Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.260
Filtrar
1.
J Transl Med ; 19(1): 384, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496878

RESUMO

Tumor heterogeneity is a primary cause of treatment failure. However, changes in drug sensitivity over time are not well mapped in cancer. Patient-derived organoids (PDOs) may predict clinical drug responses ex vivo and offer an opportunity to evaluate novel treatment strategies in a personalized fashion. Here we have evaluated spatio-temporal functional and molecular dynamics of five PDO models established after hepatic re-resections and neoadjuvant combination chemotherapies in a patient with microsatellite stable and KRAS mutated metastatic rectal cancer. Histopathological differentiation phenotypes of the PDOs corresponded with the liver metastases, and ex vivo drug sensitivities generally reflected clinical responses and selection pressure, assessed in comparison to a reference data set of PDOs from metastatic colorectal cancers. PDOs from the initial versus the two recurrent metastatic settings showed heterogeneous cell morphologies, protein marker expression, and drug sensitivities. Exploratory analyses of a drug screen library of 33 investigational anticancer agents showed the strongest ex vivo sensitivity to the SMAC mimetic LCL161 in PDOs of recurrent disease compared to those of the initial metastasis. Functional analyses confirmed target inhibition and apoptosis induction in the LCL161 sensitive PDOs from the recurrent metastases. Gene expression analyses indicated an association between LCL161 sensitivity and tumor necrosis factor alpha signaling and RIPK1 gene expression. In conclusion, LCL161 was identified as a possible experimental therapy of a metastatic rectal cancer that relapsed after hepatic resection and standard systemic treatment.


Assuntos
Neoplasias Hepáticas , Neoplasias Retais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Farmacogenética , Proteínas Proto-Oncogênicas p21(ras)/genética , Tiazóis
2.
Analyst ; 146(18): 5714-5721, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515700

RESUMO

The molecular diagnosis of KRAS mutations has become crucial for clinical decision-making in colorectal cancer (CRC) treatments. Currently, the common methods for detecting mutations are based on quantitative PCR, DNA sequencing and droplet digital PCR (ddPCR), which require expensive specialized equipment and testing reagents. Herein, we propose a simple and specific strategy by integrating asymmetric PCR with surface-enhanced Raman spectroscopy (Asy-PCR/SERS) for the detection of KRAS G12V mutation, one of the most common driver mutations in CRC. To discriminate mutant targets from non-targets, Asy-PCR was applied to obtain single-stranded DNA (ssDNA) with unequal amounts of forward and reverse primers, subsequently, detection of the target mutant ssDNA amplicons was attempted by hybridization with Raman reporter-coded and allele-specific oligonucleotide-functionalized gold nanoparticles (SERS nanotags). The oligo encoding of the KRAS G12V mutant sequence could be identified by using a portable Raman spectrometer where the characteristic spectra of SERS nanotags indicate the presence of mutant targets. The Asy-PCR/SERS method showed high specificity and sensitivity for identifying as few as 0.1% mutant alleles of KRAS G12V mutation from non-target sequences. Using colorectal polyp biopsies, we demonstrated that Asy-PCR/SERS assay could distinguish KRAS G12V (c.35G > T) and KRAS G12D (c.35G > A) which occur at the same nucleotide location. As KRAS G12V is a driver oncogene in other cancers including lung, pancreatic, ovarian and endometrial cancers, the proposed assay shows great potential for application in additional tumor streams.


Assuntos
Neoplasias Colorretais , Nanopartículas Metálicas , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Ouro , Humanos , Mutação , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Am J Case Rep ; 22: e932452, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34432771

RESUMO

BACKGROUND Rhabdoid tumor (RT) of the lung is a rare and aggressive malignancy. The origin of and the mutation responsible for RT are entirely unknown. The distinction between RT associated with subtypes of lung cancer and SMARCA4-deficient thoracic sarcomas is also unknown. CASE REPORT Three pulmonary subsolid nodules in the right S6, left S6, and left S8 were identified in a 78-year-old Japanese woman. At 3 and 9 months later, a chest CT showed unchanged sizes, but at 15 months the development of a 37-mm mass in the right S6 was observed. The patient's systemic condition deteriorated rapidly, and she died 1 month later. An autopsy revealed that the mass consisted of 90% RT and 10% lung adenocarcinoma. There were another 2 adenocarcinoma lesions in the left lung. KRAS mutation analyses revealed the same KRAS mutation (G12D) in the adenocarcinoma and RT components in the identical mass and metastatic RT, indicating that all of these components had the same clonality. A different KRAS mutation in each of the 3 adenocarcinoma lesions was detected (right S6: G12D, left S6: A59G, left S8: G12C), indicating that the multiple adenocarcinoma lesions were truly multifocal lung adenocarcinoma. The adenocarcinoma and RT components retained SMARCA4 expression. CONCLUSIONS This is the first evidence of RT originating from multifocal lung adenocarcinoma. KRAS mutation is thought to be responsible for the RT's emergence via the epithelial-mesenchymal transition. Patients with multiple subsolid nodules should be followed closely; aggressive surgical intervention should be considered given concerns about the evolution of this aggressive malignancy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Tumor Rabdoide , Adenocarcinoma de Pulmão/genética , Idoso , DNA Helicases/genética , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/genética , Mutação , Proteínas Nucleares , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética
5.
Expert Opin Drug Metab Toxicol ; 17(9): 1065-1074, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34347509

RESUMO

INTRODUCTION: KRAS is the most frequently mutated oncogenic driver in pancreatic, lung, and colon cancer. Recently, KRAS inhibitors in clinical use show promising activity but most responses are partial and drug resistance develops. The use of therapeutics in combination with KRAS inhibitors are expected to improve outcomes. AREAS COVERED: This review describes the KRAS G12C mutation-specific inhibitors and the SOS1-targeting inhibitors that reduce the GTP-loading of wildtype and mutated KRAS. Both types of compounds reduce tumor cell proliferation in vitro and in vivo. The combinations of the various KRAS inhibitors with downstream signaling effectors, modulators of KRAS-associated metabolic alterations and chemotherapeutics are summarized. EXPERT OPINION: The clinical potency of mutated KRAS-specific inhibitors needs to be improved by suitable drug combinations. Inhibition of downstream signaling cascades increases toxicity and other combinations exploited comprise G12C-directed inhibitors with SOS1 inhibitors, glucose/glutamine metabolic modulators, classical chemotherapeutics, and others. The most suitable inhibitor combinations corroborated in preclinical development await clinical verification.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Comput Methods Programs Biomed ; 209: 106311, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34352652

RESUMO

BACKGROUND AND OBJECTIVE: Identifying the KRAS mutation status accurately in medical images is very important for the diagnosis and treatment of colorectal cancer. Despite the substantial progress achieved by existing methods, it remains challenging due to limited annotated dataset, large intra-class variances, and a high degree of inter-class similarities. METHODS: To tackle these challenges, we propose a spatial-frequency dual-branch attention model (SF-DBAM) to determine the KRAS mutation status of colorectal cancer patients using a limited T2-weighted MRI dataset. The dataset contains 169 wild-type patients (2151 images) and 137 mutation-type patients (1666 images). The first branch utilizes part of the pre-trained Xception model to capture spatial-domain information and alleviate the small-scale dataset problem. The second branch builds frequency-domain information into cube columns using block-based discrete cosine transform and channel rearrangement. Then the cube columns are fed into convolutional long short-term memory (convLSTM) to explore the effective information between the reconstructed frequency-domain channels. Also, we design a channel enhanced attention module (CEAM) at the end of each branch to make them focus on the lesion areas. Finally, we concatenate the two branches and output the classified results through fully connected layers. RESULTS: The proposed method achieves 88.03% overall accuracy with AUC of 94.27% and specificity of 90.75% in 10-fold cross-validation, which is better than the current non-invasive methods for determining KRAS mutation status. CONCLUSIONS: We believe that the proposed method can assist physicians to diagnose the KRAS mutation status in patients with colorectal cancer, and other medical problems can benefit from the spatial and frequency domains information.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Atenção , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/genética , Humanos , Imageamento por Ressonância Magnética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Nat Commun ; 12(1): 4789, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373451

RESUMO

CRISPR-based cancer dependency maps are accelerating advances in cancer precision medicine, but adequate functional maps are limited to the most common oncogenes. To identify opportunities for therapeutic intervention in other rarer subsets of cancer, we investigate the oncogene-specific dependencies conferred by the lung cancer oncogene, RIT1. Here, genome-wide CRISPR screening in KRAS, EGFR, and RIT1-mutant isogenic lung cancer cells identifies shared and unique vulnerabilities of each oncogene. Combining this genetic data with small-molecule sensitivity profiling, we identify a unique vulnerability of RIT1-mutant cells to loss of spindle assembly checkpoint regulators. Oncogenic RIT1M90I weakens the spindle assembly checkpoint and perturbs mitotic timing, resulting in sensitivity to Aurora A inhibition. In addition, we observe synergy between mutant RIT1 and activation of YAP1 in multiple models and frequent nuclear overexpression of YAP1 in human primary RIT1-mutant lung tumors. These results provide a genome-wide atlas of oncogenic RIT1 functional interactions and identify components of the RAS pathway, spindle assembly checkpoint, and Hippo/YAP1 network as candidate therapeutic targets in RIT1-mutant lung cancer.


Assuntos
Neoplasias Pulmonares/genética , Oncogenes/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Feminino , Técnicas de Inativação de Genes , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Terapia de Alvo Molecular , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras
8.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201897

RESUMO

Intraductal papillary mucinous neoplasms (IPMN) are common and one of the main precursor lesions of pancreatic ductal adenocarcinoma (PDAC). PDAC derived from an IPMN is called intraductal papillary mucinous carcinoma (IPMC) and defines a subgroup of patients with ill-defined specificities. As compared to conventional PDAC, IPMCs have been associated to clinical particularities and favorable pathological features, as well as debated outcomes. However, IPMNs and IPMCs include distinct subtypes of precursor (gastric, pancreato-biliary, intestinal) and invasive (tubular, colloid) lesions, also associated to specific characteristics. Notably, consistent data have shown intestinal IPMNs and associated colloid carcinomas, defining the "intestinal pathway", to be associated with less aggressive features. Genomic specificities have also been uncovered, such as mutations of the GNAS gene, and recent data provide more insights into the mechanisms involved in IPMCs carcinogenesis. This review synthetizes available data on clinical-pathological features and outcomes associated with IPMCs and their subtypes. We also describe known genomic hallmarks of these lesions and summarize the latest data about molecular processes involved in IPMNs initiation and progression to IPMCs. Finally, potential implications for clinical practice and future research strategies are discussed.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/classificação , Carcinoma Ductal Pancreático/genética , Cromograninas/genética , Progressão da Doença , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Humanos , Camundongos , Modelos Biológicos , Mutação , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Intraductais Pancreáticas/classificação , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/genética , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética
9.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204435

RESUMO

The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/genética , Biomarcadores , Biomarcadores Tumorais , Regulação da Expressão Gênica , Humanos , Mutação , Isoformas de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pesquisa , Transdução de Sinais , Relação Estrutura-Atividade , Pesquisa Médica Translacional , Proteínas ras/metabolismo
10.
Nat Commun ; 12(1): 4288, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257283

RESUMO

The commonly mutated human KRAS oncogene encodes two distinct KRAS4A and KRAS4B proteins generated by differential splicing. We demonstrate here that coordinated regulation of both isoforms through control of splicing is essential for development of Kras mutant tumors. The minor KRAS4A isoform is enriched in cancer stem-like cells, where it responds to hypoxia, while the major KRAS4B is induced by ER stress. KRAS4A splicing is controlled by the DCAF15/RBM39 pathway, and deletion of KRAS4A or pharmacological inhibition of RBM39 using Indisulam leads to inhibition of cancer stem cells. Our data identify existing clinical drugs that target KRAS4A splicing, and suggest that levels of the minor KRAS4A isoform in human tumors can be a biomarker of sensitivity to some existing cancer therapeutics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Animais , Western Blotting , Proliferação de Células , Citometria de Fluxo , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas de Ligação a RNA/genética
11.
Oncoimmunology ; 10(1): 1936757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235003

RESUMO

T-cell receptor (TCR) redirected T cells are considered as the next generation of care for the treatment of numerous solid tumors. KRAS mutations are driver neoantigens that are expressed in over 25% of all cancers and are thus regarded as ideal targets for Adoptive Cell Therapy (ACT). We have isolated four KRAS-specific TCRs from a long-term surviving pancreatic cancer patient vaccinated with a mix of mutated KRAS peptides. The sequence of these TCRs could be identified and expressed in primary cells. We demonstrated stable expression of all TCRs as well as target-specific functionality when expressing T cells were co-incubated with target cells presenting KRAS peptides. In addition, these TCRs were all partially co-receptor independent since they were functional in both CD4 and CD8 T cells, thus indicating high affinity. Interestingly, we observed that certain TCRs were able to recognize several KRAS mutations in complex with their cognate Human leukocyte antigen (HLA), suggesting that, here, the point mutations were less important for the HLA binding and TCR recognition, whereas others were single-mutation restricted. Finally, we demonstrated that these peptides were indeed processed and presented, since HLA-matched antigen presenting cells exogenously loaded with KRAS proteins were recognized by TCR-transduced T cells. Taken together, our data demonstrate that KRAS mutations are immunogenic for CD4 T cells and are interesting targets for TCR-based cancer immunotherapy.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Antígenos de Neoplasias , Antígenos HLA , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Antígenos de Linfócitos T/genética
12.
Anal Chem ; 93(30): 10538-10545, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279918

RESUMO

Multiplexing of analyses is essential to reduce sample and reagent consumption in applications with large target panels. In applications such as cancer diagnostics, the required degree of multiplexing often exceeds the number of available fluorescence channels in polymerase chain reaction (PCR) devices. The combination of photobleaching-sensitive and photobleaching-resistant fluorophores of the same color can boost the degree of multiplexing by a factor of 2 per channel. The only additional hardware required to create virtual fluorescence color channels is a low-cost light-emitting diode (LED) setup for selective photobleaching. Here, we present an assay concept for fluorescence color multiplexing in up to 10 channels (five standard channels plus five virtual channels) using the mediator probe PCR with universal reporter (UR) fluorogenic oligonucleotides. We evaluate the photobleaching characteristic of 21 URs, which cover the whole spectral range from blue to crimson. This comprehensive UR data set is employed to demonstrate the use of three virtual channels in addition to the three standard channels of a commercial dPCR device (blue, green, and red) targeting cancer-associated point mutations (KRAS G12D and G12V). Moreover, a LOD (limit of detection) analysis of this assay confirms the high sensitivity of the multiplexing method (KRAS G12D: 16 DNA copies/reaction in the standard red channel and KRAS G12V: nine DNA copies/reaction in the virtual red channel). Based on the presented data set, optimal fluorogenic reporter combinations can be easily selected for the application-specific creation of virtual channels, enabling a high degree of multiplexing at low optical and technical effort.


Assuntos
Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras) , Corantes Fluorescentes , Humanos , Fotodegradação , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas p21(ras)/genética
14.
Biomater Sci ; 9(16): 5599-5611, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34250995

RESUMO

Pancreatic carcinoma elevates quickly and thus has a high mortality rate. Therefore, early treatment is essential for treating pancreatic carcinoma. KRAS is the most frequently identified and one of the earliest mutations in pancreatic tumorigenesis. Thus, the KRAS-mutant cell is an ideal target for the treatment of pancreatic carcinoma, especially at the early stage. KRAS mutation increases macropinocytosis in pancreatic cancer cells, enhancing the internalization of exosomes. Because acquiring natural exosomes could be laborious and their encapsulation efficiency is often unsatisfactory, we aimed to develop a delivery system that mimics the Kras-mutant cell targeting capability of exosomes but is easier to generate and has better loading efficiency. For this purpose, we constructed a hybrid nanoplatform by fusing CLT (Celastrol)-Loaded PEGylated lipids with the DC2.4 cell membrane (M-LIP-CLT) to achieve targeted treatment of Kras-mutant pancreatic cancer. This hybrid nanoplatform improved CLT tumor accumulation and showed excellent anti-cancer efficiency both in vitro and in vivo with increased safety. These results suggest that M-LIP-CLT is an effective drug delivery system for targeted therapy against pancreatic carcinoma, and the fusion strategy showed attractive potential for further development.


Assuntos
Exossomos , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Exossomos/genética , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
15.
Nat Commun ; 12(1): 4651, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330898

RESUMO

The integrated stress response (ISR) is an essential stress-support pathway increasingly recognized as a determinant of tumorigenesis. Here we demonstrate that ISR is pivotal in lung adenocarcinoma (LUAD) development, the most common histological type of lung cancer and a leading cause of cancer death worldwide. Increased phosphorylation of the translation initiation factor eIF2 (p-eIF2α), the focal point of ISR, is related to invasiveness, increased growth, and poor outcome in 928 LUAD patients. Dissection of ISR mechanisms in KRAS-driven lung tumorigenesis in mice demonstrated that p-eIF2α causes the translational repression of dual specificity phosphatase 6 (DUSP6), resulting in increased phosphorylation of the extracellular signal-regulated kinase (p-ERK). Treatments with ISR inhibitors, including a memory-enhancing drug with limited toxicity, provides a suitable therapeutic option for KRAS-driven lung cancer insofar as they substantially reduce tumor growth and prolong mouse survival. Our data provide a rationale for the implementation of ISR-based regimens in LUAD treatment.


Assuntos
Adenocarcinoma/metabolismo , Fosfatase 6 de Especificidade Dupla/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Humanos , Indóis/farmacologia , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Estresse Fisiológico/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Lung Cancer ; 159: 1-9, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34293517

RESUMO

INTRODUCTION: The KRAS p.G12C mutation, prevalent in non-small-cell lung cancer (NSCLC), has only recently become a viable target. Here we present results of the largest retrospective observational study analyzing KRAS p.G12C in patients with advanced NSCLC. MATERIALS AND METHODS: Adults with advanced NSCLC (All Advanced NSCLC cohort) and subcohorts with different mutation profiles (KRAS p.G12C [G12C] and KRAS/EGFR/ALK wild type [Triple WT]) diagnosed January 2011 to March 2019 were selected from a US clinico-genomic database; treatment-related characteristics, molecular profiles, real-world overall (rwOS) and progression-free survival (rwPFS) were analyzed. RESULTS: Demographics were similar across cohorts, with more smokers and nonsquamous cell carcinoma histology in the G12C cohort. KRAS p.G12C was nearly mutually exclusive (≤1.2 %) with known actionable driver mutations, but non-driver co-mutations were common (STK11, 21.5 %; KEAP1, 7.0 %; TP53, 48.0 %). Among G12C patients, 20 % had no documentation of receiving systemic therapy. Across treated G12C patients, 67 % received immune checkpoint inhibitors; first-line usage increased from 0% (2014) to 81 % (2019). Among G12C patients, median (95 % CI) rwOS was 12.0 (9.6-15.3), 9.5 (8.1-13.1), and 6.7 (5.9-10.7) months after first, second, and third line of therapy, respectively; median (95 % CI) rwPFS was 5.0 (4.4-5.8), 4.0 (2.8-5.3), and 3.1 (2.4-4.3) months. Outcomes for the G12C subcohort were similar to those for all patients (All Advanced NSCLC cohort). Mutations in STK11/KEAP1 were associated with poorer survival across all cohorts. CONCLUSION: The poor outcomes associated with KRAS p.G12C mutated advanced NSCLC indicate an unmet need for more effective novel treatments.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas p21(ras)/genética
17.
Anticancer Res ; 41(8): 4061-4070, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281875

RESUMO

BACKGROUND/AIM: Among compounds from natural products selectively suppressing the growth of cancer spheroids, which have mutant (mt) KRAS, NP910 was selected and its derivatives explored. MATERIALS AND METHODS: The area of HKe3 spheroids expressing wild type (wt) KRAS (HKe3-wtKRAS) and mtKRAS (HKe3-mtKRAS) were measured in three-dimensional floating (3DF) cultures treated with 18 NP910 derivatives. The 50% cell growth inhibition (GI50) was determined by long-term 3DF (LT3DF) culture and nude mice assay. RESULTS: We selected NP882 (named STAR3) as the most effective inhibitor of growth of HKe3-mtKRAS spheroids with the least toxicity among NP910 derivatives. GI50s of STAR3 in LT3DF and nude mice assay were 6 µM and 30.75 mg/kg, respectively. However, growth suppression by STAR3 was observed in 50% of cell lines independent of KRAS mutation, suggesting that the target of STAR3 was not directly associated with KRAS mutation and KRAS-related signals. CONCLUSION: STAR3 is a low-toxicity compound that inhibits growth of certain tumour cells.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Esferoides Celulares/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos Nus , Mutação , Esferoides Celulares/patologia , Células Tumorais Cultivadas
18.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299137

RESUMO

The KRAS mutation is one of the leading driver mutations in colorectal cancer (CRC), and it is usually associated with poor prognosis and drug resistance. Therapies targeting the epidermal growth factor receptor (EFGR) are widely used for end-stage CRC. However, patients with KRAS mutant genes cannot benefit from this therapy because of Ras signaling activation by KRAS mutant genes. Our previous study revealed the anti-proliferative effect of 4-acetyl-antroquinonol B (4-AAQB) on CRC cells, but whether the drug is effective in KRAS-mutant CRC remains unknown. We screened CRC cell lines harboring the KRAS mutation, namely G12A, G12C, G12V and G13D, with one wild type cell line as the control; SW1463 and Caco-2 cell lines were used for further experiments. Sulforhodamine B assays, together with the clonogenicity and invasion assay, revealed that KRAS-mutant SW1463 cells were resistant to cetuximab; however, 4-AAQB treatment effectively resensitized CRC cells to cetuximab through the reduction of colony formation, invasion, and tumorsphere generation and of oncogenic KRAS signaling cascade of CRC cells. Thus, inducing cells with 4-AAQB before cetuximab therapy could resensitize KRAS-mutant, but not wild-type, cells to cetuximab. Therefore, we hypothesized that 4-AAQB can inhibit KRAS. In silico analysis of the publicly available GEO (GSE66548) dataset of KRAS-mutated versus KRAS wild-type CRC patients confirmed that miR-193a-3p was significantly downregulated in the former compared with the latter patient population. Overexpression of miR-193a-3p considerably reduced the oncogenicity of both CRC cells. Furthermore, KRAS is a key target of miR-193a-3p. In vivo treatment with the combination of 4-AAQB and cetuximab significantly reduced the tumor burden of a xenograft mice model through the reduction of the expression of oncogenic markers (EGFR) and p-MEK, p-ERK, and c-RAF/p-c-RAF signaling, with the simultaneous induction of miR-193a-3p expression in the plasma. In summary, our findings provide strong evidence regarding the therapeutic effect of 4-AAQB on KRAS-mutant CRC cells. Furthermore, 4-AAQB effectively inhibits Ras singling in CRC cells, through which KRAS-mutant CRC can be resensitized to cetuximab.


Assuntos
Biomarcadores Tumorais/metabolismo , Cetuximab/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Ubiquinona/análogos & derivados , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Prognóstico , Células Tumorais Cultivadas , Ubiquinona/química , Ubiquinona/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
20.
Nat Commun ; 12(1): 4365, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272369

RESUMO

Activating RAS missense mutations are among the most prevalent genomic alterations observed in human cancers and drive oncogenesis in the three most lethal tumor types. Emerging evidence suggests mutant KRAS (mKRAS) may be targeted immunologically, but mKRAS epitopes remain poorly defined. Here we employ a multi-omics approach to characterize HLA class I-restricted mKRAS epitopes. We provide proteomic evidence of mKRAS epitope processing and presentation by high prevalence HLA class I alleles. Select epitopes are immunogenic enabling mKRAS-specific TCRαß isolation. TCR transfer to primary CD8+ T cells confers cytotoxicity against mKRAS tumor cell lines independent of histologic origin, and the kinetics of lytic activity correlates with mKRAS peptide-HLA class I complex abundance. Adoptive transfer of mKRAS-TCR engineered CD8+ T cells leads to tumor eradication in a xenograft model of metastatic lung cancer. This study validates mKRAS peptides as bona fide epitopes facilitating the development of immune therapies targeting this oncoprotein.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinogênese/imunologia , Epitopos de Linfócito T/imunologia , Neoplasias Pulmonares/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Transferência Adotiva , Alelos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Peptídeos/genética , Peptídeos/imunologia , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...