Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.471
Filtrar
1.
Adv Exp Med Biol ; 1158: 101-117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452138

RESUMO

Targeted mass spectrometry in the selected or parallel reaction monitoring (SRM or PRM) mode is a widely used methodology to quantify proteins based on so-called signature or proteotypic peptides. SRM has the advantage of being able to quantify a range of proteins in a single analysis, for example, to measure the level of enzymes comprising a biochemical pathway. In this chapter, we will detail how to set up an SRM assay on the example of the mitochondrial protein succinate dehydrogenase [ubiquinone] flavoprotein subunit (mouse UniProt-code Q8K2B3). First, we will outline the in silico assay design including the choice of peptides based on a range of properties. We will further delineate different quantification strategies and introduce the reader to LC-MS assay development including the selection of the optimal peptide charge state and fragment ions as well as a discussion of the dynamic range of detection. The chapter will close with an application from the area of mitochondrial biology related to the quantification of a set of proteins isolated from mouse liver mitochondria in a study on mitochondrial respiratory flux decline in aging mouse muscle.


Assuntos
Mitocôndrias , Proteômica , Animais , Cromatografia Líquida , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Peptídeos/química , Proteômica/instrumentação , Proteômica/métodos , Espectrometria de Massas em Tandem
2.
DNA Cell Biol ; 38(8): 796-807, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31295012

RESUMO

Myocardial hypertrophy is an important cause of heart failure and sudden death. Studies have shown that Mitofusin-2 (MFN2) is downregulated in myocardial hypertrophy, but the upstream regulation mechanism underlying its downexpression in cardiomyocytes is still unclear. This study aims to identify the expression profile of microRNAs (miRNAs) in hypertrophic cardiomyopathy (HCM) and explore the function of miRNA-20 in inducing cardiomyocyte hypertrophy through regulating MFN2. Through miRNA + mRNA microarray analysis, 1451 miRNAs were identified, 367 miRNAs expressed differently between groups. Meanwhile, a number of 24,718 mRNAs were identified, among which 5850 mRNAs were upregulated and 3005 mRNAs were downregulated in HCM group compared with the control group. Expression of hsa-miRNA-20a-5p was 2.26 times higher in the HCM group compared with the control group and 7 target gene prediction programs predicted MFN2 as a target of miRNA-20. In vitro model of hypertrophic cardiomyocytes displayed high expression level of miRNA-20, atrial natriuretic peptide (ANP) mRNA, and protein, accompanying low expression level of Mfn2 mRNA and protein, which meant miRNA-20 played a role in cardiomyocyte hypertrophy and might interact with MFN2 to function. Thereafter, overexpression of miRNA-20 led to cell hypertrophy accompanied with lowly expressed Mfn2 mRNA and protein. When transfected with miRNA-20 inhibitors, the expression of miRNA-20 and ANP gene was attenuated and MFN2 was the other way around. The cell surface area of Ang II group and mimic group was significantly larger compared with the control group, and in the inhibitor+Ang II group, the area was significantly decreased compared with the Ang II group. Dual-luciferase assays showed that miRNA-20 bound to 3' untranslated region of MFN2 and inhibited its expression. In conclusion, hypertrophic myocardium and normal myocardium have different miRNA expression profiles and the effect of miRNA-20 reducing the expression of MFN2 plays a role in promoting cardiomyocyte hypertrophy.


Assuntos
Cardiomiopatia Hipertrófica/genética , GTP Fosfo-Hidrolases/genética , MicroRNAs/genética , Proteínas Mitocondriais/genética , Miócitos Cardíacos/patologia , Regiões 3' não Traduzidas , Adulto , Angiotensina II/farmacologia , Animais , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Ratos Wistar
3.
Life Sci ; 229: 277-287, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31150687

RESUMO

AIMS: Secreted protein acidic and rich in cysteine, (SPARC), is a matricellular protein implicated in the modulation of the extracellular matrix (ECM) and mitochondrial proteins expression. MAIN METHODS: To study the mechanism through which SPARC is involved in the possible link between ECM and mitochondria, C2C12 myoblasts were cultured with/without the exogenous addition/inhibition of SPARC as well as activation/inhibition of adenosine monophosphate-activated protein kinase (AMPK). Electrical pulse stimulation (EPS), was applied for 2 days in myotubes. KEY FINDINGS: The expressions of ECM-related (integrin-linked kinase (ILK), glycogen synthase kinase-3 beta (GSK-3ß), phosphorylated-GSK-3ß (p-GSK-3ß) and collagen 1a1), mitochondrial-related (AMPK, phosphorylated-AMPK (p-AMPK), succinate dehydrogenase (SDHB) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α)) and SPARC proteins and/or genes were measured after modulation of SPARC and/or AMPK as well as with or without EPS. The addition of SPARC in C2C12 myoblast increased the expression of ILK, p-GSK-3ß and p-AMPK whereas anti-SPARC antibody decreased them at different incubation times (0, 10, and 30 min, and 6 h). The AMPK activation increased SPARC, collagen 1a1, p-AMPK and SDHB proteins level, however, AMPK inhibition blunted the effects. EPS induced Sparc and Pgc1a genes expression. SIGNIFICANCE: Sparc, an EPS-induced gene, may be involved in the link between ECM remodeling and mitochondrial function in muscle via its interaction with ILK/AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Matriz Extracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mioblastos/metabolismo , Osteonectina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Células Cultivadas , Estimulação Elétrica , Regulação da Expressão Gênica , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mioblastos/citologia , Osteonectina/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética
4.
Dokl Biochem Biophys ; 485(1): 119-122, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31201629

RESUMO

Samples from 11 populations of the Arctic char of the North-European part of Russia belonging to the anadromous and resident forms and two samples from Lake Sobach'e (Taimyr) were studied. The nucleotide sequence of the mitochondrial COI gene was determined in 60 individuals. In the majority of populations, the same COI haplotype was found. In some populations of the resident chars, haplotypes differing from the widespread haplotype in a single nucleotide substitution were found. The obtained genetic data give no reason to distinguish the resident form of the Arctic char from lakes of Karelia and the Kola Peninsula as an independent species, Salvelinus lepechini. The adaptation of the Arctic char to the unstable environmental conditions is ensured primarily by its phenotypic plasticity.


Assuntos
DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Peixes/genética , Proteínas Mitocondriais/genética , Filogenia , Truta/genética , Animais , Europa (Continente)
5.
Food Chem ; 293: 285-290, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151613

RESUMO

Exogenous adenosine triphosphate (ATP) treatment at 0, 250, 500, 750, and 1000 µM retarded cap browning in mushrooms by 0, 34, 26, 51 and 32 %, respectively, during storage at 4 °C for 18 days. Triggering signaling H2O2 accumulation arising from elevating NADPH oxidase enzyme activity during 6 days of storage at 4 °C may be pivotal for promoting shikimate dehydrogenase enzyme activity in mushrooms treated with ATP during 18 days of storage at 4 °C. Promoting melatonin accumulation (390 µg kg-1 FW vs. 160 µg kg-1 FW) in mushrooms treated with ATP during cold storage may attribute to signaling H2O2 accumulation. Higher DPPH scavenging capacity (72 % vs. 65 %) in mushrooms treated with ATP may attribute to higher phenols accumulation arising from higher phenylalanine ammonialyase/polyphenol oxidase enzymes activity concomitant with higher alternative oxidase gene expression during 18 days of storage at 4 °C.


Assuntos
Trifosfato de Adenosina/farmacologia , Agaricus/efeitos dos fármacos , Temperatura Baixa , Armazenamento de Alimentos , Reação de Maillard , Trifosfato de Adenosina/administração & dosagem , Agaricus/enzimologia , Agaricus/fisiologia , Oxirredutases do Álcool/metabolismo , Compostos de Bifenilo/química , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/metabolismo , Melatonina/metabolismo , Proteínas Mitocondriais/genética , NADPH Oxidases/metabolismo , Oxirredutases/genética , Fenóis/metabolismo , Picratos/química , Proteínas de Plantas/genética , Transdução de Sinais
6.
Vet Microbiol ; 234: 51-60, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31213272

RESUMO

E5 protein, the major oncoprotein of the bovine Deltapapillomavirus genus, has been detected in 17 of the 19 urothelial cancers by molecular and morphological procedures. In 10 urothelial cancers, the oxygen sensitive subunit HIF-1α, which is upregulated by hypoxia, was overexpressed. Mitophagy, the selective autophagic removal of dysfunctional mitochondria, was upregulated in hypoxic neoplastic cells infected by BPVs which was mediated by FUNDC1, a mitochondrial outer-membrane protein. The FUNDC1 receptor was amplified by PCR, and amplicon sequencing showed a 100% homology with bovine FUNDC1 sequences deposited in GenBank (accession number: NM_001104982). Both transcripts and protein levels of FUNDC1 were significantly decreased in hypoxic neoplastic cells relative to healthy, non-neoplastic cells. FUNDC1 interacted with the LC3 protein, a marker of autophagosome (mitophagosome) membrane, the Hsc70/Hsp70 chaperone, and Bag3 co-chaperone. Bag3 may play a role in mitophagosome formation together with the Synpo2 protein, and may be involved in the degradation of Hsc70/Hsp70-bound CHIP-ubiquitinated cargoes, in association with its chaperone. Ultrastructural findings revealed the presence of mitochondria exhibiting severe fragmentation and loss of cristae, as well as numerous mitochondria-containing autophagosomes. Total and phosphorylated GTPase dynamin-related protein 1 (DRP1), which plays a crucial role in mitochondrial fission, a pre-requisite for mitophagy, was overexpressed at the mitochondrial level. Total and phosphorylated mitochondrial fission factor (Mff), mitochondrial fission protein 1 (Fis1), mitochondrial dynamics 51 (MiD51), and MiD49, which are DRP1 receptors responsible and/or co-responsible for its mitochondrial recruitment were overexpressed.


Assuntos
Deltapapillomavirus/patogenicidade , Mitocôndrias/patologia , Degradação Mitocondrial , Proteínas Mitocondriais/metabolismo , Urotélio/virologia , Animais , Bovinos , Feminino , Proteínas de Ligação ao GTP/genética , Hipóxia , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Mitocôndrias/virologia , Proteínas Mitocondriais/genética , Proteínas Oncogênicas Virais/genética , Fosforilação , Urotélio/citologia , Urotélio/patologia
7.
Plant Physiol Biochem ; 141: 415-422, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31229926

RESUMO

This study aimed to investigate the possible alleviating effect of chitosan on salt-induced growth retardation and oxidative stress and to elucidate whether this effect is linked to activation of mitochondrial respiration on the basis of alternative respiration in maize seedlings. Salt stress significantly reduced root length and plant height in comparison to the control, whereas foliar application of chitosan ameliorated the adverse effect of salinity to a certain degree. Moreover, chitosan resulted in plant growth promotion as compared to unstressed seedlings. The separate applications of chitosan and salt had a stimulatory effect on the activities of antioxidant enzymes; however, combined application of chitosan and salt were more effective than that of chitosan or salt alone. Similarly, mitochondrial total respiration rate (Vt) and alternative respiration capacity (Valt) were increased by separate applications of chitosan and salt; however, the combination of chitosan and salt gave the highest values for these parameters. The highest values of Valt/Vt was recorded at seedlings treated with salt plus chitosan. Similarly, cytochrome respiration capacity was also increased by chitosan in both stress-free and stressed conditions. In addition, AOX1, encoding alternative oxidase, was significantly upregulated by chitosan and/or salt. The maximum transcript level was recorded at seedlings treated with salt plus chitosan. Chitosan also significantly decreased superoxide anion and hydrogen peroxide contents and lipid peroxidation level under normal and the stressed conditions. These results suggest that the mitigating effect of chitosan on salt stress is linked to activation of alternative respiration at biochemical and molecular level.


Assuntos
Quitosana/química , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Plântula/genética , Zea mays/genética , Antioxidantes/metabolismo , Citocromos/metabolismo , Perfilação da Expressão Gênica , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Estresse Oxidativo , Oxirredutases/genética , Proteínas de Plantas/genética , RNA/metabolismo , Estresse Fisiológico , Zea mays/enzimologia
8.
Gene ; 706: 172-180, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31082499

RESUMO

Molecular mechanisms of aging and longevity are still mostly unknown. Mitochondria play central roles in cellular metabolism and aging. In this study, we identified three deletion mutants of mitochondrial metabolism genes (ppa2∆, dss1∆, and afg3∆) that live longer than wild-type cells. These long-lived cells harbored significantly decreased amount of mitochondrial DNA (mtDNA) and reactive oxygen species (ROS). Compared to the serpentine nature of wild-type mitochondria, a different dynamics and distribution pattern of mitochondria were observed in the mutants. Both young and old long-lived cells produced relatively low but adequate levels of ATP for cellular activities. The status of the retrograde signaling was checked by expression of CIT2 gene and found activated in long-lived mutants. The mutant cells were also profiled for their gene expression patterns, and genes that were differentially regulated were determined. All long-lived cells comprised similar pleiotropic phenotype regarding mitochondrial dynamics and functions. Thus, this study suggests that DSS1, PPA2, and AFG3 genes modulate the lifespan by altering the mitochondrial morphology and functions.


Assuntos
Longevidade/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Envelhecimento , DNA Mitocondrial/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Genes Mitocondriais/genética , Genótipo , Proteínas Mitocondriais/genética , Estresse Oxidativo , Fenótipo , Bombas de Próton/genética , Bombas de Próton/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Transdução de Sinais
9.
Nat Commun ; 10(1): 2059, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053718

RESUMO

Mitophagy is the selective autophagic targeting and removal of dysfunctional mitochondria. While PINK1/Parkin-dependent mitophagy is well-characterized, PINK1/Parkin-independent route is poorly understood. Using structure illumination microscopy (SR-SIM), we demonstrate that the SNARE protein Syntaxin 17 (STX17) initiates mitophagy upon depletion of outer mitochondrial membrane protein Fis1. With proteomics analysis, we identify the STX17-Fis1 interaction, which controls the dynamic shuffling of STX17 between ER and mitochondria. Fis1 loss results in aberrant STX17 accumulation on mitochondria, which exposes the N terminus and promotes self-oligomerization to trigger mitophagy. Mitochondrial STX17 interacts with ATG14 and recruits core autophagy proteins to form mitophagosome, followed by Rab7-dependent mitophagosome-lysosome fusion. Furthermore, Fis1 loss impairs mitochondrial respiration and potentially sensitizes cells to mitochondrial clearance, which is mediated through canonical autophagy machinery, closely linking non-selective macroautophagy to mitochondrial turnover. Our findings uncover a PINK1/Parkin-independent mitophagic mechanism in which outer mitochondrial membrane protein Fis1 regulates mitochondrial quality control.


Assuntos
Autofagia , Proteínas de Membrana/metabolismo , Degradação Mitocondrial , Proteínas Mitocondriais/metabolismo , Proteínas Qa-SNARE/metabolismo , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética
10.
Gene ; 708: 10-13, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31078656

RESUMO

Autosomal recessive cerebellar ataxia is heterogeneous inherited neurodegenerative disorders with more than 70 involved genes. The development of next generation sequencing opens a new window in rapid diagnosis of such heterogeneous condition in medical genetics laboratories. Here, we present ADCK3; del.CD (229-230) mutation in an Iranian consanguineous family with three cerebellar ataxic boys using whole exome sequencing. The mutation was predicted pathogenic and all the affected individuals were homozygous for the variant. Although, the ADCK3 was previously reported as one of the master genes of ARSC, our mutation was novel as has been not previously reported in dbSNP or literature.


Assuntos
Proteínas Mitocondriais/genética , Ataxias Espinocerebelares/genética , Consanguinidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Irã (Geográfico) , Masculino , Linhagem , Deleção de Sequência , Sequenciamento Completo do Exoma
11.
Plant Cell Physiol ; 60(8): 1829-1841, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31119292

RESUMO

Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.


Assuntos
Bryopsida/metabolismo , Cloroplastos/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Tolerantes a Sal/metabolismo , Bryopsida/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Mitocondriais/genética , Oxirredução , Oxirredutases/genética , Proteínas de Plantas/genética , Plantas Tolerantes a Sal/genética
12.
Plant Cell Physiol ; 60(8): 1734-1746, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076755

RESUMO

Pentatricopeptide repeat (PPR) proteins play crucial roles in intron splicing, which is important for RNA maturation. Identification of novel PPR protein with the function of intron splicing would help to understand the RNA splicing mechanism. In this study, we identified the maize empty pericarp602 (emp602) mutants, the mature kernels of which showed empty pericarp phenotype. We cloned the Emp602 gene from emp602 mutants and revealed that Emp602 encodes a mitochondrial-localized P-type PPR protein. We further revealed that Emp602 is specific for the cis-splicing of mitochondrial Nad4 intron 1 and intron 3, and mutation of Emp602 led to the loss of mature Nad4 transcripts. The loss of function of Emp602 nearly damaged the assembly and accumulation of complex I and arrested mitochondria formation, which arrested the seed development. The failed assembly of complex I triggers significant upregulation of Aox expression in emp602 mutants. Transcriptome analysis showed that the expression of mitochondrial-related genes, e.g. the genes associated with mitochondrial inner membrane presequence translocase complex and electron carrier activity, were extensively upregulated in emp602 mutant. These results demonstrate that EMP602 functions in the splicing of Nad4 intron 1 and intron 3, and the loss of function of Emp602 arrested maize seed development by disrupting the mitochondria complex I assembly.


Assuntos
Sementes/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Íntrons/genética , Íntrons/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Processamento de RNA/genética , Processamento de RNA/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/genética , Zea mays/crescimento & desenvolvimento
13.
BMC Cancer ; 19(1): 411, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046734

RESUMO

BACKGROUND: Autoantibodies function as markers of tumorigenesis and have been proposed to enhance early detection of malignancies. We recently reported, using immunoscreening of a T7 complementary DNA (cDNA) library of breast cancer (BC) proteins with sera from patients with BC, the presence of autoantibodies targeting several mitochondrial DNA (mtDNA)-encoded subunits of the electron transport chain (ETC) in complexes I, IV, and V. METHODS: In this study, we have characterized the role of Mitochondrial-Nuclear Retrograde Regulator 1 (MNRR1, also known as CHCHD2), identified on immunoscreening, in breast carcinogenesis. We assessed the protein as well as transcript levels of MNRR1 in BC tissues and in derived cell lines representing tumors of graded aggressiveness. Mitochondrial function was also assayed and correlated with the levels of MNRR1. We studied the invasiveness of BC derived cells and the effect of MNRR1 levels on expression of genes associated with cell proliferation and migration such as Rictor and PGC-1α. Finally, we manipulated levels of MNRR1 to assess its effect on mitochondria and on some properties linked to a metastatic phenotype. RESULTS: We identified a nuclear DNA (nDNA)-encoded mitochondrial protein, MNRR1, that was significantly associated with the diagnosis of invasive ductal carcinoma (IDC) of the breast by autoantigen microarray analysis. In focusing on the mechanism of action of MNRR1 we found that its level was nearly twice as high in malignant versus benign breast tissue and up to 18 times as high in BC cell lines compared to MCF10A control cells, suggesting a relationship to aggressive potential. Furthermore, MNRR1 affected levels of multiple genes previously associated with cancer metastasis. CONCLUSIONS: MNRR1 regulates multiple genes that function in cell migration and cancer metastasis and is higher in cell lines derived from aggressive tumors. Since MNRR1 was identified as an autoantigen in breast carcinogenesis, the present data support our proposal that both mitochondrial autoimmunity and MNRR1 activity in particular are involved in breast carcinogenesis. Virtually all other nuclear encoded genes identified on immunoscreening of invasive BC harbor an MNRR1 binding site in their promoters, thereby placing MNRR1 upstream and potentially making it a novel marker for BC metastasis.


Assuntos
Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Autoantígenos/metabolismo , Autoimunidade , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Mitocôndrias/genética , Invasividade Neoplásica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Estudos Prospectivos , Análise Serial de Proteínas , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Regulação para Cima
14.
Plant Cell Rep ; 38(8): 981-990, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31065779

RESUMO

KEY MESSAGE: The ISC Fe-S cluster biosynthetic pathway would play a key role in the regulation of iron and sulfur homeostasis in plants. The Arabidopsis thaliana mitochondrial cysteine desulfurase AtNFS1 has an essential role in cellular ISC Fe-S cluster assembly, and this pathway is one of the main sinks for iron (Fe) and sulfur (S) in the plant. In different plant species it has been reported a close relationship between Fe and S metabolisms; however, the regulation of both nutrient homeostasis is not fully understood. In this study, we have characterized AtNFS1 overexpressing and knockdown mutant Arabidopsis plants. Plants showed alterations in the ISC Fe-S biosynthetic pathway genes and in the activity of Fe-S enzymes. Genes involved in Fe and S uptakes, assimilation, and regulation were up-regulated in overexpressing plants and down-regulated in knockdown plants. Furthermore, the plant nutritional status in different tissues was in accordance with those gene activities: overexpressing lines accumulated increased amounts of Fe and S and mutant plant had lower contents of S. In summary, our results suggest that the ISC Fe-S cluster biosynthetic pathway plays a crucial role in the homeostasis of Fe and S in plants, and that it may be important in their regulation.


Assuntos
Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Enxofre/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Proteínas com Ferro-Enxofre/genética , Proteínas com Ferro-Enxofre/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética
15.
BMC Genomics ; 20(1): 351, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068137

RESUMO

BACKGROUND: Species in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria, the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time. RESULTS: Here we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica, A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167 bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid-related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes. CONCLUSIONS: Our study showed that fungal mitogenomes have a high degree of variation in size, gene content, and genomic organization even among closely related species of Armillara. We suggest that mobile genetic elements invading introns and intergenic sequences in the Armillaria mitogenomes have played a significant role in shaping their genome structure. The mitogenome changes we describe here are consistent with widely accepted phylogenetic relationships among the four species.


Assuntos
Armillaria/classificação , Armillaria/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Sequências Repetitivas Dispersas , Proteínas Mitocondriais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
16.
BMC Genomics ; 20(1): 335, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053062

RESUMO

BACKGROUND: The recently published complete mitogenome of the European lobster (Homarus gammarus) that was generated using long-range PCR exhibits unusual gene composition (missing nad2) and gene rearrangements among decapod crustaceans with strong implications in crustacean phylogenetics. Such atypical mitochondrial features will benefit greatly from validation with emerging long read sequencing technologies such as Oxford Nanopore that can more accurately identify structural variation. RESULTS: We re-sequenced the H. gammarus mitogenome on an Oxford Nanopore Minion flowcell and performed a long-read only assembly, generating a complete mitogenome assembly for H. gammarus. In contrast to previous reporting, we found an intact mitochondrial nad2 gene in the H. gammarus mitogenome and showed that its gene organization is broadly similar to that of the American lobster (H. americanus) except for the presence of a large tandemly duplicated region with evidence of pseudogenization in one of each duplicated protein-coding genes. CONCLUSIONS: Using the European lobster as an example, we demonstrate the value of Oxford Nanopore long read technology in resolving problematic mitogenome assemblies. The increasing accessibility of Oxford Nanopore technology will make it an attractive and useful tool for evolutionary biologists to verify new and existing unusual mitochondrial gene rearrangements recovered using first and second generation sequencing technologies, particularly those used to make phylogenetic inferences of evolutionary scenarios.


Assuntos
Evolução Biológica , Biologia Computacional/métodos , Duplicação Gênica , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Nanoporos , Nephropidae/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Nephropidae/metabolismo , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
17.
Mol Med Rep ; 19(6): 4973-4979, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059091

RESUMO

Atherosclerosis is a chronic and progressive disease. Its morbidity and mortality rates have demonstrated an increase in recent years. The present study aimed to explore the role of sirtuin (SIRT) 4 in the development of atherosclerosis. Alterations in SIRT4 expression in response to oxidized low density lipoprotein (oxLDL) were quantified in human umbilical vein endothelial cells (HUVECs) using western blotting. Cell counting kit­8 and flow cytometry assays were used in order to explore the effects of SIRT4 on HUVEC proliferation and apoptosis. The effect of SIRT4 on the expression of inflammatory factors in HUVECs was analyzed using ELISA. The expression and phosphorylation of proteins in the phosphoinositide 3­kinase (PI3K)/protein kinase B (Akt)/nuclear factor (NF)­κB pathway were comparatively analyzed using western blotting. Nuclear translocation of p65 NF­κB was examined using immunofluorescence. The present study indicated that oxLDL treatment decreased the expression of SIRT4 in HUVECs in a dose­ and time­dependent manner. SIRT4 overexpression promoted oxLDL­induced HUVEC proliferation and inhibited cell apoptosis. Furthermore, SIRT4 overexpression suppressed the PI3K/Akt/NF­κB pathway by inhibiting PI3K phosphorylation and phosphorylated (p)­Akt, p­nuclear factor of kappa light polypeptide gene enhancer in B­cells inhibitor α and p­p65 NF­κB expression; blocking p65 NF­κB nuclear translocation and decreasing interleukin (IL)­1ß, IL­6, and tumor necrosis factor α expression in oxLDL­induced HUVECs. In conclusion, SIRT4 overexpression enhanced HUVEC survival, suppressed the PI3K/Akt/NF­κB signaling pathway and inhibited the expression of inflammatory cytokines in oxLDL­induced HUVECs.


Assuntos
Lipoproteínas LDL/toxicidade , Proteínas Mitocondriais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuínas/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-1beta/metabolismo , Proteínas Mitocondriais/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuínas/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Artif Cells Nanomed Biotechnol ; 47(1): 1653-1661, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31043087

RESUMO

Finding novel therapeutic agent for the treatment of cerebral ischemia is urgently required. These experiments explored the potential roles of 6-Gingerols (6G) in hypoxia-stimulated rat PC-12 cells. Cell viability, apoptosis and its related proteins were studied by the approaches of MTT assay, flow cytometry assay and Western blot analysis, respectively. In addition, whether 6G achieved its functions in hypoxia-induced injury through miR-103 was illustrated. Moreover, the associated signalling pathways were investigated. Obviously, hypoxia treatment blocked cell viability and enhanced apoptosis while this trend was ameliorated by 6G. Then we observed that hypoxia administration up-regulated miR-103 expression and 6G could further increase miR-103 expression in hypoxia-stimulated PC-12 cells. Inhibition of miR-103 attenuated the neuroprotective effects of 6G on hypoxia-treated PC-12 cells. Moreover, Bcl2/adenovirus EIB 19kD-interacting protein 3 (BNIP3) was a target of miR-103 and BNIP3 upregulation also attenuated the neuroprotective impact of 6G on hypoxia-treated PC-12 cells. Hypoxia activated the p38MAPK and JNK pathways were inactivated by 6G. To sum up, 6G protected hypoxia-stimulated PC-12 cells through miR-103-mediatated down-regulation of BNIP3 by inhibiting p38 MAPK and JNK pathways. Highlights 6-Gingerols (6G) is a promising agent for cerebral ischemia therapy. The neuroprotective effects of 6G are mediated by miR-103 and BNIP3. Up-regulation of miR-103 exerts neuroprotective effects.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Proteínas Mitocondriais/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Células PC12 , Ratos , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Microb Cell Fact ; 18(1): 88, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122246

RESUMO

BACKGROUND: There have been many successful strategies to implement xylose metabolism in Saccharomyces cerevisiae, but no effort has so far enabled xylose utilization at rates comparable to that of glucose (the preferred sugar of this yeast). Many studies have pointed towards the engineered yeast not sensing that xylose is a fermentable carbon source despite growing and fermenting on it, which is paradoxical. We have previously used fluorescent biosensor strains to in vivo monitor the sugar signalome in yeast engineered with xylose reductase and xylitol dehydrogenase (XR/XDH) and have established that S. cerevisiae senses high concentrations of xylose with the same signal as low concentration of glucose, which may explain the poor utilization. RESULTS: In the present study, we evaluated the effects of three deletions (ira2∆, isu1∆ and hog1∆) that have recently been shown to display epistatic effects on a xylose isomerase (XI) strain. Through aerobic and anaerobic characterization, we showed that the proposed effects in XI strains were for the most part also applicable in the XR/XDH background. The ira2∆isu1∆ double deletion led to strains with the highest specific xylose consumption- and ethanol production rates but also the lowest biomass titre. The signalling response revealed that ira2∆isu1∆ changed the low glucose-signal in the background strain to a simultaneous signalling of high and low glucose, suggesting that engineering of the signalome can improve xylose utilization. CONCLUSIONS: The study was able to correlate the previously proposed beneficial effects of ira2∆, isu1∆ and hog1∆ on S. cerevisiae xylose uptake, with a change in the sugar signalome. This is in line with our previous hypothesis that the key to resolve the xylose paradox lies in the sugar sensing and signalling networks. These results indicate that the future engineering targets for improved xylose utilization should probably be sought not in the metabolic networks, but in the signalling ones.


Assuntos
Glucose , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae , Xilose , Transporte Biológico , Fermentação , Deleção de Genes , Glucose/genética , Glucose/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Plasmídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Xilose/genética , Xilose/metabolismo
20.
J Mol Neurosci ; 68(2): 261-274, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30949956

RESUMO

The level of miR-181a decreases rapidly in N2a cells following oxygen-glucose deprivation/reperfusion, but its role in this process is unclear. Reelin, a regulator of neuronal migration and synaptogenesis, is a predicted target of miR-181a. We hypothesized that miR-181a reduces neuronal apoptosis and protects neurons by targeting reelin. Second mitochondria-derived activator of caspases (Smac) is a protein located in mitochondria that regulates apoptosis. The pro-apoptotic effect of Smac is achieved by reversing the effects of apoptosis-inhibiting proteins (IAPs), particularly X-linked inhibitor of apoptosis (XIAP). We also evaluated the effect of miR-181a on the Smac/IAP signaling pathway after oxygen-glucose deprivation and reperfusion in N2a cells. The miR-181a level, apoptosis rate, and the levels of reelin mRNA and protein, Smac, and XIAP were assessed in N2a cells subjected to oxygen-glucose deprivation for 4 h and reperfusion for 0, 4, 12, or 24 h with/without an miR-181a mimic, or mismatched control. Direct targeting of reelin by miR-181a was assessed in vitro by dual luciferase assay and immunoblotting. Pre-treatment with miR-181a mimicked the increase in the miR-181a level in N2a cells after oxygen-glucose deprivation/reperfusion, resulting in a significant decrease in the apoptosis rate. Changes in the miR-181a level in N2a cells were inversely correlated with reelin protein expression. Direct targeting of the reelin 3' untranslated region by miR-181a was verified by dual luciferase assay, which showed that miR-181a significantly inhibited luciferase activity. The Smac level was significantly lower in the miR-181a mimics than the normal control and mimics-cont groups (P < 0.01), whereas the level of XIAP was increased slightly. These findings suggest that miR-181a protects neurons from apoptosis by inhibiting reelin expression and regulating the Smac/IAP signaling pathway after oxygen-glucose deprivation/reperfusion injury.


Assuntos
Apoptose , MicroRNAs/genética , Neurônios/metabolismo , Oxigênio/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Glucose/deficiência , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA