Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.579
Filtrar
1.
Nat Commun ; 11(1): 4940, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009411

RESUMO

The HUSH complex represses retroviruses, transposons and genes to maintain the integrity of vertebrate genomes. HUSH regulates deposition of the epigenetic mark H3K9me3, but how its three core subunits - TASOR, MPP8 and Periphilin - contribute to assembly and targeting of the complex remains unknown. Here, we define the biochemical basis of HUSH assembly and find that its modular architecture resembles the yeast RNA-induced transcriptional silencing complex. TASOR, the central HUSH subunit, associates with RNA processing components. TASOR is required for H3K9me3 deposition over LINE-1 repeats and repetitive exons in transcribed genes. In the context of previous studies, this suggests that an RNA intermediate is important for HUSH activity. We dissect the TASOR and MPP8 domains necessary for transgene repression. Structure-function analyses reveal TASOR bears a catalytically-inactive PARP domain necessary for targeted H3K9me3 deposition. We conclude that TASOR is a multifunctional pseudo-PARP that directs HUSH assembly and epigenetic regulation of repetitive genomic targets.


Assuntos
Elementos de DNA Transponíveis/genética , Epigênese Genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/metabolismo , Sítios de Ligação , Éxons/genética , Genoma , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Metilação , NAD/metabolismo , Proteínas Nucleares/química , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Genética
2.
Nat Commun ; 11(1): 5063, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033242

RESUMO

Genome-wide chromatin state underlies gene expression potential and cellular function. Epigenetic features and nucleosome positioning contribute to the accessibility of DNA, but widespread regulators of chromatin state are largely unknown. Our study investigates how coordination of ANP32E and H2A.Z contributes to genome-wide chromatin state in mouse fibroblasts. We define H2A.Z as a universal chromatin accessibility factor, and demonstrate that ANP32E antagonizes H2A.Z accumulation to restrict chromatin accessibility genome-wide. In the absence of ANP32E, H2A.Z accumulates at promoters in a hierarchical manner. H2A.Z initially localizes downstream of the transcription start site, and if H2A.Z is already present downstream, additional H2A.Z accumulates upstream. This hierarchical H2A.Z accumulation coincides with improved nucleosome positioning, heightened transcription factor binding, and increased expression of neighboring genes. Thus, ANP32E dramatically influences genome-wide chromatin accessibility through subtle refinement of H2A.Z patterns, providing a means to reprogram chromatin state and to hone gene expression levels.


Assuntos
Cromatina/metabolismo , Genoma , Chaperonas Moleculares/metabolismo , Animais , Diferenciação Celular/genética , DNA Helicases/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo
3.
Nat Commun ; 11(1): 4869, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978394

RESUMO

Poly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in coordinating the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism.


Assuntos
Caenorhabditis elegans/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , DNA/metabolismo , Glicosídeo Hidrolases/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Células Germinativas , Glicosídeo Hidrolases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional
4.
Mol Cell ; 80(1): 114-126.e8, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916094

RESUMO

DNA replication is carried out by a multi-protein machine called the replisome. In Saccharomyces cerevisiae, the replisome is composed of over 30 different proteins arranged into multiple subassemblies, each performing distinct activities. Synchrony of these activities is required for efficient replication and preservation of genomic integrity. How this is achieved is particularly puzzling at the lagging strand, where current models of the replisome architecture propose turnover of the canonical lagging strand polymerase, Pol δ, at every cycle of Okazaki fragment synthesis. Here, we established single-molecule fluorescence microscopy protocols to study the binding kinetics of individual replisome subunits in live S. cerevisiae. Our results show long residence times for most subunits at the active replisome, supporting a model where all subassemblies bind tightly and work in a coordinated manner for extended periods, including Pol δ, redefining the architecture of the active eukaryotic replisome.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Células Eucarióticas/metabolismo , Complexos Multienzimáticos/metabolismo , Núcleo Celular/metabolismo , Cinética , Modelos Biológicos , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula , Fatores de Tempo
5.
Clin Imaging ; 67: 198-206, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32866821

RESUMO

Nuclear protein of the testis (NUT) carcinoma (NC) (formerly known as NUT midline carcinoma) is an aggressive pleomorphic squamous cell carcinoma with a dismal prognosis. Primary NC tumors are commonly located in the chest or head and neck regions. Imaging plays an indispensable role in the staging, management, treatment response assessment, and surveillance of NC. Primary pulmonary NC usually presents as a large mass with lymphadenopathy and pleural involvement. Primary head and neck NC presents as a large expansile necrotic mass in the sinonasal region with locoregional destruction and occasional cervical lymph node involvement. These imaging features are relatively non-specific but are consistent among patients. Currently, there are no standardized guidelines for the treatment of NC. Because of its rarity, paucity of reports in the medical literature, and the lack of awareness among radiologists, NUT carcinoma (NC) has been largely underdiagnosed and misdiagnosed. Clinical aggressive features and pleomorphic/undifferentiated squamous cell carcinoma should prompt genetic evaluation for NUT translocation to diagnose NC. In this article, we discuss NC's clinicopathologic and imaging features and treatment options, including emerging new treatments.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias Testiculares/diagnóstico por imagem , Testículo/diagnóstico por imagem , Adulto , Carcinoma de Células Escamosas/patologia , Feminino , Neoplasias de Cabeça e Pescoço , Humanos , Neoplasias Pulmonares/genética , Masculino , Pescoço/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
7.
PLoS Pathog ; 16(9): e1008811, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32903274

RESUMO

Damage-associated molecular patterns (DAMPs) are endogenous molecules activating the immune system upon release from injured cells. Here we show that the IFI16 protein, once freely released in the extracellular milieu of chronically inflamed tissues, can function as a DAMP either alone or upon binding to lipopolysaccharide (LPS). Specifically, using pull-down and saturation binding experiments, we show that IFI16 binds with high affinity to the lipid A moiety of LPS. Remarkably, IFI16 DAMP activity is potentiated upon binding to subtoxic concentrations of strong TLR4-activating LPS variants, as judged by TLR4-MD2/TIRAP/MyD88-dependent IL-6, IL-8 and TNF-α transcriptional activation and release in stimulated monocytes and renal cells. Consistently, using co-immunoprecipitation (co-IP) and surface plasmon resonance (SPR) approaches, we show that IFI16 is a specific TLR4-ligand and that IFI16/LPS complexes display a faster stimulation turnover on TLR4 than LPS alone. Altogether, our findings point to a novel pathomechanism of inflammation involving the formation of multiple complexes between extracellular IFI16 and subtoxic doses of LPS variants, which then signal through TLR4.


Assuntos
Inflamação/imunologia , Neoplasias Renais/imunologia , Leucemia/imunologia , Lipopolissacarídeos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptor 4 Toll-Like/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Leucemia/metabolismo , Leucemia/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
8.
Nature ; 585(7826): 609-613, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939087

RESUMO

Breaks in DNA strands recruit the protein PARP1 and its paralogue PARP2 to modify histones and other substrates through the addition of mono- and poly(ADP-ribose) (PAR)1-5. In the DNA damage responses, this post-translational modification occurs predominantly on serine residues6-8 and requires HPF1, an accessory factor that switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine9,10. Poly(ADP) ribosylation (PARylation) is important for subsequent chromatin decompaction and provides an anchor for the recruitment of downstream signalling and repair factors to the sites of DNA breaks2,11. Here, to understand the molecular mechanism by which PARP enzymes recognize DNA breaks within chromatin, we determined the cryo-electron-microscopic structure of human PARP2-HPF1 bound to a nucleosome. This showed that PARP2-HPF1 bridges two nucleosomes, with the broken DNA aligned in a position suitable for ligation, revealing the initial step in the repair of double-strand DNA breaks. The bridging induces structural changes in PARP2 that signal the recognition of a DNA break to the catalytic domain, which licenses HPF1 binding and PARP2 activation. Our data suggest that active PARP2 cycles through different conformational states to exchange NAD+ and substrate, which may enable PARP enzymes to act processively while bound to chromatin. The processes of PARP activation and the PARP catalytic cycle we describe can explain mechanisms of resistance to PARP inhibitors and will aid the development of better inhibitors as cancer treatments12-16.


Assuntos
Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Biocatálise , Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , DNA/metabolismo , Reparo do DNA , Ativação Enzimática , Humanos , Modelos Moleculares , NAD/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Nucleossomos/química , Nucleossomos/ultraestrutura , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/ultraestrutura , Domínios Proteicos
9.
PLoS One ; 15(8): e0236293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760074

RESUMO

To divide replicated chromosomes equally between daughter cells, kinetochores must attach to microtubules emanating from opposite poles of the mitotic spindle (biorientation). An error correction mechanism facilitates this process by destabilizing erroneous kinetochore-microtubule attachments. Here we present a stochastic model of kinetochore-microtubule attachments, via an essential protein Ndc80 in budding yeast, Saccharomyces cerevisiae. Using the model, we calculate the stochastic dynamics of a pair of sister kinetochores as they transition among different attachment states. First of all, we determine the kinase-to-phosphatase balance point that maximizes the probability of biorientation, while starting from an erroneous attachment state. We find that the balance point is sensitive to the rates of microtubule-Ndc80 dissociation and derive an approximate analytical formula that defines the balance point. Secondly, we determine the probability of transition from low-tension amphitelic to monotelic attachment and find that, despite this probability being approximately 33%, biorientation can be achieved with high probability. Thirdly, we calculate the contribution of the geometrical orientation of sister kinetochores to the probability of biorientation and show that, in the absence of geometrical orientation, the biorientation error rate is much larger than that observed in experiments. Finally, we study the coupling of the error correction mechanism to the spindle assembly checkpoint by calculating the average binding of checkpoint-related proteins to the kinetochore during the error correction process.


Assuntos
Segregação de Cromossomos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Modelos Genéticos , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Processos Estocásticos
10.
PLoS Pathog ; 16(8): e1008752, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760121

RESUMO

Members of the family of pyrin and HIN domain containing (PYHIN) proteins play an emerging role in innate immunity. While absent in melanoma 2 (AIM2) acts a cytosolic sensor of non-self DNA and plays a key role in inflammasome assembly, the γ-interferon-inducible protein 16 (IFI16) restricts retroviral gene expression by sequestering the transcription factor Sp1. Here, we show that the remaining two human PYHIN proteins, i.e. myeloid cell nuclear differentiation antigen (MNDA) and pyrin and HIN domain family member 1 (PYHIN1 or IFIX) share this antiretroviral function of IFI16. On average, knock-down of each of these three nuclear PYHIN proteins increased infectious HIV-1 yield from human macrophages by more than an order of magnitude. Similarly, knock-down of IFI16 strongly increased virus transcription and production in primary CD4+ T cells. The N-terminal pyrin domain (PYD) plus linker region containing a nuclear localization signal (NLS) were generally required and sufficient for Sp1 sequestration and anti-HIV-1 activity of IFI16, MNDA and PYHIN1. Replacement of the linker region of AIM2 by the NLS-containing linker of IFI16 resulted in a predominantly nuclear localization and conferred direct antiviral activity to AIM2 while attenuating its ability to form inflammasomes. The reverse change caused nuclear-to-cytoplasmic relocalization of IFI16 and impaired its antiretroviral activity but did not result in inflammasome assembly. We further show that the Zn-finger domain of Sp1 is critical for the interaction with IFI16 supporting that pyrin domains compete with DNA for Sp1 binding. Finally, we found that human PYHIN proteins also inhibit Hepatitis B virus and simian vacuolating virus 40 as well as the LINE-1 retrotransposon. Altogether, our data show that IFI16, PYHIN1 and MNDA restrict HIV-1 and other viral pathogens by interfering with Sp1-dependent gene expression and support an important role of nuclear PYHIN proteins in innate antiviral immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Núcleo Celular/metabolismo , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Macrófagos/imunologia , Proteínas Nucleares/metabolismo , Fator de Transcrição Sp1/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Núcleo Celular/genética , DNA Viral/genética , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Células Hep G2 , Humanos , Imunidade Inata/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Nucleares/genética , Fator de Transcrição Sp1/genética , Replicação Viral
11.
Nat Commun ; 11(1): 3951, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769987

RESUMO

Duplication of mammalian genomes requires replisomes to overcome numerous impediments during passage through open (eu) and condensed (hetero) chromatin. Typically, studies of replication stress characterize mixed populations of challenged and unchallenged replication forks, averaged across S phase, and model a single species of "stressed" replisome. Here, in cells containing potent obstacles to replication, we find two different lesion proximal replisomes. One is bound by the DONSON protein and is more frequent in early S phase, in regions marked by euchromatin. The other interacts with the FANCM DNA translocase, is more prominent in late S phase, and favors heterochromatin. The two forms can also be detected in unstressed cells. ChIP-seq of DNA associated with DONSON or FANCM confirms the bias of the former towards regions that replicate early and the skew of the latter towards regions that replicate late.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Período de Replicação do DNA , Eucromatina/metabolismo , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Células HeLa , Humanos , Fase S
12.
Nat Commun ; 11(1): 3904, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764536

RESUMO

A major challenge in chemotherapy is chemotherapy resistance in cells lacking p53. Here we demonstrate that NIP30, an inhibitor of the oncogenic REGγ-proteasome, attenuates cancer cell growth and sensitizes p53-compromised cells to chemotherapeutic agents. NIP30 acts by binding to REGγ via an evolutionarily-conserved serine-rich domain with 4-serine phosphorylation. We find the cyclin-dependent phosphatase CDC25A is a key regulator for NIP30 phosphorylation and modulation of REGγ activity during the cell cycle or after DNA damage. We validate CDC25A-NIP30-REGγ mediated regulation of the REGγ target protein p21 in vivo using p53-/- and p53/REGγ double-deficient mice. Moreover, Phosphor-NIP30 mimetics significantly increase the growth inhibitory effect of chemotherapeutic agents in vitro and in vivo. Given that NIP30 is frequently mutated in the TCGA cancer database, our results provide insight into the regulatory pathway controlling the REGγ-proteasome in carcinogenesis and offer a novel approach to drug-resistant cancer therapy.


Assuntos
Autoantígenos/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/metabolismo , Proteína Supressora de Tumor p53/deficiência , Animais , Autoantígenos/genética , Ciclo Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/deficiência , Complexo de Endopeptidases do Proteassoma/genética , Proteína Supressora de Tumor p53/genética , Fosfatases cdc25/metabolismo
13.
Nat Commun ; 11(1): 3807, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733036

RESUMO

The human genome contains an estimated 600 ubiquitin E3 ligases, many of which are single-subunit E3s (ssE3s) that can bind to both substrate and ubiquitin-loaded E2 (E2~Ub). Within ssE3s structural disorder tends to be located in substrate binding and domain linking regions. RNF4 is a ssE3 ligase with a C-terminal RING domain and disordered N-terminal region containing SUMO Interactions Motifs (SIMs) required to bind SUMO modified substrates. Here we show that, although the N-terminal region of RNF4 bears no secondary structure, it maintains a compact global architecture primed for SUMO interaction. Segregated charged regions within the RNF4 N-terminus promote compaction, juxtaposing RING domain and SIMs to facilitate substrate ubiquitination. Mutations that induce a more extended shape reduce ubiquitination activity. Our result offer insight into a key step in substrate ubiquitination by a member of the largest ubiquitin ligase subtype and reveal how a defined architecture within a disordered region contributes to E3 ligase function.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
14.
Nat Commun ; 11(1): 4063, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792525

RESUMO

The neuroendocrine hypothalamus is the central regulator of vital physiological homeostasis and behavior. However, the cellular and molecular properties of hypothalamic neural progenitors remain unexplored. Here, hypothalamic radial glial (hRG) and hypothalamic mantle zone radial glial (hmRG) cells are found to be neural progenitors in the developing mammalian hypothalamus. The hmRG cells originate from hRG cells and produce neurons. During the early development of hypothalamus, neurogenesis occurs in radial columns and is initiated from hRG cells. The radial glial fibers are oriented toward the locations of hypothalamic subregions which act as a scaffold for neuronal migration. Furthermore, we use single-cell RNA sequencing to reveal progenitor subtypes in human developing hypothalamus and characterize specific progenitor genes, such as TTYH1, HMGA2, and FAM107A. We also demonstrate that HMGA2 is involved in E2F1 pathway, regulating the proliferation of progenitor cells by targeting on the downstream MYBL2. Different neuronal subtypes start to differentiate and express specific genes of hypothalamic nucleus at gestational week 10. Finally, we reveal the developmental conservation of nuclear structures and marker genes in mouse and human hypothalamus. Our identification of cellular and molecular properties of neural progenitors provides a basic understanding of neurogenesis and regional formation of the non-laminated hypothalamus.


Assuntos
Hipotálamo/citologia , Hipotálamo/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Análise por Conglomerados , Feminino , Genes Supressores de Tumor , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Hibridização In Situ , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neurogênese/genética , Neurogênese/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Gravidez
15.
Nat Commun ; 11(1): 4338, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859893

RESUMO

Reversible phosphorylation of Pol II and accessory factors helps order the transcription cycle. Here, we define two kinase-phosphatase switches that operate at different points in human transcription. Cdk9/cyclin T1 (P-TEFb) catalyzes inhibitory phosphorylation of PP1 and PP4 complexes that localize to 3' and 5' ends of genes, respectively, and have overlapping but distinct specificities for Cdk9-dependent phosphorylations of Spt5, a factor instrumental in promoter-proximal pausing and elongation-rate control. PP1 dephosphorylates an Spt5 carboxy-terminal repeat (CTR), but not Spt5-Ser666, a site between Kyrpides-Ouzounis-Woese (KOW) motifs 4 and 5, whereas PP4 can target both sites. In vivo, Spt5-CTR phosphorylation decreases as transcription complexes pass the cleavage and polyadenylation signal (CPS) and increases upon PP1 depletion, consistent with a PP1 function in termination first uncovered in yeast. Depletion of PP4-complex subunits increases phosphorylation of both Ser666 and the CTR, and promotes redistribution of promoter-proximally paused Pol II into gene bodies. These results suggest that switches comprising Cdk9 and either PP4 or PP1 govern pause release and the elongation-termination transition, respectively.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , RNA Polimerase II/metabolismo , Transcrição Genética/fisiologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Células HCT116 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , Interferência de RNA , RNA Polimerase II/genética , Receptores de Neuropeptídeo Y/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
16.
Cardiovasc Ther ; 2020: 9397109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821285

RESUMO

Chronic systemic inflammation contributes to cardiovascular disease (CVD) and correlates with the abundance of acute phase response (APR) proteins in the liver and plasma. Bromodomain and extraterminal (BET) proteins are epigenetic readers that regulate inflammatory gene transcription. We show that BET inhibition by the small molecule apabetalone reduces APR gene and protein expression in human hepatocytes, mouse models, and plasma from CVD patients. Steady-state expression of serum amyloid P, plasminogen activator inhibitor 1, and ceruloplasmin, APR proteins linked to CVD risk, is reduced by apabetalone in cultured hepatocytes and in humanized mouse liver. In cytokine-stimulated hepatocytes, apabetalone reduces the expression of C-reactive protein (CRP), alpha-2-macroglobulin, and serum amyloid P. The latter two are also reduced by apabetalone in the liver of endotoxemic mice. BET knockdown in vitro also counters cytokine-mediated induction of the CRP gene. Mechanistically, apabetalone reduces the cytokine-driven increase in BRD4 BET occupancy at the CRP promoter, confirming that transcription of CRP is BET-dependent. In patients with stable coronary disease, plasma APR proteins CRP, IL-1 receptor antagonist, and fibrinogen γ decrease after apabetalone treatment versus placebo, resulting in a predicted downregulation of the APR pathway and cytokine targets. We conclude that CRP and components of the APR pathway are regulated by BET proteins and that apabetalone counters chronic cytokine signaling in patients.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Citocinas/metabolismo , Endotoxemia/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Quinazolinonas/farmacologia , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteína C-Reativa/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Endotoxemia/genética , Endotoxemia/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regiões Promotoras Genéticas , Componente Amiloide P Sérico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , alfa-Macroglobulinas/genética , alfa-Macroglobulinas/metabolismo
17.
Nat Commun ; 11(1): 4206, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826896

RESUMO

Saccharomyces cerevisiae TBP associated factor 14 (Taf14) is a well-studied transcriptional regulator that controls diverse physiological processes and that physically interacts with at least seven nuclear complexes in yeast. Despite multiple previous Taf14 structural studies, the nature of its disparate transcriptional regulatory functions remains opaque. Here, we demonstrate that the extra-terminal (ET) domain of Taf14 (Taf14ET) recognizes a common motif in multiple transcriptional coactivator proteins from several nuclear complexes, including RSC, SWI/SNF, INO80, NuA3, TFIID, and TFIIF. Moreover, we show that such partner binding promotes liquid-liquid phase separation (LLPS) of Taf14ET, in a mechanism common to YEATS-associated ET domains (e.g., AF9ET) but not Bromo-associated ET domains from BET-family proteins. Thus, beyond identifying the molecular mechanism by which Taf14ET associates with many transcriptional regulators, our study suggests that Taf14 may function as a versatile nuclear hub that orchestrates transcriptional machineries to spatiotemporally regulate diverse cellular pathways.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Proteínas de Transporte , Proteínas de Ciclo Celular/metabolismo , Análise por Conglomerados , Proteínas de Ligação a DNA , Epigenômica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/genética , Fatores de Transcrição/metabolismo
18.
Nat Commun ; 11(1): 4083, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796829

RESUMO

Proper chromatin function and maintenance of genomic stability depends on spatiotemporal coordination between the transcription and replication machinery. Loss of this coordination can lead to DNA damage from increased transcription-replication collision events. We report that deregulated transcription following BRD4 loss in cancer cells leads to the accumulation of RNA:DNA hybrids (R-loops) and collisions with the replication machinery causing replication stress and DNA damage. Whole genome BRD4 and γH2AX ChIP-Seq with R-loop IP qPCR reveals that BRD4 inhibition leads to accumulation of R-loops and DNA damage at a subset of known BDR4, JMJD6, and CHD4 co-regulated genes. Interference with BRD4 function causes transcriptional downregulation of the DNA damage response protein TopBP1, resulting in failure to activate the ATR-Chk1 pathway despite increased replication stress, leading to apoptotic cell death in S-phase and mitotic catastrophe. These findings demonstrate that inhibition of BRD4 induces transcription-replication conflicts, DNA damage, and cell death in oncogenic cells.


Assuntos
Proteínas de Ciclo Celular/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Estruturas R-Loop/efeitos dos fármacos , Fatores de Transcrição/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Cromatina , Proteínas de Ligação a DNA , Instabilidade Genômica , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Neoplasias/terapia , Proteínas Nucleares/metabolismo , Fase S , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
19.
PLoS Genet ; 16(8): e1008569, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810145

RESUMO

Correct bioriented attachment of sister chromatids to the mitotic spindle is essential for chromosome segregation. In budding yeast, the conserved protein shugoshin (Sgo1) contributes to biorientation by recruiting the protein phosphatase PP2A-Rts1 and the condensin complex to centromeres. Using peptide prints, we identified a Serine-Rich Motif (SRM) of Sgo1 that mediates the interaction with condensin and is essential for centromeric condensin recruitment and the establishment of biorientation. We show that the interaction is regulated via phosphorylation within the SRM and we determined the phospho-sites using mass spectrometry. Analysis of the phosphomimic and phosphoresistant mutants revealed that SRM phosphorylation disrupts the shugoshin-condensin interaction. We present evidence that Mps1, a central kinase in the spindle assembly checkpoint, directly phosphorylates Sgo1 within the SRM to regulate the interaction with condensin and thereby condensin localization to centromeres. Our findings identify novel mechanisms that control shugoshin activity at the centromere in budding yeast.


Assuntos
Adenosina Trifosfatases/metabolismo , Centrômero/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Cell Biol ; 40(20)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32817139

RESUMO

Lysine demethylase 6A (KDM6A), also known as UTX, belongs to the KDM6 family of histone H3 lysine 27 (H3K27) demethylases, which also includes UTY and KDM6B (JMJD3). The KDM6A protein contains six tetratricopeptide repeat (TPR) domains and an enzymatic Jumonji C (JmjC) domain that catalyzes the removal of di- and trimethylation on H3K27. KDM6A physically associates with histone H3 lysine 4 monomethyltransferases MLL3 (KMT2C) and MLL4 (KMT2D). Since its identification as an H3K27 demethylase in 2007, studies have reported KDM6A's critical roles in cell differentiation, development, and cancer. KDM6A is important for differentiation of embryonic stem cells and development of various tissues. Mutations of KDM6A cause Kabuki syndrome. KDM6A is frequently mutated in cancers and functions as a tumor suppressor. KDM6A is redundant with UTY and functions largely independently of its demethylase activity. It regulates gene expression, likely through the associated transcription factors and MLL3/4 on enhancers. However, KDM6A enzymatic activity is required in certain cellular contexts. Functional redundancy between H3K27 demethylase activities of KDM6A and KDM6B in vivo has yet to be determined. Further understanding of KDM6A functions and working mechanisms will provide more insights into enhancer regulation and may help generate novel therapeutic approaches to treat KDM6A-related diseases.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Histona Desmetilases/genética , Neoplasias/genética , Domínio Catalítico/genética , Montagem e Desmontagem da Cromatina/genética , Células-Tronco Embrionárias/citologia , Genes Supressores de Tumor , Histona Desmetilases/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA