Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.452
Filtrar
1.
Expert Opin Investig Drugs ; 28(11): 977-988, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31594388

RESUMO

Introduction: Targeted therapies in cancer aim to inhibit specific molecular targets responsible for enhanced tumor growth. AKT/PKB (protein kinase B) is a serine threonine kinase involved in several critical cellular pathways, including survival, proliferation, invasion, apoptosis, and angiogenesis. Although phosphatidylinositol-3 kinase (PI3K) is the key regulator of AKT activation, numerous stimuli and kinases initiate pro-proliferative AKT signaling which results in the activation of AKT pathway to drive cellular growth and survival. Activating mutations and amplification of components of the AKT pathway are implicated in the pathogenesis of many cancers including breast and ovarian. Given its importance, AKT, it has been validated as a promising therapeutic target.Areas covered: This article summarizes AKT's biological function and different classes of AKT inhibitors as anticancer agents. We also explore the efficacy of AKT inhibitors as monotherapies and in combination with cytotoxic and other targeted therapies.Expert opinion: The complex mechanism following AKT inhibition requires the addition of other therapies to prevent resistance and improve clinical response. Further studies are necessary to determine additional rational combinations that can enhance efficacy of AKT inhibitors, potentially by targeting compensatory mechanisms, and/or enhancing apoptosis. The identification of biomarkers of response is essential for the development of successful therapeutics.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Desenvolvimento de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Fosfatidilinositol 3-Quinase/metabolismo
2.
Expert Opin Drug Metab Toxicol ; 15(9): 767-774, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31478386

RESUMO

Introduction: The phosphatidylinositide 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway has emerged as an important target in cancer therapy. Numerous PI3K/AKT/mTOR pathway inhibitors are extensively studied; some are used clinically, but most of these drugs are undergoing clinical trials. Potential adverse effects, such as severe hepatotoxicity and pneumonitis, have largely restricted the application and clinical significance of these inhibitors. A summary of mechanisms underlying the adverse effects is not only significant for the development of novel PI3K/AKT/mTOR inhibitors but also beneficial for the optimal use of existing drugs. Areas covered: We report a profile of the adverse effects, which we consider the class effects of PI3K/AKT/mTOR inhibitors. This review also discusses potential molecular toxicological mechanisms of these agents, which might drive future drug discovery. Expert opinion: Severe toxicities associated with PI3K/AKT/mTOR inhibitors hinder their approval and limit long-term clinical application of these drugs. A better understanding regarding PI3K/AKT/mTOR inhibitor-induced toxicities is needed. However, the mechanisms underlying these toxicities remain unclear. Future research should focus on developing strategies to reduce toxicities of approved inhibitors as well as accelerating new drug development. This review will be useful to clinical, pharmaceutical, and toxicological researchers.


Assuntos
Antineoplásicos/efeitos adversos , Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/efeitos adversos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Humanos , Fosfatidilinositol 3-Quinase/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
3.
Chem Biol Interact ; 311: 108793, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31421117

RESUMO

Polyphyllin I (PPI), a bioactive component extracted from Paris polyphylla, was reported to have potent anticancer activities in previous studies. However, there were few reports on the effects and underlying mechanism of PPI in human acute myeloid leukemia cells. The present study demonstrated that PPI had an inhibitory effect through inducing apoptosis and autophagy in THP-1 and NB4 cells. PPI induced apoptosis via activating JNK pathway, as evidenced by the decreased Bcl-2 levels and increased Bax, cleaved-caspase-3 and phosphorylated-JNK expressions. In addition, PPI promoted autophagy as evidenced with increased expressions of LC3-II and Beclin-1 in western blot and autophagic vacuoles in MDC staining, which was associated with the inhibition of AKT-mTOR pathway. Furthermore, JNK inhibitor SP600125 and autophagy inhibitor 3-MA were employed to evaluate the role of apoptosis and autophagy in PPI-induced cell death. We found that autophagy and apoptosis were both causes of cell death induced by PPI. These data suggested that PPI could be a potent therapeutic agent for the treatment of human acute myeloid leukemia.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Diosgenina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Diosgenina/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Gene ; 716: 144031, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31377314

RESUMO

Circular RNAs (circRNAs), a novel class of widespread and diverse endogenous RNAs, have been identified as critical regulators of various cancers, including hepatocellular carcinoma (HCC). However, the specific roles of circRNAs in HCC are largely unknown. In this study, we identified a novel circRNA, circ-IGF1R, in HCC tumour tissues and cell lines. Circ-IGF1R levels were found to be significantly upregulated in HCC tissues compared with levels in paired peritumoural tissues. The high expression levels of circ-IGF1R in HCC were associated with tumour size. Moreover, knocking down circ-IGF1R with siRNA significantly attenuated cell proliferation and induced cell apoptosis and cell cycle arrest in vitro. Further investigation revealed that PI3K/AKT signalling pathway activation was involved in the oncogenic functions of circ-IGF1R in HCC. Our study suggests that circ-IGF1R may be a potential target for the prevention and treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA/metabolismo , Apoptose , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinase/antagonistas & inibidores , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima
5.
Life Sci ; 233: 116730, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31390552

RESUMO

AIMS: Dihydroartemisinin (DHA) exhibits potential anticancer activity. However, the biological functions of DHA in prostate cancer remain largely unexplored. In this study, we aim to investigate the anti-proliferative effect and glycolysis regulation of DHA on prostate cancer cell LNCaP. MAIN METHODS: Cell proliferative activity and apoptosis inducing were detected. The gene expression was detected by mRNA microarray and results were analyzed by GO and KEGG pathway database. Expressions of glycolysis key enzymes and PI3K/AKT/HIF-1α were detected by Western blot. KEY FINDINGS: Results indicated that DHA could inhibit the LNCaP cell proliferation considerably and induce cell apoptosis. mRNA microarray showed 1293 genes were upregulated and 2322 genes were downregulated. GO and KEGG enrichment analysis suggested that glycolysis pathway was correlated with DHA inhibited the proliferation on the LNCaP cell. Western blot results showed that DHA can decrease GLUT1 and regulatory enzymes of glycolytic pathway expression probably by suppressing the activity of the intracellular Akt/mTOR and HIF-1 α. SIGNIFICANCE: Experimental validation results indicate that DHA treatment can inhibit the LNCaP cell proliferation and induce apoptosis, which may be related to glycolysis inhibition.


Assuntos
Artemisininas/farmacologia , Biomarcadores Tumorais/metabolismo , Glicólise/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antimaláricos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
6.
Life Sci ; 233: 116748, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412263

RESUMO

AIMS: Resveratrol is a polyphenolic compound that has received much attention for its use in ameliorating various systemic pathological conditions. The present study was performed to investigate whether the resveratrol alleviated cardiac hypertrophy and functional remodelling by regulating autophagy. MATERIALS AND METHODS: Male rats were exposed to CIH 8 h/day for five weeks and/or intragastric administration of resveratrol daily. The morphological and echocardiography were used to evaluate the cardiac protective effects. The apoptosis was detected by TUNEL staining. The biochemical assessments were used to evaluate oxidative stress. Further, the effect of resveratrol on autophagy and PI3K/AKT/mTOR pathway was investigated. KEY FINDINGS: The CIH group exhibited increased heart weight/body weight and left ventricle weight/body weight ratios, which was accompanied by left ventricular remodelling. Echocardiography analysis showed that CIH-treated rats had significantly higher left ventricular posterior wall thickness, ejection fraction and fractional shortening than those of controls. In addition, the apoptosis index and oxidative markers were significantly elevated in the CIH group versus the control. The autophagy marker Beclin-1 was elevated, while p62 was decreased by CIH treatment. Resveratrol treatment significantly improved cardiac function and alleviated cardiac hypertrophy, oxidative stress, and apoptosis in CIH rats. Further results indicated that PI3K/AKT pathway-mediated inhibition of the mammalian target of rapamycin (mTOR) pathway played a role in the activation of autophagy by resveratrol after CIH stimulation. SIGNIFICANCE: In conclusion, resveratrol supplementation during CIH upregulates autophagy by targeting the PI3K/AKT/mTOR pathway, which appears to be beneficial for resisting cardiac hypertrophy.


Assuntos
Cardiomegalia/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Hipóxia/complicações , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Resveratrol/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antioxidantes/farmacologia , Apoptose , Autofagia , Cardiomegalia/etiologia , Cardiomegalia/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Eur J Med Chem ; 180: 72-85, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31301565

RESUMO

A series of pyrazole-thiophene derivatives exhibiting good Akt inhibitory activities were obtained on the basis of conformational restriction strategy, leading to the discovery of compound 1d and 1o which showed excellent in vitro antitumor effect against a variety of hematologic cancer cells and their potential of inducing apoptosis, blocking the cell cycles at S phase and significantly inhibiting the phosphorylation of downstream biomarkers of Akt kinase of cancer cells. Amongst, compound 1o also exhibited good PK profiles and inhibited about 40% tumor growth in MM1S xenograft model. Compound 1o might be a potential candidate for further development.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirazóis/farmacologia , Tiofenos/farmacologia , Administração Oral , Animais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/administração & dosagem , Pirazóis/química , Relação Estrutura-Atividade , Tiofenos/administração & dosagem , Tiofenos/química , Células Tumorais Cultivadas
8.
Anticancer Res ; 39(7): 3823-3833, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262910

RESUMO

BACKGROUND/AIM: AKT, also known as protein kinase B (PKB), is an established therapeutic target in cancer and its inhibitors are increasingly designed. The anti-cancer potential of a compound class naphthoquinones has been constantly realized. The current work aimed to explore AKT1 inhibitors from 1,4-naphthoquionone derivatives. MATERIALS AND METHODS: A library of 1,4-naphthoquionone derivatives was formed using similarity search and visual analysis. The library was used for virtual screening using molecular docking. For the screened compounds, the detailed binding pose analysis, binding energy and dissociation constant calculations were performed. RESULTS: The top 10 screened compounds were proposed as potential AKT1 inhibitors with anti-cancer activity. The compounds were checked for any reported activity, and our 2nd rank compound was reported to have anti-cancer activity. CONCLUSION: Our study proposes 10 compounds as potential AKT1 inhibitors and anticancer agents and also provides insights into their binding. This study also proposes AKT1 as a potential target of the reported anticancer compound, CID: 341807.


Assuntos
Antineoplásicos/farmacologia , Naftoquinonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Gynecol Oncol ; 154(1): 95-101, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31118140

RESUMO

BACKGROUND: Improved treatment for advanced cervical cancer is needed; currently, treatment options include combined chemotherapy and bevacizumab or pembrolizumab monotherapy for PD-L1 positive disease. PIK3CA and KRAS mutations have been reported in cervical cancers; this study therefore tested dual inhibition of PI3K and RAS signaling by combining the MEK inhibitor trametinib and the AKT inhibitor GSK2141795 in recurrent cervical cancer. METHODS: This was an investigator-initiated phase II study combining trametinib and GSK2141795 in patients with recurrent cervical cancer. Primary endpoint was best tumor response; secondary endpoints included progression free survival, overall survival, and safety assessment. Translational objectives included characterization of molecular alterations in PI3K and RAS signaling pathway genes. RESULTS: Planned accrual was 35 patients; 14 patients were enrolled and received at least one dose of study drug before the study was terminated due to discontinuation of GSK2141795 development. There were no confirmed responses; 1 patient had an unconfirmed PR, 8 had stable disease, 3 had progression as best response, and 2 were unevaluable. Toxicities were mostly grade 1 and 2, although 57% of patients experienced grade 3/4 adverse events and 50% patients required a dose reduction. CONCLUSIONS: The combination of trametinib and GSK2141795 was feasible but required dose holds and modifications for adverse events; however, anti-cancer activity was minimal, even in patients with PI3K or RAS pathway alterations. Although the study was terminated early after GSK2141795 development was halted, the findings in these 14 patients do not support further development of this combination in cervical cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Diaminas/administração & dosagem , Diaminas/efeitos adversos , Feminino , Humanos , Estimativa de Kaplan-Meier , MAP Quinase Quinase Quinases/antagonistas & inibidores , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/enzimologia , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirazóis/administração & dosagem , Pirazóis/efeitos adversos , Piridonas/administração & dosagem , Piridonas/efeitos adversos , Pirimidinonas/administração & dosagem , Pirimidinonas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/enzimologia
10.
Chem Pharm Bull (Tokyo) ; 67(8): 864-871, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31142691

RESUMO

Lung cancer is one of the most common malignant cancers in the world. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a second- or third-line therapy for mutated non-small cell lung cancer (NSCLC). It usually becomes drug resistance after a period of treatment. Triptolide (TPL) is an epoxy diterpenoid lactone compound extracted from Tripterygium wilfordii HOOK. F. and many studies demonstrated that TPL has a synergistic effect when combined with chemotherapy drugs. In this research, we plan to evaluate the combined effect of TPL and EGFR-TKIs (Gefitinib, Erlotinib, and Icotinib) and investigate the possible mechanisms. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted to detect the cell viabilities, combined effect was evaluated by Combination Index. Molecular docking study was used to predict the binding ability of TPL. The expression of proteins was detected by Western blot. MTT results showed TPL had synergistic effect with three EGFR-TKIs at different concentrations on H1975 cells but not on H1299 cells. Molecular docking study demonstrated that TPL with T790M/L858R EGFR can form a more stable compound than that with wild type EGFR. Western blot results showed TPL inhibited the EGFR/Akt pathway and increased the expression of Bax and the ratio of Bax and Bcl-2 in H1975 cells. In conclusion, TPL had synergistic effect with three EGFR-TKIs on H1975 cells but not on H1299 cells, which may be due to the binding ability of TPL and different-type EGFR. The synergistic effect of TPL on H1975 cells may be partly related to the inhibition of the EGFR/Akt pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diterpenos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fenantrenos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenantrenos/síntese química , Fenantrenos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade
11.
Cell Physiol Biochem ; 52(6): 1398-1411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075190

RESUMO

BACKGROUND/AIMS: Visfatin is known to act as a mediator in several metabolic disorders, such as obesity, diabetes, and cardiovascular diseases. This study aimed to investigate the effect of visfatin on the adhesion of THP-1 monocytes to human vascular endothelial cells and the underlying mechanism. METHODS: Monocytes adhesion to endothelial cells was determined by using fluorescence-labeled monocytes. ICAM-1 and VCAM-1 expression in endothelial cells were measured by western blotting. Production of reactive oxygen species (ROS) was measured by using a fluorescent dye. The amounts of nuclear factor-kappa B (NF-κB) and phosphorylation of inhibitory factor of NF-κB (IκB) were determined by using western blot analysis. The translocation of NF-κB from the cytoplasm to the nucleus was determined by using immunofluorescence. RESULTS: Here we showed that visfatin significantly caused the upregulation of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells, as well as enhanced monocyte adhesion to endothelial cells. Moreover, we found that inhibition of PI3K, Akt, and p38 MAPK activation significantly prevented visfatin-enhanced expression of ICAM-1 and VCAM-1 and monocyte adhesion to endothelial cells. Visfatin enhanced ROS production and IKK/NF-кB activation and then led to upregulation of ICAM-1 and VCAM-1 and enhanced monocyte adhesion to endothelial cells. These effects were also p38/PI3K/Akt-dependent. CONCLUSION: These results demonstrated that visfatin promoted monocyte-endothelial cell adhesion by increasing ICAM-1 and VCAM-1 expression via the activation of p38/PI3K/Akt signaling and downstream ROS production and IKK/NF-кB activation.


Assuntos
Adesão Celular/efeitos dos fármacos , Nicotinamida Fosforribosiltransferase/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monócitos/citologia , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
J BUON ; 24(1): 310-314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941986

RESUMO

PURPOSE: To investigate the growth inhibitory effect of Sorghumol on the circulating renal cancers cells and to investigate the underlying mechanisms including its effects on apoptosis, cell cycle phase distribution and m-TOR/PI3K/AKT signalling pathway. METHODS: The antiproliferative effects were assessed by WST-1 and colony formation assay. Apoptosis was detected by the Hoechst and AO/EB staining using fluorescence microscopy. Cell cycle analysis was carried out by flow cytometry. Protein expression was checked by western blotting. RESULTS: The results revealed that Sorghumol inhibited the growth of the renal cancer cell (RCC) line A498 and circulating RCCs. However, more profound effects were observed on the RCC cells. The anticancer effects were found to be due to induction of apoptosis. Moreover, Sorghumol could also caused G2/M cell cycle arrest of the RCC cells. Besides, examination of the effect of Sorghumol on m-TOR/PI3K/AKT revealed that Sorghumol inhibited the expression of p-mTOR, p-PI3K and p-AKT in a concentration-dependent manner. CONCLUSION: Taken together, we conclude that Sorghumol inhibited the proliferation of circulating RCCs and may therefore prove to be an important lead molecule for the treatment of renal cancer.


Assuntos
Neoplasias Renais/tratamento farmacológico , Células Neoplásicas Circulantes/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Renais/enzimologia , Neoplasias Renais/patologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
13.
J BUON ; 24(1): 323-328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941988

RESUMO

PURPOSE: Oral cancer is one of the prevalent types of cancer and has been reported to responsible for significant mortality and morbidity. Since treatment options for oral cancer are limited, there is need to explore novel molecules for treatment of oral cancer. In the current study we evaluated the anticancer activity of a plant derived monoterpene, Linalool against oral cancer cell line, OECM-1. METHODS: Cell viability was determined by MTT assay. Apoptosis was detected by DAPI and annexin V/PI staining. Cell cycle analysis was carried out by flow cytometry. Cell migration was assessed by wound healing assay and the expression of the proteins was determined by western blotting. RESULTS: The results showed that Linalool inhibited the viability of oral cancer OECM-1 cells in a concentration-dependent manner. The IC50 of Linalool against OECM-1 oral cancer cells was 10 µM as compared to its IC50 of 65 µM against non-cancer FR-2 cells. The anticancer effects were due to the induction of the apoptosis and sub-G1 cell cycle arrest. The results of annexin V/PI further revealed that the apoptotic cell populations increased from 2.6% in the control to 61.3% at 20 µM concentrations. It was observed that Linalool decreased the expression of p-PI3K and p-AKT in a concentration-dependent manner. However, the expression of PI3K and AKT remained almost unaltered. CONCLUSIONS: Taken together it was shown that Linalool monoterpene exerted significant anticancer effects in OECM-1 human oral cancer cells via inducing cell cycle arrest, loss of mitochondrial membrane potential (MMP) and suppressing PI3K/AKT signalling pathway.


Assuntos
Potencial da Membrana Mitocondrial/efeitos dos fármacos , Monoterpenos/farmacologia , Neoplasias Bucais/tratamento farmacológico , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Bucais/enzimologia , Neoplasias Bucais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Int J Oncol ; 54(4): 1221-1232, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30968158

RESUMO

Clear cell renal cell carcinoma (ccRCC) has been associated with one of the highest mortality rates among all cancers. Fatty acid binding proteins (FABPs) are 14­15 kDa proteins that are highly abundant in the cytosol of most tissues. FABP5, a member of the FABP family, has been observed to promote tumor cell growth in numerous cancer types. In order to investigate the function of FABP5 in ccRCC cells in the present study, RNA sequencing data from The Cancer Genome Atlas were analyzed to determine the expression levels of FABP5 in ccRCC patient samples. Survival and Cox regression analyses were performed to measure the association between FABP5 expression and clinicopathological features of patients with ccRCC. Subsequent in vitro experiments downregulated or overexpressed FABP5 in Caki­1 and 786O ccRCC cells using lentiviral vectors to evaluate cell proliferation ability, and a xenograft transplantation model was established to examine the effect of FABP5 on tumorigenesis in vivo. The results demonstrated that FABP5 expression was significantly upregulated in samples from patients with ccRCC when compared with normal tissue samples. High FABP5 expression was also significantly correlated with tumor and metastasis classifications and predicted poor survival in patients with ccRCC. In ccRCC cells, silencing of FABP5 significantly inhibited cell proliferation, while overexpression of FABP5 promoted cell proliferation when compared to the respective controls. In addition, treatment with the phosphatidylinositol­4,5­bisphosphate 3­kinase (PI3K)/AKT inhibitor, LY294002, attenuated the pro­proliferative effects of exogenous FABP5 expression in Caki­1 and 786O cells. This indicated that the PI3K/AKT signaling pathway may be partially involved in the FABP5­mediated increase in ccRCC cell proliferation. Furthermore, FABP5 was observed to regulate tumor growth in nude mice in vivo. In conclusion, the results of the present study suggest that FABP5 may exert a pro­proliferative role in ccRCC and may be associated with malignant progression and tumorigenesis.


Assuntos
Carcinoma de Células Renais/patologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Neoplasias Renais/patologia , Animais , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Biologia Computacional , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Humanos , Neoplasias Renais/mortalidade , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J BUON ; 24(1): 285-290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941982

RESUMO

PURPOSE: The purpose of the present study was to investigate the anticancer properties of isoacteoside against OVCAR-3 human ovarian cancer cells. Its effects on apoptosis, reactive oxygen species (ROS) generation, cell invasion, cell cycle arrest and its effects on tumor volume and weight were also evaluated in the current study. METHODS: MTT assay was used to study the cytotoxic effects of the compound on the cell viability. Effects on apoptosis and cell cycle arrest were evaluated by flow cytometry. In vitro wound healing assay and matrigel assay were carried out to study the effects of isoacteoside on cell migration and cell invasion respectively. Non-cancer ovarian cell line SV-40 served as control. RESULTS: Isoacteoside exerted both dose-dependent as well as time-dependent growth inhibitory effects on ovarian cancer cells with IC50 values of 15 µM at 24h incubation. Isoacteoside led to early and late apoptosis induction in these cells. Isoacteoside also led to sub-G1 cell cycle arrest which showed strong dose-dependence. Isoacteoside treatment also led to inhibition of cell migration and cell invasion. The results revealed that OVCAR-3 tumor growth was significantly suppressed by isoacteoside administration, compared with that in the control group. At the end of the 5-week period of isoacteoside treatment, the average tumor growth and volume in the untreated control group were considerably higher than those in the treated groups. CONCLUSION: In brief, the current study indicates that isoacteoside has a great potential in suppressing both in vitro and in vivo ovarian cancer cell growth and can be used as a possible anticancer agent.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Neoplasias Ovarianas/prevenção & controle , Fenóis/farmacologia , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas In Vitro , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987128

RESUMO

Obesity, a major risk factor for chronic diseases such as type 2 diabetes (T2D), represents a serious primary health problem worldwide. Dietary habits are of special interest to prevent and counteract the obesity and its associated metabolic disorders, including lipid steatosis. Capsaicin, a pungent compound of chili peppers, has been found to ameliorate diet-induced obesity in rodents and humans. The purpose of this study was to examine the effect of capsaicin on hepatic lipogenesis and to delineate the underlying signaling pathways involved, using HepG2 cells as an experimental model. Cellular neutral lipids, stained with BODIPY493/503, were quantified by flow cytometry, and the protein expression and activity were determined by immunoblotting. Capsaicin reduced basal neutral lipid content in HepG2 cells, as well that induced by troglitazone or by oleic acid. This effect of capsaicin was prevented by dorsomorphin and GW9662, pharmacological inhibitors of AMPK and PPARγ, respectively. In addition, capsaicin activated AMPK and inhibited the AKT/mTOR pathway, major regulators of hepatic lipogenesis. Furthermore, capsaicin blocked autophagy and increased PGC-1α protein. These results suggest that capsaicin behaves as an anti-lipogenic compound in HepG2 cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Capsaicina/farmacologia , Lipogênese/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Hep G2 , Humanos , Lipídeos/análise , Modelos Biológicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
Chem Biol Interact ; 306: 19-28, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954464

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis. Synovitis can cause joint injury by releasing inflammatory factors and metalloproteinases (MMPs). Therefore, it is necessary to find drugs that can control synovitis in the process of RA. Herein, we investigate the anti-inflammatory effect of Hesperidin (HSN) on fibroblast-like synovial (FLS) cells induced by lipopolysaccharide (LPS) and the protective action of M1 polarization level of synovial macrophages on antigen-induced arthritis (AIA) in order to elucidate the reduction of inflammatory cytokines and MMPs and the inhibition of macrophage activation. The functional effect of HSN on LPS-induced mRNA and protein expressions of inflammatory cytokines and MMPs in FLS cells as well as on LPS-induced macrophage M1 and M2 polarization markers was determined by quantitative real-time PCR (qPCR) or Western blot analyses, respectively. AIA in 2-month-old mice was generated using intraperitoneal injection with HSN (20 mg/kg/day) or LY294002 (20 mg/kg/day). The results show HSN significantly inhibited the LPS-induced gene expression of the inflammatory mediators. Furthermore, treatment with HSN relieved the antigen-induced arthritis and reduced the protein levels of MMP3, MMP9, and MMP13 in FLS and inhibited the polarization of macrophages to M1. Based on the results of our analyses, we concluded that HSN has significant anti-inflammatory activities and reduces the potential of MMPs in rheumatoid arthritis and the degree of polarization of macrophages to M1. Through the study of signaling pathways, we established that the inhibition of the PI3K/AKT signaling pathway by HSN may show therapeutic effects in the progression of rheumatoid arthritis.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Adjuvante de Freund , Hesperidina/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia
18.
Molecules ; 24(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939726

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is the most prevalent threat to silkworms. Hence, there is a need for antiviral agents in sericulture. The PI3K-Akt pathway is essential for the efficient replication of the baculovirus. In an attempt to screen antiviral drugs against BmNPV, we summarized the commercial compounds targeting PI3K-Akt and selected the following seven oral drugs for further analyses: afuresertib, AZD8835, AMG319, HS173, AS605240, GDC0941, and BEZ235. Cell viability assay revealed that the cytotoxicity of these drugs at 10 µM concentration was not strong. Viral fluorescence observation and qPCR analysis showed that these candidate drugs significantly inhibited BmNPV in BmE cells. Only AMG319 and AZD8835 inhibited viral proliferation in silkworm larvae. The mortality of AZD8835-treated silkworms was lower than that of the control silkworms. Western blotting showed that AMG319 and AZD8835 decreased p-Akt expression after BmNPV infection. These results suggest that AZD8835 has application potential in sericulture.


Assuntos
Animais Geneticamente Modificados/crescimento & desenvolvimento , Antivirais/farmacologia , Bombyx/crescimento & desenvolvimento , Nucleopolyhedrovirus/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Animais Geneticamente Modificados/virologia , Bombyx/efeitos dos fármacos , Bombyx/virologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/virologia
19.
J Int Med Res ; 47(4): 1685-1695, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30819018

RESUMO

OBJECTIVES: Paris polyphylla 26 (PP-26) is a monomer purified from Paris polyphylla, which has traditionally been used as an antimicrobial, hemostatic, and anticancer agent in China. The anti-proliferation effect and underlying molecular mechanism of PP-26 were investigated in vitro. METHODS: The effects of PP-26 on various tumor cells were detected by MTT assay. PP-26-affected cell cycle and cell cycle-related proteins in HepG2 cells were detected by flow cytometry and western blotting, respectively. Apoptosis in response to PP-26 was assessed by Hoechst 33258 staining and flow cytometry. PP-26-affected apoptosis-related proteins and Akt signaling were detected by western blotting. The inhibitory effect of PP-26 on HepG2 cells, when combined with 5-fluorouracil (5-FU), was also assessed. RESULTS: PP-26 inhibited proliferation of HepG2 cells in a dose-dependent manner by triggering G2/M-phase arrest. Moreover, PP-26 induced apoptosis of HepG2 cells. Expression levels of apoptosis proteins caspase 9, caspase 3, PARP, Bcl-2, Bcl-xL, and Mcl-1 were downregulated, while the expression level of apoptosis protein Bax was upregulated. Expression levels of p-Akt, p-GSK-3ß, and p-Foxo3 were downregulated. Combination with PP-26 enhanced 5-FU inhibition of HepG2 cell proliferation. CONCLUSIONS: PP-26 triggers G2/M-phase arrest and induces apoptosis in HepG2 cells via inhibition of the Akt signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Liliaceae/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais , Células Tumorais Cultivadas
20.
Cell Physiol Biochem ; 52(3): 408-420, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845380

RESUMO

BACKGROUND/AIMS: The adipocyte-secreting adipokine, resistin, may play a critical role in the modulation of inflammatory diseases. Migration and infiltration of mononuclear cells into inflammatory sites are critical events during the development of osteoarthritis (OA). Monocyte chemoattractant protein-1 (MCP-1), also known as chemokine ligand 2 (CCL2), plays a critical role in the regulation of monocyte migration and infiltration. In this study, we show how resistin promotes MCP-1 expression in OA synovial fibroblasts and monocyte migration. METHODS: We used qPCR to detect MCP-1 and miRNA expression. THP-1 migration was investigated by Transwell assay. The Western blotting was used to examine the resistinmediated signaling pathways. RESULTS: Resistin activated the phosphatidylinositol-3-kinase (PI3K), Akt and mammalian target of rapamycin (mTOR) signaling pathways, while PI3K, Akt and mTOR inhibitors or small interfering RNAs diminished resistin-induced MCP-1 expression and monocyte migration. We also demonstrate that resistin stimulates MCP-1mediated monocyte migration by suppressing microRNA (miR)-33a and miR-33b via the PI3K, Akt and mTOR signaling pathways. CONCLUSION: These results provide new insights into the mechanisms of resistin action that may have therapeutic implications for patients with OA.


Assuntos
Quimiocina CCL2/metabolismo , Expressão Gênica/efeitos dos fármacos , Resistina/farmacologia , Regiões 3' não Traduzidas , Antagomirs/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/química , Quimiocina CCL2/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Resistina/genética , Resistina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/citologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA