Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.663
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502086

RESUMO

In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against the enzyme. For this reason, it is important to monitor serum immune response during treatment. This can be achieved by conventional techniques (ELISA) but also by new promising tools such as microarrays. These assays have gained popularity due to their high-throughput analysis capacity, their simplicity, and their potential to monitor the immune response of patients during enzyme therapies. In this growing field, research is still ongoing to solve current health problems such as COVID-19. Currently, promising therapeutic alternatives using the angiotensin-converting enzyme 2 (ACE2) are being studied to treat COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/uso terapêutico , COVID-19/tratamento farmacológico , Terapia Enzimática/métodos , Proteínas Recombinantes/uso terapêutico , Enzima de Conversão de Angiotensina 2/farmacologia , Ensaios Clínicos Fase II como Assunto , Composição de Medicamentos/métodos , Estabilidade Enzimática , Terapia Enzimática/história , Terapia Enzimática/tendências , Meia-Vida , História do Século XX , História do Século XXI , Humanos , Proteínas Recombinantes/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Resultado do Tratamento , Internalização do Vírus/efeitos dos fármacos
2.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443554

RESUMO

Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease with complex pathogenesis associated with cytokine dysregulation. Macrophage migration inhibitory factor (MIF) plays a role in systemic inflammation and joint destruction in RA and could be associated with the secretion of other immune-modulatory cytokines such as IL-25, IL-31, and IL-33. For the above, our main aim was to evaluate the IL-25, IL-31, and IL-33 secretion from recombinant human MIF (rhMIF)-stimulated peripheral blood mononuclear cells (PBMC) of RA patients. The rhMIF and lipopolysaccharide (LPS) plus rhMIF stimuli promote the secretion of IL-25, IL-31, and IL-33 (p < 0.05) from PBMC of RA patients. The study groups, the different stimuli, and the interaction between both showed a statistically significant effect on the secretion of IL-25 (p < 0.05) and IL-31 (p < 0.01). The study of the effect of the RA patient treatments and their interaction with the effect of stimuli did not show an interaction between them. In conclusion, our study generates new evidence for the role of MIF in the secretion of IL-25, IL-31, and IL-33 and its immunomodulatory effect on RA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Interleucina-17/metabolismo , Interleucina-33/metabolismo , Interleucinas/metabolismo , Oxirredutases Intramoleculares/metabolismo , Leucócitos Mononucleares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Adulto , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Oxirredutases Intramoleculares/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Fatores Inibidores da Migração de Macrófagos/farmacologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/farmacologia
3.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360971

RESUMO

Interleukin-22 (IL-22) plays a role in epithelial barrier function and repair, and may provide benefits in conditions like inflammatory bowel disease. However, limited human data are available to assess the clinical effect of IL-22 administration. This study used a human intestinal cell line to identify an IL-22-dependent gene signature that could serve as a pharmacodynamic biomarker for IL-22 therapy. The response to IL-22Fc (UTTR1147A, an Fc-stabilized version of IL-22) was assessed in HT-29 cells by microarray, and the selected responsive genes were confirmed by qPCR. HT-29 cells demonstrated dose-dependent increases in STAT3 phosphorylation and multiple gene expression changes in response to UTTR1147A. Genes were selected that were upregulated by UTTR1147A, but to a lesser extent by IL-6, which also signals via STAT3. IL-1R1 was highly upregulated by UTTR1147A, and differential gene expression patterns were observed in response to IL-22Fc in the presence of IL-1ß. An IL-22-dependent gene signature was identified that could serve as a pharmacodynamic biomarker in intestinal biopsies to support the clinical development of an IL-22 therapeutic. The differential gene expression pattern in the presence of IL-1ß suggests that an inflammatory cytokine milieu in the disease setting could influence the clinical responses to IL-22.


Assuntos
Anti-Inflamatórios/farmacologia , Imunoglobulina G/genética , Doenças Inflamatórias Intestinais/metabolismo , Interleucinas/genética , Transcriptoma/efeitos dos fármacos , Biomarcadores/metabolismo , Células HT29 , Humanos , Imunoglobulina G/metabolismo , Interleucinas/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3/metabolismo
4.
Biomolecules ; 11(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439781

RESUMO

SARS-CoV-2 infection of host cells is driven by binding of the SARS-CoV-2 spike-(S)-protein to lung type II pneumocytes, followed by virus replication. Surfactant protein SP-D, member of the front-line immune defense of the lungs, binds glycosylated structures on invading pathogens such as viruses to induce their clearance from the lungs. The objective of this study is to measure the pulmonary SP-D levels in COVID-19 patients and demonstrate the activity of SP-D against SARS-CoV-2, opening the possibility of using SP-D as potential therapy for COVID-19 patients. Pulmonary SP-D concentrations were measured in bronchoalveolar lavage samples from patients with corona virus disease 2019 (COVID-19) by anti-SP-D ELISA. Binding assays were performed by ELISAs. Protein bridge and aggregation assays were performed by gel electrophoresis followed by silver staining and band densitometry. Viral replication was evaluated in vitro using epithelial Caco-2 cells. Results indicate that COVID-19 patients (n = 12) show decreased pulmonary levels of SP-D (median = 68.9 ng/mL) when compared to levels reported for healthy controls in literature. Binding assays demonstrate that SP-D binds the SARS-CoV-2 glycosylated spike-(S)-protein of different emerging clinical variants. Binding induces the formation of protein bridges, the critical step of viral aggregation to facilitate its clearance. SP-D inhibits SARS-CoV-2 replication in Caco-2 cells (EC90 = 3.7 µg/mL). Therefore, SP-D recognizes and binds to the spike-(S)-protein of SARS-CoV-2 in vitro, initiates the aggregation, and inhibits viral replication in cells. Combined with the low levels of SP-D observed in COVID-19 patients, these results suggest that SP-D is important in the immune response to SARS-CoV-2 and that rhSP-D supplementation has the potential to be a novel class of anti-viral that will target SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Adulto , Idoso , COVID-19/virologia , Células CACO-2 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Replicação Viral
5.
Viruses ; 13(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34452467

RESUMO

Type III interferons (lambda IFNs) are a quite new, small family of three closely related cytokines with interferon-like activity. Attention to IFN-λ is mainly focused on direct antiviral activity in which, as with IFN-α, viral genome replication is inhibited without the participation of immune system cells. The heterodimeric receptor for lambda interferons is exposed mainly on epithelial cells, which limits its possible action on other cells, thus reducing the likelihood of developing undesirable side effects compared to type I IFN. In this study, we examined the antiviral potential of exogenous human IFN-λ1 in cellular models of viral infection. To study the protective effects of IFN-λ1, three administration schemes were used: 'preventive' (pretreatment); 'preventive/therapeutic' (pre/post); and 'therapeutic' (post). Three IFN-λ1 concentrations (from 10 to 500 ng/mL) were used. We have shown that human IFN-λ1 restricts SARS-CoV-2 replication in Vero cells with all three treatment schemes. In addition, we have shown a decrease in the viral loads of CHIKV and IVA with the 'preventive' and 'preventive/therapeutic' regimes. No significant antiviral effect of IFN-λ1 against AdV was detected. Our study highlights the potential for using IFN-λ as a broad-spectrum therapeutic agent against respiratory RNA viruses.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Vírus Chikungunya/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Interferons/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Adenovírus Humanos/fisiologia , Animais , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Humanos , Vírus da Influenza A/fisiologia , Interferons/uso terapêutico , Interleucinas , Infecções por Vírus de RNA/tratamento farmacológico , Infecções por Vírus de RNA/prevenção & controle , Proteínas Recombinantes/farmacologia , SARS-CoV-2/fisiologia , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360888

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-ß (TGF-ß) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-ß signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1ß and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-ß signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1ß was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.


Assuntos
Condrócitos/metabolismo , Condrócitos/patologia , Osteoartrite/metabolismo , Transdução de Sinais/genética , Proteína Smad2/química , Proteína Smad2/metabolismo , Proteína Smad3/química , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Hipertrofia/metabolismo , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/genética , Osteoartrite/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Domínios Proteicos/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad3/genética , Membrana Sinovial/metabolismo , Transfecção , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia
7.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443300

RESUMO

Frutalin is a plant lectin with beneficial immunobiological action, although the access to its active form is still restricted. Moreover, there is a knowledge gap on isoform activity and glycosylation impact on its bioactivity, and recombinant production protocols were seen as ineffective. Here, a simpler and faster production and purification protocol was developed, attaining a yield of purified frutalin 3.3-fold higher than that obtained previously. Hemagglutination assays confirmed that this frutalin isoform could not agglutinate rabbit erythrocytes, while maintaining the native tetrameric structure, as indicated by DLS analysis, and strong interaction with methyl-alpha-galactose, in fluorescence spectroscopy studies. The cytotoxicity of the recombinant frutalin isoform was shown in a broad panel of human cancer cells: colon (HCT116), melanoma (A375), triple-negative breast cancer (MDA-MB-231), and ovarian (IGROV-1). Treatment with 8.5-11.8 µM TrxFTL reduced proliferation of all cancer cells to half in 48 h. This anti-proliferative effect encompasses the p53 pathway since it was significantly reduced in p53-null colon cancer cells (HCT116 p53-/-; GI50 of 25.0 ± 3.0 µM), when compared to the isogenic p53-positive cells (HCT116 p53+/+; GI50 of 8.7 ± 1.8 µM; p < 0.002). This recombinantly produced frutalin isoform has relevant cytotoxic effect and its biological activity is not dependent on glycosylation. The developed E. coli production and purification protocol generates high yield of non-glycosylated frutalin isoform with potent cytotoxic activity, enabling the development of novel anticancer p53-targeting therapies.


Assuntos
Galectinas/farmacologia , Neoplasias/patologia , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Difusão Dinâmica da Luz , Escherichia coli/metabolismo , Galactose/metabolismo , Galectinas/química , Galectinas/isolamento & purificação , Glicosilação/efeitos dos fármacos , Hemaglutinação/efeitos dos fármacos , Modelos Moleculares , Peso Molecular , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Espectrometria de Fluorescência
8.
J Gerontol A Biol Sci Med Sci ; 76(10): 1775-1783, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34396395

RESUMO

Aging and comorbidities make individuals at greatest risk of COVID-19 serious illness and mortality due to senescence-related events and deleterious inflammation. Long-living individuals (LLIs) are less susceptible to inflammation and develop more resiliency to COVID-19. As demonstrated, LLIs are characterized by high circulating levels of BPIFB4, a protein involved in homeostatic response to inflammatory stimuli. Also, LLIs show enrichment of homozygous genotype for the minor alleles of a 4 missense single-nucleotide polymorphism haplotype (longevity-associated variant [LAV]) in BPIFB4, able to counteract progression of diseases in animal models. Thus, the present study was designed to assess the presence and significance of BPIFB4 level in COVID-19 patients and the potential therapeutic use of LAV-BPIFB4 in fighting COVID-19. BPIFB4 plasma concentration was found significantly higher in LLIs compared to old healthy controls while it significantly decreased in 64 COVID-19 patients. Further, the drop in BPIFB4 values correlated with disease severity. Accordingly to the LAV-BPIFB4 immunomodulatory role, while lysates of SARS-CoV-2-infected cells induced an inflammatory response in healthy peripheral blood mononuclear cells in vitro, the co-treatment with recombinant protein (rh) LAV-BPIFB4 resulted in a protective and self-limiting reaction, culminating in the downregulation of CD69 activating-marker for T cells (both TCD4+ and TCD8+) and in MCP-1 reduction. On the contrary, rhLAV-BPIFB4 induced a rapid increase in IL-18 and IL-1b levels, shown largely protective during the early stages of the virus infection. This evidence, along with the ability of rhLAV-BPIFB4 to counteract the cytotoxicity induced by SARS-CoV-2 lysate in selected target cell lines, corroborates BPIFB4 prognostic value and open new therapeutic possibilities in more vulnerable people.


Assuntos
COVID-19 , Peptídeos e Proteínas de Sinalização Intercelular , Longevidade/imunologia , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , Linhagem Celular , Citocinas/sangue , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Humanos , Fatores Imunológicos/imunologia , Fatores Imunológicos/farmacologia , Inflamação/sangue , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Itália/epidemiologia , Masculino , Prognóstico , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença
9.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207085

RESUMO

Inflammasomes are powerful cytosolic sensors of environmental stressors and are critical for triggering interleukin-1 (IL-1)-mediated inflammatory responses. However, dysregulation of inflammasome activation may lead to pathological conditions, and the identification of negative regulators for therapeutic purposes is increasingly being recognized. Anakinra, the recombinant form of the IL-1 receptor antagonist, proved effective by preventing the binding of IL-1 to its receptor, IL-1R1, thus restoring autophagy and dampening NLR family pyrin domain containing 3 (NLRP3) activity. As the generation of mitochondrial reactive oxidative species (ROS) is a critical upstream event in the activation of NLRP3, we investigated whether anakinra would regulate mitochondrial ROS production. By profiling the activation of transcription factors induced in murine alveolar macrophages, we found a mitochondrial antioxidative pathway induced by anakinra involving the manganese-dependent superoxide dismutase (MnSOD) or SOD2. Molecularly, anakinra promotes the binding of SOD2 with the deubiquitinase Ubiquitin Specific Peptidase 36 (USP36) and Constitutive photomorphogenesis 9 (COP9) signalosome, thus increasing SOD2 protein longevity. Functionally, anakinra and SOD2 protects mice from pulmonary oxidative inflammation and infection. On a preclinical level, anakinra upregulates SOD2 in murine models of chronic granulomatous disease (CGD) and cystic fibrosis (CF). These data suggest that protection from mitochondrial oxidative stress may represent an additional mechanism underlying the clinical benefit of anakinra and identifies SOD2 as a potential therapeutic target.


Assuntos
Inflamassomos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteínas Recombinantes/farmacologia , Superóxido Dismutase/metabolismo , Animais , Células Cultivadas , Fibrose Cística/etiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Modelos Animais de Doenças , Doença Granulomatosa Crônica/etiologia , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
10.
Biomed Environ Sci ; 34(6): 443-453, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34284852

RESUMO

Objective: To investigate the changes in the cytokine profiles of chronic hepatitis B (CHB) patients undergoing antiviral treatment. Methods: Hepatitis B e antigen (HBeAg)-positive patients were treated with Pegylated interferon (PEG-IFN) and entecavir (ETV). Clinical biochemistry and cytokines were detected at baseline and every 3 months. Results: In all, 200 patients completed 48 weeks of treatment, 100 in the PEG-IFN group and 100 in the ETV group. During 3-6 months of treatment, compared with baseline, the PEG-IFN group showed a significant decrease in interferon-gamma (IFN-γ), interleukin-17A (IL-17A), interleukin-6(IL-6), interleukin-10(IL-10), and transforming growth factor beta (TGF-ß) ( P < 0.001) and a significant increase in interferon-alpha 2(IFN-α2) ( P < 0.001). In the ETV group, IL-10 and TGF-ß1 decreased significantly ( P < 0.001). After 3 months, the levels of IFN-α2, IL-17A, and tumor necrosis factor-alpha(TNF-α) in the PEG-IFN group were significantly higher than those in the ETV group ( P < 0.01). The levels of IL-6 and TGF-ß3 were significantly lower than those in the ETV group ( P < 0.01). After 6 months, the levels of IFN-α2, IFN-γ, and TNF-α in the PEG-IFN group were significantly higher than those in the ETV group ( P < 0.01), while the levels of IL-6 and TGF-ß3 were significantly lower than those in the ETV group ( P < 0.01). Compared with ETV, PEG-IFN had higher HBeAg and HBsAg disappearance rates. Conclusion: During antiviral therapy, a change in the cytokine profile occurred; in the aspect of immune control and functional cure, PEG-IFN was significantly better than ETV.


Assuntos
Antivirais/uso terapêutico , Citocinas/sangue , Guanina/análogos & derivados , Hepatite B Crônica/sangue , Interferon-alfa/uso terapêutico , Polietilenoglicóis/uso terapêutico , Adulto , Antivirais/farmacologia , Feminino , Guanina/farmacologia , Guanina/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Humanos , Interferon-alfa/farmacologia , Masculino , Polietilenoglicóis/farmacologia , Estudos Prospectivos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
11.
Molecules ; 26(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299592

RESUMO

Beta (ß)-amyloid (Aß) is a causative protein of Alzheimer's disease (AD). In the pathogenesis of AD, the apolipoprotein (apo) A-I and high-density lipoprotein (HDL) metabolism is essential for the clearance of Aß. In this study, recombinant Aß42 was expressed and purified via the pET-30a expression vector and E.coli production system to elucidate the physiological effects of Aß on HDL metabolism. The recombinant human Aß protein (51 aa) was purified to at least 95% purity and characterized in either the lipid-free and lipid-bound states with apoA-I. Aß was incorporated into the reconstituted HDL (rHDL) (molar ratio 95:5:1, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I) with various apoA-I:Aß ratios from 1:0 to 1:0.5, 1:1 and 1:2. With an increasing molar ratio of Aß, the α-helicity of apoA-I was decreased from 62% to 36% with a red shift of the Trp wavelength maximum fluorescence from 337 to 340 nm in apoA-I. The glycation reaction of apoA-I was accelerated further by the addition of Aß. The treatment of fructose and Aß caused more multimerization of apoA-I in the lipid-free state and in HDL. The phospholipid-binding ability of apoA-I was impaired severely by the addition of Aß in a dose-dependent manner. The phagocytosis of LDL into macrophages was accelerated more by the presence of Aß with the production of more oxidized species. Aß severely impaired tissue regeneration, and a microinjection of Aß enhanced embryotoxicity. In conclusion, the beneficial functions of apoA-I and HDL were severely impaired by the addition of Aß via its detrimental effect on secondary structure. The impairment of HDL functionality occurred more synergistically by means of the co-addition of fructose and Aß.


Assuntos
Peptídeos beta-Amiloides/química , Apolipoproteína A-I/química , Lipoproteínas HDL/química , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Peptídeos beta-Amiloides/farmacologia , Animais , Apolipoproteína A-I/farmacologia , Humanos , Lipoproteínas HDL/farmacocinética , Fragmentos de Peptídeos/farmacologia , Fosfolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Células THP-1 , Peixe-Zebra
12.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281277

RESUMO

The aim of this research was to analyze the heterologous expression, purification, and immunoregulatory activity of recombinant YGP40 (rYGP40), the potential precursor of the yolkin peptide complex. The ygp40 coding sequence was codon optimized, successfully expressed in the E. coli system, and purified from inclusion bodies with a yield of about 1.1 mg/L of culture. This study showed that the protein exhibits immunomodulatory activity, expressed by the stimulation of TNF-α and IL-10 production and nitric oxide induction at a level comparable to that of the natural yolkin peptide complex obtained by other authors from hen egg yolk. At the highest dose of 100 µg/mL, rYGP40 also caused the up-regulation of iNOS expression in murine bone marrow-derived macrophages (BMDM). Moreover, no cytotoxic effects of rYGP40 on the BMDM cell line were observed.


Assuntos
Vitelogeninas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Clonagem Molecular , Gema de Ovo/química , Feminino , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/genética , Fatores Imunológicos/farmacologia , Técnicas In Vitro , Interleucina-10/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Peso Molecular , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Vitelogeninas/genética , Vitelogeninas/farmacologia
13.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066510

RESUMO

Neutrophil extracellular trap (NET) formation, an innate immune system response, is associated with thrombogenesis and vascular endothelial injury. Circulatory disorders due to microvascular thrombogenesis are one of the principal causes of organ damage. NET formation in organs contributes to the exacerbation of sepsis, which is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. We have previously reported that recombinant human soluble thrombomodulin (rTM) reduces lipopolysaccharide (LPS)-induced NET formation in vitro. Here, we aimed to show that thrombomodulin (TM)-mediated suppression of NET formation protects against organ damage in sepsis. Mice were injected intraperitoneally (i.p.) with 10 mg/kg LPS. rTM (6 mg/kg/day) or saline was administered i.p. 1 h after LPS injection. In the LPS-induced murine septic shock model, extracellular histones, which are components of NETs, were observed in the liver and lungs. In addition, the serum cytokine (interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), macrophage chemotactic protein-1 (MCP-1), and interleukin-10 (IL-10)) levels were increased. The administration of rTM in this model prevented NET formation in the organs and suppressed the increase in the levels of all cytokines except IL-1ß. Furthermore, the survival rate improved. We provide a novel role of TM in treating inflammation and NETs in organs during sepsis.


Assuntos
Armadilhas Extracelulares/metabolismo , Fígado/patologia , Pulmão/patologia , Choque Séptico/tratamento farmacológico , Trombomodulina/uso terapêutico , Animais , Citocinas/sangue , Modelos Animais de Doenças , Armadilhas Extracelulares/efeitos dos fármacos , Feminino , Humanos , Lipopolissacarídeos , Fígado/ultraestrutura , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Choque Séptico/sangue , Choque Séptico/induzido quimicamente , Análise de Sobrevida
14.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072419

RESUMO

Although endometriosis is a benign disease characterized by the presence of endometrial tissues outside the uterus, ectopic endometrial cells can exhibit malignant biological behaviors. Retinol-binding protein4 (RBP4) is a novel adipocyte-derived cytokine, which has important roles in regulating insulin sensitivity and energy metabolism. RBP4 is a potent modulator of gene transcription, and acts by directly controlling cell growth, invasiveness, proliferation and differentiation. Here, we evaluated the possible role of RBP4 in the pathogenesis of endometriosis. We compared the levels of RBP4 in the tissues and peritoneal fluid (PF) of women with and without endometriosis and evaluated the in vitro effects of RBP4 on the viability, invasiveness, and proliferation of endometrial stromal cells (ESCs). RBP4 levels were significantly higher in the PF of the women in the endometriosis group than in the controls. RBP4 immunoreactivity was significantly higher in the ovarian endometriomas of women with advanced stage endometriosis than those of controls. In vitro treatment with human recombinant-RBP4 significantly increased the viability, bromodeoxyuridine expression, and invasiveness of ESCs. Transfection with RBP4 siRNA significantly reduced ESC viability and invasiveness. These findings suggest that RBP4 partakes in the pathogenesis of endometriosis by increasing the viability, proliferation and invasion of endometrial cells.


Assuntos
Suscetibilidade a Doenças , Endometriose/etiologia , Endometriose/metabolismo , Ovário/patologia , Proteínas Plasmáticas de Ligação ao Retinol/genética , Biomarcadores , Sobrevivência Celular , Endometriose/patologia , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/farmacologia , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/farmacologia
15.
FASEB J ; 35(7): e21737, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34143495

RESUMO

Relaxin is an insulin-like hormone with pleiotropic protective effects in several organs, including the liver. We aimed to characterize its role in the control of hepatic metabolism in healthy rats. Sprague-Dawley rats were treated with human recombinant relaxin-2 for 2 weeks. The hepatic metabolic profile was analyzed using UHPLC-MS platforms. Hepatic gene expression of key enzymes of desaturation (Fads1/Fads2) of n-6 and n-3 polyunsaturated fatty acids (PUFAs), of phosphatidylethanolamine (PE) N-methyltransferase (Pemt), of fatty acid translocase Cd36, and of glucose-6-phosphate isomerase (Gpi) were quantified by Real Time-PCR. Activation of 5'AMP-activated protein kinase (AMPK) was analyzed by Western Blot. Relaxin-2 significantly modified the hepatic levels of 19 glycerophospholipids, 2 saturated (SFA) and 1 monounsaturated (MUFA) fatty acids (FA), 3 diglycerides, 1 sphingomyelin, 2 aminoacids, 5 nucleosides, 2 nucleotides, 1 carboxylic acid, 1 redox electron carrier, and 1 vitamin. The most noteworthy changes corresponded to the substantially decreased lysoglycerophospholipids, and to the clearly increased FA (16:1n-7/16:0) and MUFA + PUFA/SFA ratios, suggesting enhanced desaturase activity. Hepatic gene expression of Fads1, Fads2, and Pemt, which mediates lipid balance and liver health, was increased by relaxin-2, while mRNA levels of the main regulator of hepatic FA uptake Cd36, and of the essential glycolysis enzyme Gpi, were decreased. Relaxin-2 augmented the hepatic activation of the hepatoprotector and master regulator of energy homeostasis AMPK. Relaxin-2 treatment also rised FADS1, FADS2, and PEMT gene expression in cultured Hep G2 cells. Our results bring to light the hepatic metabolic features stimulated by relaxin, a promising hepatoprotective molecule.


Assuntos
Fígado/efeitos dos fármacos , Fígado/enzimologia , Relaxina/farmacologia , Animais , Linhagem Celular Tumoral , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Glicerofosfolipídeos/metabolismo , Células Hep G2 , Homeostase/efeitos dos fármacos , Humanos , Lipidômica/métodos , Fígado/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Fosfatidiletanolaminas/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia
16.
J Virol Methods ; 295: 114221, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182038

RESUMO

SARS-CoV-2 is the culprit causing Coronavirus Disease 2019 (COVID-19). For the study of SARS-CoV-2 infection in a BSL-2 laboratory, a SARS-CoV-2 pseudovirus particle (SARS2pp) production and infection system was constructed by using a lentiviral vector bearing dual-reporter genes eGFP and firefly luciferase (Luc2) for easy observation and analysis. Comparison of SARS2pp different production conditions revealed that the pseudovirus titer could be greatly improved by: 1) removing the last 19 amino acids of the spike protein and replacing the signal peptide with the mouse Igk signal sequence; 2) expressing the spike protein using CMV promoter other than CAG (a hybrid promoter consisting of a CMV enhancer, beta-actin promoter, splice donor, and a beta-globin splice acceptor); 3) screening better optimized spike protein sequences for SARS2pp production; and 4) adding 1 % BSA in the SARS2pp production medium. For infection, this SARS2pp system showed a good linear relationship between MOI 2-0.0002 and then was successfully used to evaluate SARS-CoV-2 infection inhibitors including recombinant human ACE2 proteins and SARS-CoV-2 neutralizing antibodies. The kidney, liver and small intestine-derived cell lines were also found to show different susceptibility to SARSpp and SARS2pp. Given its robustness and good performance, it is believed that this pseudovirus particle production and infection system will greatly promote future research for SARS-CoV-2 entry mechanisms and inhibitors and can be easily applied to study new emerging SARS-CoV-2 variants.


Assuntos
Testes de Neutralização/métodos , SARS-CoV-2/fisiologia , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/farmacologia , Animais , Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Linhagem Celular , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lentivirus/genética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Proteínas Recombinantes/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vírion , Internalização do Vírus/efeitos dos fármacos
17.
Int J Lab Hematol ; 43(4): 795-801, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34092030

RESUMO

INTRODUCTION: Andexanet alfa (AnXa) was developed for anticoagulant effect reversal of direct factor Xa inhibitors (DXaI) (apixaban, rivaroxaban, edoxaban) in emergency situations. Regular anti-Xa assays are not suitable to evaluate anti-Xa activity after AnXa administration because of the high sample dilution resulting in the AnXa-DXaI dissociation which gives inaccurately high DXaI measured concentrations. This study aimed at developing dedicated STA-Liquid anti-Xa test set-ups for accurately measuring DXaI after reversal with AnXa. METHODS: Modified anti-Xa test set-ups, with reduced sample dilution, were developed to overcome regular assays limitations and to improve measured accuracy with results comparable to Portola microplate reference method used in clinical studies. Both regular and optimized assays were used to measure DXaI concentration in AnXa-containing samples. Quality controls, normal pooled plasma spiked with five DXaI and three AnXa concentrations, samples from DXaI-treated patients spiked with AnXa and ex vivo healthy volunteers having received both DXaI and AnXa were used. RESULTS: The lower limit of quantitation of optimized anti-Xa assays was <10 ng/mL with CVs ≤10%. DXaI samples containing 300 ng/mL and 1 µmol/L AnXa resulted in DXaI residual concentrations of 29-72 ng/mL depending on the DXaI (76%-90% reversal), compared to 20-28 ng/mL with reference method (92%-94% reversal) and 135-165 ng/mL with regular assays (about 50% reversal). CONCLUSION: Modified test set-ups are automated alternative to reference method with improved precision and reproducibility. They can be run in all laboratories where regular anti-Xa assays are performed using commercially available reagents.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Inibidores do Fator Xa/farmacologia , Fator Xa/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Proteínas Recombinantes/farmacologia , Rivaroxabana/farmacologia , Tiazóis/farmacologia , Testes de Coagulação Sanguínea/métodos , Humanos
18.
Am J Pathol ; 191(9): 1526-1536, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116023

RESUMO

Sepsis-induced endothelial acute respiratory distress syndrome is related to microvascular endothelial dysfunction caused by endothelial glycocalyx disruption. Recently, recombinant antithrombin (rAT) was reported to protect the endothelial glycocalyx from septic vasculitis; however, the underlying mechanism remains unknown. Here, we investigated the effect of rAT administration on vascular endothelial injury under endotoxemia. Lipopolysaccharide (LPS; 20 mg/kg) was injected intraperitoneally into 10-week-old male C57BL/6 mice, and saline or rAT was administered intraperitoneally at 3 and 24 hours after LPS administration. Subsequently, serum and/or pulmonary tissues were examined for inflammation and cell proliferation and differentiation by histologic, ultrastructural, and microarray analyses. The survival rate was significantly higher in rAT-treated mice than in control mice 48 hours after LPS injection (75% versus 20%; P < 0.05). Serum interleukin-1ß was increased but to a lesser extent in response to LPS injection in rAT-treated mice than in control mice. Lectin staining and ultrastructural studies showed a notable attenuation of injury to the endothelial glycocalyx after rAT treatment. Microarray analysis further showed an up-regulation of gene sets corresponding to DNA repair, such as genes involved in DNA helicase activity, regulation of telomere maintenance, DNA-dependent ATPase activity, and ciliary plasm, after rAT treatment. Thus, rAT treatment may promote DNA repair, attenuate inflammation, and promote ciliogenesis, thereby attenuating the acute respiratory distress syndrome caused by endothelial injury.


Assuntos
Antitrombinas/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotoxemia/complicações , Pulmão/efeitos dos fármacos , Síndrome do Desconforto Respiratório , Animais , Modelos Animais de Doenças , Endotélio Vascular/patologia , Glicocálix/efeitos dos fármacos , Glicocálix/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/fisiopatologia
19.
Int J Biol Macromol ; 185: 240-250, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34118288

RESUMO

Given the magnitude of the global snakebite crisis, strategies to ensure the quality of antivenom, as well as the availability and sustainability of its supply are under development by several research groups. Recombinant DNA technology has allowed the engineering of monoclonal antibodies and recombinant fragments as alternatives to conventional antivenoms. Besides having higher therapeutic efficacy, with broad neutralization capacity against local and systemic toxicity, novel antivenoms need to be safe and cost-effective. Due to the biological and physical chemical properties of camelid single-domain antibodies, with high volume of distribution to distal tissue, their modular format, and their versatility, their biotechnological application has grown considerably in recent decades. This article presents the most up-to-date developments concerning camelid single-domain-based antibodies against major toxins from snake venoms, the main venomous animals responsible for reported envenoming cases and related human deaths. A brief discussion on the composition, challenges, and perspectives of antivenoms is presented, as well as the road ahead for next-generation antivenoms based on single-domain antibodies.


Assuntos
Anticorpos de Domínio Único/farmacologia , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Serpentes/antagonistas & inibidores , Animais , Camelídeos Americanos , Humanos , Modelos Moleculares , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Mordeduras de Serpentes/imunologia , Distribuição Tecidual
20.
Cell Death Dis ; 12(7): 624, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135313

RESUMO

Proteasomal activity is compromised in diabetic hearts that contributes to proteotoxic stresses and cardiac dysfunction. Osteocrin (OSTN) acts as a novel exercise-responsive myokine and is implicated in various cardiac diseases. Herein, we aim to investigate the role and underlying molecular basis of OSTN in diabetic cardiomyopathy (DCM). Mice received a single intravenous injection of the cardiotrophic adeno-associated virus serotype 9 to overexpress OSTN in the heart and then were exposed to intraperitoneal injections of streptozotocin (STZ, 50 mg/kg) for consecutive 5 days to generate diabetic models. Neonatal rat cardiomyocytes were isolated and stimulated with high glucose to verify the role of OSTN in vitro. OSTN expression was reduced by protein kinase B/forkhead box O1 dephosphorylation in diabetic hearts, while its overexpression significantly attenuated cardiac injury and dysfunction in mice with STZ treatment. Besides, OSTN incubation prevented, whereas OSTN silence aggravated cardiomyocyte apoptosis and injury upon hyperglycemic stimulation in vitro. Mechanistically, OSTN treatment restored protein kinase G (PKG)-dependent proteasomal function, and PKG or proteasome inhibition abrogated the protective effects of OSTN in vivo and in vitro. Furthermore, OSTN replenishment was sufficient to prevent the progression of pre-established DCM and had synergistic cardioprotection with sildenafil. OSTN protects against DCM via restoring PKG-dependent proteasomal activity and it is a promising therapeutic target to treat DCM.


Assuntos
Apoptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/prevenção & controle , Proteínas Musculares/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/farmacologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Proteína Forkhead Box O1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação , Estudo de Prova de Conceito , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Recombinantes/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...