Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.315
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(9): 912-916, 2021 Sep 10.
Artigo em Chinês | MEDLINE | ID: mdl-34487543

RESUMO

MAMLD1 gene has been implicated in 46,XY disorders of sex development (DSD) in recent years. Patients carrying MAMLD1 gene variants showed a "continuous spectrum" of simple micropenis, mild, moderate and severe hypospadias with micropenis, cryptorchidism, split scrotum and even complete gonadal dysplasia. The function of MAMLD1 gene in sexual development has not been fully elucidated, and its role in DSD has remained controversial. This article has reviewed recent findings on the role of the MAMLD1 gene in DSD, including the MAMLD1 gene, its encoded protein, genetic variants, clinical phenotype and possible pathogenic mechanism in DSD.


Assuntos
Proteínas de Ligação a DNA , Transtornos do Desenvolvimento Sexual , Proteínas de Ligação a DNA/genética , Transtornos do Desenvolvimento Sexual/genética , Humanos , Masculino , Mutação , Proteínas Nucleares/genética , Fenótipo , Desenvolvimento Sexual , Fatores de Transcrição/genética
2.
Anticancer Res ; 41(9): 4377-4385, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34475057

RESUMO

BACKGROUND/AIM: Expression of pleckstrin homology-like domain family A member 2 (PHLDA2) has been reported to be suppressed or activated in several cases of malignant tumors. However, its apoptotic regulatory mechanism and role in gastric cancer are not understood. This study examined the role of PHLDA2 in apoptosis in gastric cancer. MATERIALS AND METHODS: We used cell culture, western blotting, semiquantitative reverse transcription polymerase chain reaction, MTT assays, and PHLDA2 knockdown with short hairpin RNA (shRNA). RESULTS: To identify the pathway associated with HGF-induced PHLDA2 up-regulation, the cells were treated with PI3-kinase inhibitor (LY294002), MEK inhibitor (PD098059), or p38 inhibitor (SB203580) and then analyzed by western blotting. HGF-mediated changes in PHLDA2 protein levels were only decreased by LY294002. PHLDA2-shRNA cells showed decreased levels of p53 and increased levels of pAKT. Furthermore, HGF-induced cell proliferation and in vitro invasion were increased in PHLDA2 knockdown cells and HGF-induced cell apoptosis was increased in PHLDA2 knockdown cells. CONCLUSION: PHLDA2 plays a role in gastric cancer tumorigenesis by inhibiting apoptosis through the PI3K/AKT pathway.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/metabolismo , Regulação para Cima , Apoptose , Linhagem Celular Tumoral , Cromonas/farmacologia , Flavonoides/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Imidazóis , Morfolinas/farmacologia , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Piridinas
3.
Nat Commun ; 12(1): 4813, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376664

RESUMO

Differences in immune responses to viruses and autoimmune diseases such as systemic lupus erythematosus (SLE) can show sexual dimorphism. Age-associated B cells (ABC) are a population of CD11c+T-bet+ B cells critical for antiviral responses and autoimmune disorders. Absence of DEF6 and SWAP-70, two homologous guanine exchange factors, in double-knock-out (DKO) mice leads to a lupus-like syndrome in females marked by accumulation of ABCs. Here we demonstrate that DKO ABCs show sex-specific differences in cell number, upregulation of an ISG signature, and further differentiation. DKO ABCs undergo oligoclonal expansion and differentiate into both CD11c+ and CD11c- effector B cell populations with pathogenic and pro-inflammatory function as demonstrated by BCR sequencing and fate-mapping experiments. Tlr7 duplication in DKO males overrides the sex-bias and further augments the dissemination and pathogenicity of ABCs, resulting in severe pulmonary inflammation and early mortality. Thus, sexual dimorphism shapes the expansion, function and differentiation of ABCs that accompanies TLR7-driven immunopathogenesis.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fatores Etários , Envelhecimento/genética , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Antígeno CD11c/imunologia , Antígeno CD11c/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Estimativa de Kaplan-Meier , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Fatores Sexuais , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo
4.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361059

RESUMO

In vertebrates, nucleostemin (NS) is an important marker of proliferation in several types of stem and cancer cells, and it can also interact with the tumor-suppressing transcription factor p53. In the present study, the intra-nuclear diffusional dynamics of native NS tagged with GFP and two GFP-tagged NS mutants with deleted guanosine triphosphate (GTP)-binding domains were analyzed by fluorescence correlation spectroscopy. Free and slow binding diffusion coefficients were evaluated, either under normal culture conditions or under treatment with specific cellular proliferation inhibitors actinomycin D (ActD), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), or trichostatin A (TSA). When treated with ActD, the fractional ratio of the slow diffusion was significantly decreased in the nucleoplasm. The decrease was proportional to ActD treatment duration. In contrast, DRB or TSA treatment did not affect NS diffusion. Interestingly, it was also found that the rate of diffusion of two NS mutants increased significantly even under normal conditions. These results suggest that the mobility of NS in the nucleoplasm is related to the initiation of DNA or RNA replication, and that the GTP-binding motif is also related to the large change of mobility.


Assuntos
Núcleo Celular/metabolismo , Dactinomicina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Nucleares/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Transcrição Genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética
5.
Ann Clin Lab Sci ; 51(4): 470-486, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34452885

RESUMO

OBJECTIVE: Epithelium-specific ETS protein 3 (Ese-3) is a member of the ETS family that is associated with tumor progression. However, there is little knowledge about Ese-3 in skin cancer. This study was conducted to explore the effects of Ese-3 on clinical prognosis in skin cancer and the functions of HaCaT cells. MATERIALS AND METHODS: Gene expression and clinical data were collected from The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), and three GSE datasets (GSE15605, GSE46517, and GSE114445). Comparison of data between groups was performed by Student's t-test and chi square test. Survival analysis was performed using log-rank test. Univariate and multivariate analyses were performed using Cox proportional hazards models. Enrichment analysis was used to predict Ese-3 related functions. Cell proliferation assays, colony formation assays, and flow cytometry were used to assess cell proliferation, while Transwell assays analyzed cell migration and invasion. RESULTS: Compared with normal tissues, the Ese-3 mRNA in cutaneous malignant melanoma (CMM) patients was downregulated (P<0.0001). Ese-3 mRNA was associated with the T stage (χ 2=10.015, P=0.018), clinical stage (χ 2=4.122, P=0.042), and prognosis in CMM patients (P=0.0219) and was an independent prognostic predictor in CMM (HR=1.878, P=0.048). Enrichment analysis showed that differentially expressed proteins were associated with "protein kinase B (AKT) binding." CONCLUSION: Ese-3 inhibited the proliferation, migration, and invasion of HaCaT cells by downregulating PSIP1 and NUCKS1 expression levels to inactivate the phosphorylation of AKT.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/antagonistas & inibidores , Fosfoproteínas/antagonistas & inibidores , Neoplasias Cutâneas/patologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Células HaCaT , Humanos , Masculino , Invasividade Neoplásica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Prognóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Taxa de Sobrevida , Fatores de Transcrição/genética
7.
Theranostics ; 11(16): 7970-7983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335974

RESUMO

The novel ß-coronavirus, SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), has infected more than 177 million people and resulted in 3.84 million death worldwide. Recent epidemiological studies suggested that some environmental factors, such as air pollution, might be the important contributors to the mortality of COVID-19. However, how environmental exposure enhances the severity of COVID-19 remains to be fully understood. In the present report, we provided evidence showing that mdig, a previously reported environmentally-induced oncogene that antagonizes repressive trimethylation of histone proteins, is an important regulator for SARS-CoV-2 receptors neuropilin-1 (NRP1) and NRP2, cathepsins, glycan metabolism and inflammation, key determinants for viral infection and cytokine storm of the patients. Depletion of mdig in bronchial epithelial cells by CRISPR-Cas-9 gene editing resulted in a decreased expression of NRP1, NRP2, cathepsins, and genes involved in protein glycosylation and inflammation, largely due to a substantial enrichment of lysine 9 and/or lysine 27 trimethylation of histone H3 (H3K9me3/H3K27me3) on these genes as determined by ChIP-seq. Meanwhile, we also validated that environmental factor arsenic is able to induce mdig, NRP1 and NRP2, and genetic disruption of mdig lowered expression of NRP1 and NRP2. Furthermore, mdig may coordinate with the Neanderthal variants linked to an elevated mortality of COVID-19. These data, thus, suggest that mdig is a key mediator for the severity of COVID-19 in response to environmental exposure and targeting mdig may be the one of the effective strategies in ameliorating the symptom and reducing the mortality of COVID-19.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Dioxigenases/metabolismo , Histona Desmetilases/metabolismo , Neuropilina-1/metabolismo , Proteínas Nucleares/metabolismo , Polissacarídeos/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , COVID-19/epidemiologia , Catepsinas/metabolismo , Linhagem Celular , Células Cultivadas , Dioxigenases/biossíntese , Dioxigenases/genética , Exposição Ambiental , Histona Desmetilases/biossíntese , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Pandemias , Ratos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Zhonghua Bing Li Xue Za Zhi ; 50(8): 891-898, 2021 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-34344072

RESUMO

Objective: To investigate MAML2 gene rearrangement, gene fusion patterns, and the clinicopathological characteristics of primary pulmonary mucoepidermoid carcinoma (PMEC). Methods: Forty-six cases of primary PMEC from Fudan University Zhongshan Hospital and Fudan University Shanghai Cancer Center between 2017 and 2020 were collected. MAML2 gene rearrangement in all cases was detected by fluorescence in situ hybridization (FISH). In 20 cases, MAML2 fusion patterns were detected by targeted RNA sequencing (RNAseq). The relationship between MAML2 gene rearrangement, fusion patterns, clinicopathological characteristics, and prognosis was analyzed. Results: The average age of PMEC patients was 41 years (range 15-71 years); the ratio of male to female was about 1.1 ∶ 1.0. Most PMECs were low grade in histopathology with an early clinical stage (stageⅠ-Ⅱ).The overall positive rate of MAML2 gene rearrangement detected by FISH was about 80.4% (37/46), and the rate was higher in low-grade PMEC (91.7%, 33/36). Of the 20 cases detected by RNAseq, all the 19 FISH positive cases showed gene fusion, mainly CRTC1-MAML2 fusion (16/19), the other three cases showed CRTC3-MAML2 fusion (3/19), the break point of all the fusion patterns was CRTC1/3 (exon 1)-MAML2 (exon 2); No gene fusion was detected in the single FISH negative case; Compared with the MAML2 FISH negative patients, the PMECs carrying CRTC1-MAML2 fusion were more commonly found in patients age ≤ 40 years, maximum tumor diameter ≤ 2 cm, low histopathological grade and early clinical stage (all P<0.05); The three PMECs carrying CRTC3-MAML2 fusion gene were all female with early clinical stage; Univariate analysis showed that MAML2 gene rearrangement/fusion, onset age ≤ 40 years old, smaller tumor size, low histopathological grade, early clinical stage, no metastasis at diagnosis and surgical treatment were significantly correlated with overall survival (P<0.05), but Cox regression analysis suggested that none of the above indicators were the independent prognostic factors for the survival of PMEC. Conclusions: The high incidence of MAML2 gene rearrangement in PMEC suggests that it is an important molecular diagnostic marker of PMEC. RNAseq confirms that CRTC1/3-MAML2 is the main fusion pattern in PMEC, suggesting that MAML2 fusion transcription may be an important driving factor of PMEC. MAML2 rearrangement/fusion and related clinicopathological characteristics are associated with good prognosis.


Assuntos
Carcinoma Mucoepidermoide , Adolescente , Adulto , Idoso , Carcinoma Mucoepidermoide/genética , China , Proteínas de Ligação a DNA/genética , Feminino , Fusão Gênica , Rearranjo Gênico , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Transativadores , Fatores de Transcrição/genética , Adulto Jovem
9.
Theranostics ; 11(16): 7797-7812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335965

RESUMO

Rationale: Corticosteroid resistance (CR) is a serious drawback to steroid therapy in patients with ulcerative colitis (UC); the underlying mechanism is incompletely understood. Twist1 protein (TW1) is an apoptosis inhibitor and has immune regulatory functions. This study aims to elucidate the roles of TW1 in inducing and sustaining the CR status in UC. Methods: Surgically removed colon tissues of patients with ulcerative colitis (UC) were collected, from which neutrophils were isolated by flow cytometry. The inflammation-related gene activities in neutrophils were analyzed by RNA sequencing. A CR colitis mouse model was developed with the dextran sulfate sodium approach in a hypoxia environment. Results: Higher TW1 gene expression was detected in neutrophils isolated from the colon tissues of UC patients with CR and the CR mouse colon tissues. TW1 physically interacted with glucocorticoid receptor (GR)α in CR neutrophils that prevented GRα from interacting with steroids; which consequently abrogated the effects of steroids on regulating the cellular activities of neutrophils. STAT3 (Signal Transducer and Activator of Transcription-3) interacted with Ras protein activator like 1 to sustain the high TW1 expression in colon mucosal neutrophils of CR patients and CR mice. Inhibition of TW1 restored the sensitivity to corticosteroid of neutrophils in the colon tissues of a CR murine model. Conclusions: UC patients at CR status showed high TW1 expression in neutrophils. TW1 prevented steroids from regulating neutrophil activities. Inhibition of TW1 restored the sensitivity to corticosteroids in the colon tissues at the CR status.


Assuntos
Colite Ulcerativa/metabolismo , Resistência a Medicamentos/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Corticosteroides/farmacologia , Adulto , Animais , China , Colite , Colite Ulcerativa/genética , Colo/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Proteínas Nucleares/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Relacionada a Twist/genética
10.
BMC Plant Biol ; 21(1): 369, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384381

RESUMO

BACKGROUND: Low temperature severely limits the growth, yield, and geographic distributions of soybean. Soybean plants respond to cold stress by reprogramming the expression of a series of cold-responsive genes. However, the intrinsic mechanism underlying cold-stress tolerance in soybean remains unclear. A. thaliana tolerant to chilling and freezing 1 (AtTCF1) is a regulator of chromosome condensation 1 (RCC1) family protein and regulates freezing tolerance through an independent C-repeat binding transcription factor (CBF) signaling pathway. RESULTS: In this study, we identified a homologous gene of AtTCF1 in soybean (named GmTCF1a), which mediates plant tolerance to low temperature. Like AtTCF1, GmTCF1a contains five RCC1 domains and is located in the nucleus. GmTCF1a is strongly and specifically induced by cold stress. Interestingly, ectopic overexpression of GmTCF1a in Arabidopsis greatly increased plant survival rate and decreased electrolyte leakage under freezing stress. A cold-responsive gene, COR15a, was highly induced in the GmTCF1a-overexpressing transgenic lines. CONCLUSIONS: GmTCF1a responded specifically to cold stress, and ectopic expression of GmTCF1a enhanced cold tolerance and upregulated COR15a levels. These results indicate that GmTCF1a positively regulates cold tolerance in soybean and may provide novel insights into genetic improvement of cold tolerance in crops.


Assuntos
Aclimatação/genética , Genes de Plantas , Soja/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Temperatura Baixa , Resposta ao Choque Frio/genética , Proteínas Nucleares/genética , Soja/fisiologia
11.
Nat Commun ; 12(1): 4910, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389706

RESUMO

Human pre-mRNA introns vary in size from under fifty to over a million nucleotides. We searched for essential factors involved in the splicing of human short introns by screening siRNAs against 154 human nuclear proteins. The splicing activity was assayed with a model HNRNPH1 pre-mRNA containing short 56-nucleotide intron. We identify a known alternative splicing regulator SPF45 (RBM17) as a constitutive splicing factor that is required to splice out this 56-nt intron. Whole-transcriptome sequencing of SPF45-deficient cells reveals that SPF45 is essential in the efficient splicing of many short introns. To initiate the spliceosome assembly on a short intron with the truncated poly-pyrimidine tract, the U2AF-homology motif (UHM) of SPF45 competes out that of U2AF65 (U2AF2) for binding to the UHM-ligand motif (ULM) of the U2 snRNP protein SF3b155 (SF3B1). We propose that splicing in a distinct subset of human short introns depends on SPF45 but not U2AF heterodimer.


Assuntos
Íntrons/genética , Fatores de Processamento de RNA/metabolismo , Splicing de RNA , Fator de Processamento U2AF/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Humanos , Modelos Genéticos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Fator de Processamento U2AF/genética
12.
Nat Commun ; 12(1): 4918, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389719

RESUMO

Ribosomal RNA genes (rDNA) are highly unstable and susceptible to rearrangement due to their repetitive nature and active transcriptional status. Sequestration of rDNA in the nucleolus suppresses uncontrolled recombination. However, broken repeats must be first released to the nucleoplasm to allow repair by homologous recombination. Nucleolar release of broken rDNA repeats is conserved from yeast to humans, but the underlying molecular mechanisms are currently unknown. Here we show that DNA damage induces phosphorylation of the CLIP-cohibin complex, releasing membrane-tethered rDNA from the nucleolus in Saccharomyces cerevisiae. Downstream of phosphorylation, SUMOylation of CLIP-cohibin is recognized by Ufd1 via its SUMO-interacting motif, which targets the complex for disassembly through the Cdc48/p97 chaperone. Consistent with a conserved mechanism, UFD1L depletion in human cells impairs rDNA release. The dynamic and regulated assembly and disassembly of the rDNA-tethering complex is therefore a key determinant of nucleolar rDNA release and genome integrity.


Assuntos
Nucléolo Celular/genética , Reparo do DNA , DNA Ribossômico/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteína com Valosina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Dano ao DNA , DNA Ribossômico/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Técnicas do Sistema de Duplo-Híbrido , Proteína com Valosina/metabolismo
13.
FASEB J ; 35(9): e21752, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369602

RESUMO

Aging, obesity, and insulin resistance are associated with low levels of PGC1α and PGC1ß coactivators and defective mitochondrial function. We studied mice deficient for PGC1α and PGC1ß [double heterozygous (DH)] to investigate their combined pathogenic contribution. Contrary to our hypothesis, DH mice were leaner, had increased energy dissipation, a pro-thermogenic profile in BAT and WAT, and improved carbohydrate metabolism compared to wild types. WAT showed upregulation of mitochondriogenesis/oxphos machinery upon allelic compensation of PGC1α4 from the remaining allele. However, DH mice had decreased mitochondrial OXPHOS and biogenesis transcriptomes in mitochondria-rich organs. Despite being metabolically healthy, mitochondrial defects in DH mice impaired muscle fiber remodeling and caused qualitative changes in the hepatic lipidome. Our data evidence first the existence of organ-specific compensatory allostatic mechanisms are robust enough to drive an unexpected phenotype. Second, optimization of adipose tissue bioenergetics is sufficient to maintain a healthy metabolic phenotype despite a broad severe mitochondrial dysfunction in other relevant metabolic organs. Third, the decrease in PGC1s in adipose tissue of obese and diabetic patients is in contrast with the robustness of the compensatory upregulation in the adipose of the DH mice.


Assuntos
Tecido Adiposo/metabolismo , Mitocôndrias/genética , Proteínas Nucleares/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fatores de Transcrição/genética , Envelhecimento/genética , Animais , Modelos Animais de Doenças , Metabolismo Energético/genética , Heterozigoto , Resistência à Insulina/genética , Masculino , Camundongos , Obesidade/genética , Termogênese/genética , Transcriptoma/genética
14.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208567

RESUMO

Plant phosphoprotein phosphatases are ubiquitous and multifarious enzymes that respond to developmental requirements and stress signals through reversible dephosphorylation of target proteins. In this study, we investigated the hitherto unknown functions of Brassica rapa protein phosphatase 5.2 (BrPP5.2) by transgenic overexpression of B. rapa lines. The overexpression of BrPP5.2 in transgenic lines conferred heat shock tolerance in 65-89% of the young transgenic seedlings exposed to 46 °C for 25 min. The examination of purified recombinant BrPP5.2 at different molar ratios efficiently prevented the thermal aggregation of malate dehydrogenase at 42 °C, thus suggesting that BrPP5.2 has inherent chaperone activities. The transcriptomic dynamics of transgenic lines, as determined using RNA-seq, revealed that 997 and 1206 (FDR < 0.05, logFC ≥ 2) genes were up- and down-regulated, as compared to non-transgenic controls. Statistical enrichment analyses revealed abiotic stress response genes, including heat stress response (HSR), showed reduced expression in transgenic lines under optimal growth conditions. However, most of the HSR DEGs were upregulated under high temperature stress (37 °C/1 h) conditions. In addition, the glucosinolate biosynthesis gene expression and total glucosinolate content increased in the transgenic lines. These findings provide a new avenue related to BrPP5.2 downstream genes and their crucial metabolic and heat stress responses in plants.


Assuntos
Brassica rapa/fisiologia , Regulação da Expressão Gênica de Plantas , Glucosinolatos/biossíntese , Resposta ao Choque Térmico/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(7): 678-680, 2021 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-34247377

RESUMO

OBJECTIVE: To explore the genetic basis of a child with recurrent infection, multiple malformation and dysmorphism. METHODS: The child and his parents were subjected to trio whole exome sequencing. RESULTS: The child had a complaint of fever and cough, with long and thin eye fissures and long eyelashes. Genetic testing revealed that the child has carried a non-triplet deletion of the KDM6A gene, which was unreported previously. The variant resulted in frameshift and premature termination of the translation. His parents were both of the wild type for the locus. After antibiotic and immunoglobulin treatment, the severe secondary pneumonia caused by immunodeficiency has improved. CONCLUSION: With combined laboratory test, imaging examination and genetic testing, the child was ultimately diagnosed with Kabuki syndrome type 2. The characteristics of immunodeficiency of Kabuki syndrome may render conventional antibiotic treatment ineffective, which deserves clinical attention.


Assuntos
Histona Desmetilases , Pneumonia , Anormalidades Múltiplas , Criança , Proteínas de Ligação a DNA/genética , Face/anormalidades , Testes Genéticos , Doenças Hematológicas , Histona Desmetilases/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fenótipo , Doenças Vestibulares
16.
Mol Cell ; 81(16): 3356-3367.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34297910

RESUMO

RNA polymerase II (RNAP II) pausing is essential to precisely control gene expression and is critical for development of metazoans. Here, we show that the m6A RNA modification regulates promoter-proximal RNAP II pausing in Drosophila cells. The m6A methyltransferase complex (MTC) and the nuclear reader Ythdc1 are recruited to gene promoters. Depleting the m6A MTC leads to a decrease in RNAP II pause release and in Ser2P occupancy on the gene body and affects nascent RNA transcription. Tethering Mettl3 to a heterologous gene promoter is sufficient to increase RNAP II pause release, an effect that relies on its m6A catalytic domain. Collectively, our data reveal an important link between RNAP II pausing and the m6A RNA modification, thus adding another layer to m6A-mediated gene regulation.


Assuntos
Proteínas de Drosophila/genética , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , RNA Polimerase II/genética , Transcrição Genética , Animais , Drosophila melanogaster/genética , Metiltransferases/genética , Regiões Promotoras Genéticas/genética
17.
Development ; 148(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34313318

RESUMO

Heterozygosity of ribosomal protein genes causes a variety of developmental abnormalities in humans, which are collectively known as ribosomopathies, yet the underlying mechanisms remain elusive. Here, we analyzed Drosophila Minute (M)/+ mutants, a group of mutants heterozygous for ribosomal protein genes that exhibit a characteristic thin-bristle phenotype. We found that, although M/+ flies develop essentially normal wings, simultaneous deletion of one copy of the Hippo pathway effector yki resulted in severe wing growth defects. These defects were caused by JNK-mediated cell death in the wing pouch via Eiger/TNF signaling. The JNK activation in M/+, yki/+ wing discs required the caspase Dronc, which is normally blocked by DIAP1. Notably, heterozygosity of yki reduced DIAP1 expression in the wing pouch, leading to elevation of Dronc activity. Dronc and JNK formed a positive-feedback loop that amplifies Dronc activation, leading to apoptosis. Our observations suggest a mechanism of robust tissue growth whereby tissues with reduced ribosomal protein prevent ectopic apoptosis via Yki activity.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Animais , Apoptose , Morte Celular , Regulação para Baixo , Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Transativadores/genética , Asas de Animais/anatomia & histologia , Asas de Animais/metabolismo
18.
Nat Commun ; 12(1): 4451, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294712

RESUMO

Identifying how R-loops are generated is crucial to know how transcription compromises genome integrity. We show by genome-wide analysis of conditional yeast mutants that the THO transcription complex, prevents R-loop formation in G1 and S-phase, whereas the Sen1 DNA-RNA helicase prevents them only in S-phase. Interestingly, damage accumulates asymmetrically downstream of the replication fork in sen1 cells but symmetrically in the hpr1 THO mutant. Our results indicate that: R-loops form co-transcriptionally independently of DNA replication; that THO is a general and cell-cycle independent safeguard against R-loops, and that Sen1, in contrast to previously believed, is an S-phase-specific R-loop resolvase. These conclusions have important implications for the mechanism of R-loop formation and the role of other factors reported to affect on R-loop homeostasis.


Assuntos
DNA Fúngico/química , Estruturas R-Loop , RNA Fúngico/química , Ciclo Celular/genética , Ciclo Celular/fisiologia , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Genes Fúngicos , Instabilidade Genômica , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estruturas R-Loop/genética , Estruturas R-Loop/fisiologia , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Atherosclerosis ; 330: 76-84, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34256308

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is the most prominent underlying cause of cardiovascular disease (CVD). It is initiated by cholesterol deposition in the arterial intima, which causes macrophage recruitment and proinflammatory responses that promote plaque growth, necrotic core formation, and plaque rupture. Lipin-1 is a phosphatidic acid phosphohydrolase for glycerolipid synthesis. We have shown that lipin-1 phosphatase activity promotes macrophage pro-inflammatory responses when stimulated with modified low-density lipoprotein (modLDL) and accelerates atherosclerosis. Lipin-1 also independently acts as a transcriptional co-regulator where it enhances the expression of genes involved in ß-oxidation. In hepatocytes and adipocytes, lipin-1 augments the activity of transcription factors such as peroxisome proliferator-activated receptor (PPARs). PPARs control the expression of anti-inflammatory genes in macrophages and slow or reduce atherosclerotic progression. Therefore, we hypothesize myeloid-derived lipin-1 transcriptional co-regulatory activity reduces atherosclerosis. METHODS: We used myeloid-derived lipin-1 knockout (lipin-1mKO) and littermate control mice and AAV8-PCSK9 along with high-fat diet to elicit atherosclerosis. RESULTS: Lipin-1mKO mice had larger aortic root plaques than littermate control mice after 8 and 12 weeks of a high-fat diet. Lipin-1mKO mice also had increased serum proinflammatory cytokine concentrations, reduced apoptosis in plaques, and larger necrotic cores in the plaques compared to control mice. CONCLUSIONS: Combined, the data suggest lipin-1 transcriptional co-regulatory activity in myeloid cells is atheroprotective.


Assuntos
Proteínas Nucleares , Pró-Proteína Convertase 9 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Compostos Orgânicos , Fosfatidato Fosfatase/genética
20.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299206

RESUMO

Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause a significant overload in the remaining plantaris muscle of 8-month-old Wistar male rats. SIRT1-associated pro-anabolic, pro-catabolic molecular signaling pathways, NAD and H2S levels of this overload-induced hypertrophy were studied. Fourteen days of overload resulted in a significant 43% (p < 0.01) increase in the mass of plantaris muscle compared to sham operated animals. Cystathionine-ß-synthase (CBS) activities and bioavailable H2S levels were not modified by overload. On the other hand, overload-induced hypertrophy of skeletal muscle was associated with increased SIRT1 (p < 0.01), Akt (p < 0.01), mTOR, S6 (p < 0.01) and suppressed sestrin 2 levels (p < 0.01), which are mostly responsible for anabolic signaling. Decreased FOXO1 and SIRT3 signaling (p < 0.01) suggest downregulation of protein breakdown and mitophagy. Decreased levels of NAD+, sestrin2, OGG1 (p < 0.01) indicate that the redox milieu of skeletal muscle after 14 days of overloading is reduced. The present investigation revealed novel cellular interactions that regulate anabolic and catabolic processes in the hypertrophy of skeletal muscle.


Assuntos
Cistationina beta-Sintase/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Animais , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patologia , Masculino , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/genética , Sirtuínas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...