated the stemness properties of glioblastoma cells by inducing the expression of SOX-2 and OCT-4. SIGNIFICANCE: Cyclopamine plays an effect on glioblastoma cell lines but also sensibilize them to temozolomide treatment. Thus, first-line treatment with Sonic hedgehog inhibitor followed by temozolomide could be used as a new therapeutic strategy for glioblastoma patients.


Assuntos
Glioblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Alcaloides de Veratrum/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteínas Hedgehog/efeitos dos fármacos , Proteínas Hedgehog/fisiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero , Fatores de Transcrição SOXB1 , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Alcaloides de Veratrum/metabolismo
9.
Gene ; 758: 144967, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32707299

RESUMO

Bivalve mollusks are descendants of an early-Cambrian lineage and have successfully evolved unique strategies for reproduction. Nonetheless, the molecular mechanisms underlying reproductive regulation in mollusks remain to be elucidated. In this study, transcriptomes of ovary at four reproductive stages in female Chlamys farreri were characterized by RNA-Seq. Regarding signaling pathways, ECM-receptor interaction pathway, mTOR signaling pathway, Fanconi anemia pathway, FoxO signaling pathway, Wnt signaling pathway and Hedgehog signaling pathway were enriched during ovarian development processes. In addition, pathways related to energy metabolism such as Nitrogen metabolism and Arachidonic acid metabolism were enriched at spawn stage. Interestingly, Neuroactive ligand-receptor interaction was significantly enriched involved in ovarian development and spawn, and indicated the potential functions of nervous system on reproductive regulation in C. farreri. What's more, this study identified and characterized fourteen genes involved in "sex hormones synthesis and regulation", "ovarian development and spawn" and "maternal immunity" during the four reproductive stages in C. farreri. We determined that CYP17 uniquely affected gamete release by influencing the physiological balance among the steroid hormones and showed that receptors of the 5-HT and GABA neurotransmitters were tightly associated with ovarian maturation. Furthermore, to the best of our knowledge, this is the first study to report the maternal effect gene Zar1 in bivalve mollusks, likewise the maternal immunity genes displayed coordinated and cooperative expression during reproductive periods, which strengthened the environmental adaptation mechanisms of bivalves. Taken together, this study provides the first dynamic transcriptomic analysis of C. farreri at four key reproductive stages, which will assist in revealing the molecular mechanisms underlying bivalves on reproductive regulation in ovarian development and spawn.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Ovário/crescimento & desenvolvimento , Pectinidae/crescimento & desenvolvimento , Pectinidae/genética , Transcriptoma/genética , Animais , Metabolismo Energético/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Proteínas Hedgehog/metabolismo , Reprodução/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética
10.
Gene ; 758: 144968, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32707304

RESUMO

The hair follicle is an excellent mini-system illustrating the mechanisms governing organogenesis and regeneration. Although the general mechanisms modulating skin and hair follicle development are widely studied in mouse and chicken models, the delicate network regulating skin and hair diversity remains largely unclear. Sheep is an additional model to address the various wool characteristics observed in nature. The coarse and fine wool sheep with diverse fibers were examined to show differences in the primary wool follicle size and skin thickness. The molecular dynamics in skin staged at the primary wool follicle induction between two sheep lines were investigated by RNA-sequencing analyses to generate 1994 differentially expressed genes revealing marker genes for epithelium (6 genes), dermal condensate (38 genes) and dermal fibroblast (58 genes) highly correlated with skin and wool follicle morphological differences. The DEGs were enriched in GO terms represented by epithelial cell migration and differentiation, regulation of hair follicle development and ectodermal placode formation, and KEGG pathways typified by WNT and Hedgehog signaling pathways governing the differences of skin structure. The qPCR detection of 9 genes confirmed the similar expression tendency with RNA-sequencing profiles. This comparative study of coarse and fine wool sheep skin reveals the presence of skin and wool follicle differences at primary wool follicle induction stage, and indicates the potential effectors (APCDD1, FGF20, DKK1, IGFBP3 and SFRP4) regulating the skin compartments during the early morphogenesis of primary wool follicles to shape the variable wool fiber thickness in later developmental stages.


Assuntos
Células Epiteliais/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/fisiologia , Fenômenos Fisiológicos da Pele/genética , Lã/fisiologia , Animais , Proteínas Hedgehog/metabolismo , Simulação de Dinâmica Molecular , Ovinos , Transcriptoma/genética , Via de Sinalização Wnt
11.
Proc Natl Acad Sci U S A ; 117(32): 19321-19327, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719137

RESUMO

Phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes under different environmental conditions, is critical for the origins and maintenance of biodiversity; however, the genetic mechanisms underlying plasticity as well as how variation in those mechanisms can drive evolutionary change remain poorly understood. Here, we examine the cichlid feeding apparatus, an icon of both prodigious evolutionary divergence and adaptive phenotypic plasticity. We first provide a tissue-level mechanism for plasticity in craniofacial shape by measuring rates of bone deposition within functionally salient elements of the feeding apparatus in fishes forced to employ alternate foraging modes. We show that levels and patterns of phenotypic plasticity are distinct among closely related cichlid species, underscoring the evolutionary potential of this trait. Next, we demonstrate that hedgehog (Hh) signaling, which has been implicated in the evolutionary divergence of cichlid feeding architecture, is associated with environmentally induced rates of bone deposition. Finally, to demonstrate that Hh levels are the cause of the plastic response and not simply the consequence of producing more bone, we use transgenic zebrafish in which Hh levels could be experimentally manipulated under different foraging conditions. Notably, we find that the ability to modulate bone deposition rates in different environments is dampened when Hh levels are reduced, whereas the sensitivity of bone deposition to different mechanical demands increases with elevated Hh levels. These data advance a mechanistic understanding of phenotypic plasticity in the teleost feeding apparatus and in doing so contribute key insights into the origins of adaptive morphological radiations.


Assuntos
Ciclídeos/metabolismo , Proteínas de Peixes/metabolismo , Proteínas Hedgehog/metabolismo , Crânio/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Ciclídeos/genética , Ciclídeos/crescimento & desenvolvimento , Proteínas de Peixes/genética , Proteínas Hedgehog/genética , Transdução de Sinais , Crânio/metabolismo
12.
Chem Biol Interact ; 328: 109189, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32622864

RESUMO

Di-n-butyl phthalate (DBP) is a pollutant that is widely present in the environment. We have previously demonstrated that maternal exposure to DBP resulted in renal fibrosis in offspring, but the underlying mechanism was not well elucidated. Therefore, the current study aims to understand the underlying molecular mechanisms in these sex-specific developmental alterations. Here, we used RNA-seq analysis to explore the underlying molecular mechanisms of DBP-associated renal fibrosis. Pregnant rats received DBP orally at a dose of 850 mg/kg BW/day during gestational days 14-18. Upregulated autophagy in renal tubules in offspring was confirmed in the DBP-treated group via accessing LC3Ⅱ/Ⅰ protein expression. Increased expression of the HhIP gene was found in the DBP-treated group via RNA-seq analysis. Immunohistochemistry (IHC) staining and Western blot analysis confirmed increased expression of HhIP protein and inhibited hedgehog signaling. Increased HhIP expression further leaded to impaired activation of hedgehog signaling, which is critical for normal embryonic development. Additional in vitro experiments on renal tubular cells suggest that inactivation of hedgehog signaling induced autophagy in renal tubular cells. Taken together, our findings show that maternal exposure to DBP induced autophagy through regulation of hedgehog signaling via overexpression of HhIP in foetal renal tubular cells, which may be essential for renal fibrosis development.


Assuntos
Autofagia , Dibutilftalato/toxicidade , Proteínas Hedgehog/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Transdução de Sinais , Animais , Animais Recém-Nascidos , Autofagia/efeitos dos fármacos , Linhagem Celular , Feminino , Túbulos Renais/efeitos dos fármacos , Exposição Materna , Gravidez , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
PLoS One ; 15(7): e0235922, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673370

RESUMO

We have previously established that epigenetic regulator RING1 and YY1 binding protein (RYBP) is required for the contractility of embryonic stem (ES) cell derived cardiomyocytes (CMCs), suggesting its essential role in contractility. In order to investigate the underlying molecular events of this phenotype, we compared the transcriptomic profile of the wild type and Rybp null mutant ES cells and CMCs differentiated from these cell lines. We identified genes related to ion homeostasis, cell adhesion and sarcomeric organization affected in the Rybp null mutant CMCs, by using hierarchical gene clustering and Gene Ontology analysis. We have also demonstrated that the amount of RYBP is drastically reduced in the terminally differentiated wild type CMCs whilst it is broadly expressed in the early phase of differentiation when progenitors form. We also describe that RYBP is important for the proper expression of key cardiac transcription factors including Mesp1, Shh and Mef2c. These findings identify Rybp as a gene important for both early cardiac gene transcription and consequent sarcomere formation necessary for contractility. Since impairment of sarcomeric function and contractility plays a central role in reduced cardiac pump function leading to heart failures in human, current results might be relevant to the pathophysiology of cardiomyopathies.


Assuntos
Proteínas Repressoras/genética , Sarcômeros/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras/deficiência
14.
PLoS Genet ; 16(6): e1008792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579612

RESUMO

While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster. Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and KIF11/Klp61F. These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions.


Assuntos
Variações do Número de Cópias de DNA , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Neurodesenvolvimento/genética , Animais , Olho Composto de Artrópodes/embriologia , Olho Composto de Artrópodes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Asas de Animais/embriologia , Asas de Animais/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
15.
Gene ; 754: 144881, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32526259

RESUMO

OBJECTIVE: This study aims to investigate the roles of Sonic hedgehog (Shh) signaling pathway in the occurrence and progression of Myelodysplastic Syndrome (MDS) and further evaluate using jervine as therapeutic strategy for MDS by inhibiting Shh pathway. METHODS: CD34+ cells from the bone marrow of 53 MDS patients were counted by flow cytometry and isolated by magnetic bead sorting. Shh, Smo, Ptch-1 and Gli-1 (involved in Shh pathway) in CD34+ cells were examined by RT-qPCR. Besides, the relationship between Shh pathway-related genes and the clinical features or prognosis of MDS were analyzed. Further, the effects of jervine on MUTZ-1 cells regarding their proliferation, apoptosis and cell cycle as well as Shh pathway-related gene and protein expression were analyzed. RESULTS: Gene expression level of Shh, Gli-1 and Smo was significantly increased in MDS patients. Herein, Smo and Gli-1 were correlated with chromosome karyotype classification and IPSS. MDS patients with high expression of Smo or Gli-1 had a poor prognosis. Jervine inhibited gene and protein expression of Shh, Smo, Ptch-1 and Gli-1. Besides, jervine suppressed the proliferation and promoted the apoptosis of MUTZ-1 cells, as well as inhibited the transition of cells from G1 to S phase. CONCLUSION: Shh signaling pathway of MDS patients is abnormally activated and participated in the occurrence and progression of MDS. Jervine intervention is a potential therapeutic strategy for MDS.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Alcaloides de Veratrum/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Proliferação de Células , Feminino , Proteínas Hedgehog/genética , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/metabolismo , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Prognóstico , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Células Tumorais Cultivadas , Adulto Jovem , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
16.
PLoS Genet ; 16(6): e1008810, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32497091

RESUMO

Urogenital tract abnormalities are among the most common congenital defects in humans. Male urogenital development requires Hedgehog-GLI signaling and testicular hormones, but how these pathways interact is unclear. We found that Gli3XtJ mutant mice exhibit cryptorchidism and hypospadias due to local effects of GLI3 loss and systemic effects of testicular hormone deficiency. Fetal Leydig cells, the sole source of these hormones in developing testis, were reduced in numbers in Gli3XtJ testes, and their functional identity diminished over time. Androgen supplementation partially rescued testicular descent but not hypospadias in Gli3XtJ mutants, decoupling local effects of GLI3 loss from systemic effects of androgen insufficiency. Reintroduction of GLI3 activator (GLI3A) into Gli3XtJ testes restored expression of Hedgehog pathway and steroidogenic genes. Together, our results show a novel function for the activated form of GLI3 that translates Hedgehog signals to reinforce fetal Leydig cell identity and stimulate timely INSL3 and testosterone synthesis in the developing testis. In turn, exquisite timing and concentrations of testosterone are required to work alongside local GLI3 activity to control development of a functionally integrated male urogenital tract.


Assuntos
Criptorquidismo/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Intersticiais do Testículo/patologia , Proteínas do Tecido Nervoso/metabolismo , Diferenciação Sexual/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Criptorquidismo/patologia , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Humanos , Insulina/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas/metabolismo , Transdução de Sinais/genética , Testosterona/metabolismo , Proteína Gli3 com Dedos de Zinco/genética
17.
PLoS Negl Trop Dis ; 14(6): e0008290, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479527

RESUMO

Angiostrongyliasis is induced by the nematode Angiostrongylus cantonensis and leads to eosinophilic meningitis and meningoencephalitis in humans. Excretory-secretory products (ESPs) are important investigation targets for studying the relationship between hosts and nematodes. These products assist worms in penetrating the blood-brain barrier and avoiding the host immune response. Autophagy is a catabolic process that is responsible for digesting cytoplasmic organelles, proteins, and lipids and removing them through lysosomes. This process is essential to cell survival and homeostasis during nutritional deficiency, cell injury and stress. In this study, we investigated autophagy induction upon treatment with the ESPs of the fifth-stage larvae (L5) of A. cantonensis and observed the relationship between autophagy and the Shh pathway. First, the results showed that A. cantonensis infection induced blood-brain barrier dysfunction and pathological changes in the brain. Moreover, A. cantonensis L5 ESPs stimulated autophagosome formation and the expression of autophagy molecules, such as LC3B, Beclin, and p62. The data showed that upon ESPs treatment, rapamycin elevated cell viability through the activation of the autophagy mechanism in astrocytes. Finally, we found that ESPs induced the activation of the Sonic hedgehog (Shh) signaling pathway and that the expression of autophagy molecules was increased through the Shh signaling pathway. Collectively, these results suggest that A. cantonensis L5 ESPs stimulate autophagy through the Shh signaling pathway and that autophagy has a protective effect in astrocytes.


Assuntos
Angiostrongylus cantonensis/metabolismo , Astrócitos/parasitologia , Autofagia , Encéfalo/patologia , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Angiostrongylus cantonensis/imunologia , Animais , Astrócitos/citologia , Barreira Hematoencefálica/fisiopatologia , Encéfalo/parasitologia , Interações Hospedeiro-Parasita , Larva/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Caramujos
18.
Anticancer Res ; 40(5): 2467-2474, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366390

RESUMO

BACKGROUND/AIM: The hormonally-active form of vitamin D, 1,25(OH)2D3, demonstrated activity against oral squamous cell carcinoma (OSCC). Cytochrome P450scc (CYP11A1)-derived vitamin D hydroxyderivatives, such as 20(OH)D3 and 1,20(OH)2D3, have overlapping beneficial effects with 1,25(OH)2D3 without causing hypercalcemia. This study sought to determine (i) whether 20(OH)D3 and 1,20(OH)2D3 exhibit antitumor effects against OSCC comparable to those of 1,25(OH)2D3 and (ii) whether these effects may stem from down-regulation of sonic hedgehog (SHH) or WNT/ß-catenin signaling pathways. MATERIALS AND METHODS: Effects on CAL-27 cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt and spheroid assays. Signaling pathways were assessed by immunofluorescence and western blotting. RESULTS: 20(OH)D3 and 1,20(OH)2D3 inhibited the growth of CAL-27 and demonstrated inhibition of WNT/ß-catenin and the SHH signaling as evidenced by down-regulation of nuclear translocation of glioma-associated oncogene 1(GLI1) and ß-catenin. CONCLUSION: Noncalcemic vitamin D hydroxyderivatives demonstrated antitumor activities against OSCC comparable to those of 1,25(OH)2D3 Their activities against SHH and the WNT/ß-catenin pathways provide insight for a possible target for OSCC treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Bucais/metabolismo , Vitamina D/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Biomarcadores , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Núcleo Celular , Imunofluorescência , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/etiologia , Neoplasias Bucais/patologia , Transporte Proteico , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Vitamina D/uso terapêutico , beta Catenina/metabolismo
19.
Am J Hum Genet ; 106(6): 779-792, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32413283

RESUMO

The evolutionarily conserved hedgehog (Hh) pathway is essential for organogenesis and plays critical roles in postnatal tissue maintenance and renewal. A unique feature of the vertebrate Hh pathway is that signal transduction requires the primary cilium (PC) where major pathway components are dynamically enriched. These factors include smoothened (SMO) and patched, which constitute the core reception system for sonic hedgehog (SHH) as well as GLI transcription factors, the key mediators of the pathway. Here, we report bi-allelic loss-of-function variations in SMO in seven individuals from five independent families; these variations cause a wide phenotypic spectrum of developmental anomalies affecting the brain (hypothalamic hamartoma and microcephaly), heart (atrioventricular septal defect), skeleton (postaxial polydactyly, narrow chest, and shortening of long bones), and enteric nervous system (aganglionosis). Cells derived from affected individuals showed normal ciliogenesis but severely altered Hh-signal transduction as a result of either altered PC trafficking or abnormal activation of the pathway downstream of SMO. In addition, Hh-independent GLI2 accumulation at the PC tip in cells from the affected individuals suggests a potential function of SMO in regulating basal ciliary trafficking of GLI2 when the pathway is off. Thus, loss of SMO function results in abnormal PC dynamics of key components of the Hh signaling pathway and leads to a large continuum of malformations in humans.


Assuntos
Alelos , Deficiências do Desenvolvimento/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/genética , Sequência de Bases , Criança , Pré-Escolar , Cílios/fisiologia , Feminino , Humanos , Lactente , Masculino , Modelos Moleculares , Neoplasias/genética , Proteínas do Tecido Nervoso , Proteínas Nucleares , Linhagem , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
20.
Life Sci ; 254: 117695, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407849

RESUMO

AIMS: To investigate the therapeutic potential of itraconazole in oral squamous cell carcinoma (OSCC) and its molecular mechanism. MATERIALS AND METHODS: The in vitro anti-cancer effects of itraconazole was determined by CCK-8 assay and colony formation assay. Transwell and wound healing assays were used to examine cell invasion and migration. The in vivo therapeutic efficacy of itraconazole was assessed by OSCC patient-derived xenograft (PDX) model. Western blot was performed to explore the anti-cancer mechanism. KEY FINDINGS: Itraconazole inhibited cell proliferation and colony formation of OSCC cells in a time and concentration dependent manner; induced cell cycle arrest and apoptosis, as well as inhibited cell invasion and migration. In the OSCC PDX model, itraconazole impeded tumor growth, reduced Ki-67 expression and induced apoptosis. Itraconazole downregulated the protein expression of Hedgehog pathway to inhibit proliferation and migration of oral squamous cell carcinoma cells, which can be revised by recombinant human sonic hedgehog protein (rSHH). SIGNIFICANCE: Itraconazole showed anti-cancer effects on OSCC via inhibiting the Hedgehog pathway.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/patologia , Proteínas Hedgehog/antagonistas & inibidores , Itraconazol/farmacologia , Neoplasias Bucais/patologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Bucais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA