Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.331
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502130

RESUMO

Bifidobacteria are some of the major agents that shaped the immune system of many members of the animal kingdom during their evolution. Over recent years, the question of concrete mechanisms underlying the immunomodulatory properties of bifidobacteria has been addressed in both animal and human studies. A possible candidate for this role has been discovered recently. The PFNA cluster, consisting of five core genes, pkb2, fn3, aaa-atp, duf58, tgm, has been found in all gut-dwelling autochthonous bifidobacterial species of humans. The sensory region of the species-specific serine-threonine protein kinase (PKB2), the transmembrane region of the microbial transglutaminase (TGM), and the type-III fibronectin domain-containing protein (FN3) encoded by the I gene imply that the PFNA cluster might be implicated in the interaction between bacteria and the host immune system. Moreover, the FN3 protein encoded by one of the genes making up the PFNA cluster, contains domains and motifs of cytokine receptors capable of selectively binding TNF-α. The PFNA cluster could play an important role for sensing signals of the immune system. Among the practical implications of this finding is the creation of anti-inflammatory drugs aimed at alleviating cytokine storms, one of the dire consequences resulting from SARS-CoV-2 infection.


Assuntos
Proteínas de Bactérias/genética , Bifidobacterium/fisiologia , COVID-19/terapia , Proteínas Serina-Treonina Quinases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , COVID-19/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/química , Citocinas/metabolismo , Humanos , Sistema Imunitário , Óperon/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2/isolamento & purificação
2.
Nat Cell Biol ; 23(8): 915-924, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341533

RESUMO

Metastasis is the leading cause of cancer-related deaths and enables cancer cells to compromise organ function by expanding in secondary sites. Since primary tumours and metastases often share the same constellation of driver mutations, the mechanisms that drive their distinct phenotypes are unclear. Here we show that inactivation of the frequently mutated tumour suppressor gene LKB1 (encoding liver kinase B1) has evolving effects throughout the progression of lung cancer, which leads to the differential epigenetic re-programming of early-stage primary tumours compared with late-stage metastases. By integrating genome-scale CRISPR-Cas9 screening with bulk and single-cell multi-omic analyses, we unexpectedly identify LKB1 as a master regulator of chromatin accessibility in lung adenocarcinoma primary tumours. Using an in vivo model of metastatic progression, we further show that loss of LKB1 activates the early endoderm transcription factor SOX17 in metastases and a metastatic-like sub-population of cancer cells within primary tumours. The expression of SOX17 is necessary and sufficient to drive a second wave of epigenetic changes in LKB1-deficient cells that enhances metastatic ability. Overall, our study demonstrates how the downstream effects of an individual driver mutation can change throughout cancer development, with implications for stage-specific therapeutic resistance mechanisms and the gene regulatory underpinnings of metastatic evolution.


Assuntos
Adenocarcinoma/genética , Cromatina/metabolismo , Neoplasias Pulmonares/genética , Metástase Neoplásica/genética , Proteínas Serina-Treonina Quinases/fisiologia , Adenocarcinoma/fisiopatologia , Animais , Linhagem Celular Tumoral , Feminino , Proteínas HMGB/metabolismo , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição SOXF/metabolismo
3.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360761

RESUMO

Regulated/activated protein kinase (PRAK) plays a crucial role in modulating biological function. However, the role of PRAK in mediating cardiac dysfunction and metabolic disorders remains unclear. We examined the effects of deletion of PRAK on modulating cardiac function and insulin resistance in mice exposed to a high-fat diet (HFD). Wild-type and PRAK-/- mice at 8 weeks old were exposed to either chow food or HFD for a consecutive 16 weeks. Glucose tolerance tests and insulin tolerance tests were employed to assess insulin resistance. Echocardiography was employed to assess myocardial function. Western blot was used to determine the molecular signaling involved in phosphorylation of IRS-1, AMPKα, ERK-44/42, and irisin. Real time-PCR was used to assess the hypertrophic genes of the myocardium. Histological analysis was employed to assess the hypertrophic response, interstitial myocardial fibrosis, and apoptosis in the heart. Western blot was employed to determine cellular signaling pathway. HFD-induced metabolic stress is indicated by glucose intolerance and insulin intolerance. PRAK knockout aggravated insulin resistance, as indicated by glucose intolerance and insulin intolerance testing as compared with wild-type littermates. As compared with wild-type mice, hyperglycemia and hypercholesterolemia were manifested in PRAK-knockout mice following high-fat diet intervention. High-fat diet intervention displayed a decline in fractional shortening and ejection fraction. However, deletion of PRAK exacerbated the decline in cardiac function as compared with wild-type mice following HFD treatment. In addition, PRAK knockout mice enhanced the expression of myocardial hypertrophic genes including ANP, BNP, and ßMHC in HFD treatment, which was also associated with an increase in cardiomyocyte size and interstitial fibrosis. Western blot indicated that deletion of PRAK induces decreases in phosphorylation of IRS-1, AMPKα, and ERK44/42 as compared with wild-type controls. Our finding indicates that deletion of PRAK promoted myocardial dysfunction, cardiac remodeling, and metabolic disorders in response to HFD.


Assuntos
Cardiomegalia/enzimologia , Diabetes Mellitus Experimental/enzimologia , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Volume Sistólico , Remodelação Ventricular
4.
Medicine (Baltimore) ; 100(32): e26474, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34397869

RESUMO

ABSTRACT: This study is to identify potential biomarkers and therapeutic targets for lung adenocarcinoma (LUAD).GSE6044 and GSE118370 raw data from the Gene Expression Omnibus database were normalized with Robust Multichip Average. After merging these two datasets, the combat function of sva packages was used to eliminate batch effects. Then, limma packages were used to filtrate differentially expressed genes. We constructed protein-protein interaction relationships using STRING database and hub genes were identified based on connectivity degrees. The cBioportal database was used to explore the alterations of the hub genes. The promoter methylation of cyclin dependent kinase 1 (CDK1) and polo-like Kinase 1 (PLK1) and their association with tumor immune infiltration in patients with LUAD were investigated using DiseaseMeth version 2.0 and TIMER databases. The Cancer Genome Atlas-LUAD dataset was used to perform gene set enrichment analysis.We identified 10 hub genes, which were upregulated in LUAD, among which 8 were successfully verified in the Cancer Genome Atlas and Oncomine databases. Kaplan-Meier analysis indicated that the expressions of CDK1 and PLK1 in LUAD patients were associated with overall survival and disease-free survival. The methylation levels in the promoter regions of these 2 genes in LUAD patients were lower than those in normal lung tissues. Their expressions in LUAD were associated with tumor stages and relative abundance of tumor infiltrating immune cells, such as B cells, CD4+ T cells, and macrophages. Moreover, cell cycle, DNA replication, homologous recombination, mismatch repair, P53 signaling pathway, and small cell lung cancer signaling were significantly enriched in CDK1 and PLK1 high expression phenotype.CDK1 and PLK1 may be used as potential biomarkers and therapeutic targets for LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteína Quinase CDC2/biossíntese , Proteínas de Ciclo Celular/biossíntese , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Prognóstico , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , RNA Neoplásico/genética , Transdução de Sinais
5.
Nat Commun ; 12(1): 4928, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389720

RESUMO

Diabetes results from a decline in functional pancreatic ß-cells, but the molecular mechanisms underlying the pathological ß-cell failure are poorly understood. Here we report that large-tumor suppressor 2 (LATS2), a core component of the Hippo signaling pathway, is activated under diabetic conditions and induces ß-cell apoptosis and impaired function. LATS2 deficiency in ß-cells and primary isolated human islets as well as ß-cell specific LATS2 ablation in mice improves ß-cell viability, insulin secretion and ß-cell mass and ameliorates diabetes development. LATS2 activates mechanistic target of rapamycin complex 1 (mTORC1), a physiological suppressor of autophagy, in ß-cells and genetic and pharmacological inhibition of mTORC1 counteracts the pro-apoptotic action of activated LATS2. We further show a direct interplay between Hippo and autophagy, in which LATS2 is an autophagy substrate. On the other hand, LATS2 regulates ß-cell apoptosis triggered by impaired autophagy suggesting an existence of a stress-sensitive multicomponent cellular loop coordinating ß-cell compensation and survival. Our data reveal an important role for LATS2 in pancreatic ß-cell turnover and suggest LATS2 as a potential therapeutic target to improve pancreatic ß-cell survival and function in diabetes.


Assuntos
Autofagia , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Humanos , Células Secretoras de Insulina/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Ratos , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética
6.
Nutrients ; 13(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34444712

RESUMO

Glucagon-like peptide 1 (GLP-1) and PAS kinase (PASK) control glucose and energy homeostasis according to nutritional status. Thus, both glucose availability and GLP-1 lead to hepatic glycogen synthesis or degradation. We used a murine model to discover whether PASK mediates the effect of exendin-4 (GLP-1 analogue) in the adaptation of hepatic glycogen metabolism to nutritional status. The results indicate that both exendin-4 and fasting block the Pask expression, and PASK deficiency disrupts the physiological levels of blood GLP1 and the expression of hepatic GLP1 receptors after fasting. Under a non-fasted state, exendin-4 treatment blocks AKT activation, whereby Glucokinase and Sterol Regulatory Element-Binding Protein-1c (Srebp1c) expressions were inhibited. Furthermore, the expression of certain lipogenic genes was impaired, while increasing Glucose Transporter 2 (GLUT2) and Glycogen Synthase (GYS). Moreover, exendin-4 treatment under fasted conditions avoided Glucose 6-Phosphatase (G6pase) expression, while maintaining high GYS and its activation state. These results lead to an abnormal glycogen accumulation in the liver under fasting, both in PASK-deficient mice and in exendin-4 treated wild-type mice. In short, exendin-4 and PASK both regulate glucose transport and glycogen storage, and some of the exendin-4 effects could therefore be due to the blocking of the Pask expression.


Assuntos
Adaptação Fisiológica , Jejum , Glicogênio Hepático/metabolismo , Fígado/metabolismo , Estado Nutricional , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Exenatida/metabolismo , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/sangue , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucoquinase/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Regulação para Cima , Perda de Peso
7.
ACS Chem Neurosci ; 12(16): 3101-3111, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34338497

RESUMO

The IRE1/XBP1 signaling pathway is the most conserved component of the endoplasmic reticulum unfolded protein response (UPRER). Activating this branch to correct defects in ER proteostasis is regarded as a promising anti-Parkinson's disease (PD) strategy. P-53 is a marine-derived xyloketal B analog which exhibited potential neuroprotective activities in previous research studies; however, the molecular mechanism underneath its protective effect remains unknown. Herein, a transcriptomic approach was introduced to explore the protective mechanism of P-53. RNA microarray profiling was conducted based on an MPP+-induced C. elegans PD model, and bioinformatics analyses including GO enrichment and PPI network analysis were subsequently performed. In particular, the recovery of the impaired UPRER was highlighted as a main physiological change caused by P-53, and a cluster of genes including abu and hsp family genes which are involved in the IRE1/XBP1 branch of the UPRER were identified as the key genes related to its neuroprotective effect. The transcription levels of these key genes were validated by RT-qPCR assays. Further results showed that P-53 enhanced the phosphorylation of IRE1, the splicing of xbp-1 mRNA, and the translation of XBP1S and boosted the expression level of the downstream targets of the IRE1/XBP1 signaling pathway. Moreover, it was also demonstrated that P-53 accelerated the scavenging of misfolded α-synuclein and attenuated the correlative mitochondrial dysfunction. Finally, the protective effect of P-53 against MPP+-induced dopaminergic neuronal loss was assessed. Taken together, these results revealed that P-53 plays its neuroprotective role through regulating of the IRE1/XBP1 signaling pathway and laid the foundation for its further development as an ER proteostasis-regulating agent.


Assuntos
Caenorhabditis elegans , Endorribonucleases , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box , Animais , Proteínas de Caenorhabditis elegans , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
8.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360667

RESUMO

The incidence of non-alcoholic fatty liver disease (NAFLD) increases in males aged >45 years, which indicates that androgens are associated with the development and/or progression of NAFLD, although excess dietary intake is the primary causative factor. However, it is uncertain how androgens are involved in the metabolic process of NAFLD, which is associated with the state of steatosis in hepatocytes. To investigate whether androgen receptor (AR) signaling influences NAFLD development, the state of steatosis was monitored in mouse livers and hepatocytes with or without androgens. As a result, hepatic lipid droplets, expression of AR, and phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) increased in the presence of testosterone. Concurrently, the expression of LKB1, an upstream regulator of AMPK, was increased by testosterone treatment. We observed that the fluctuation of AMPK-ACC signaling, which plays an important role in lipogenesis, depends on the presence of testosterone and AR. Additionally, we demonstrated that testosterone bound AR was recruited to the promoter of the LKB1 gene and induced LKB1 expression. Our study highlights a novel mechanism by which testosterone modulates NAFLD development by inducing the mRNA expression of LKB1.


Assuntos
Androgênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Androgênicos/metabolismo , Animais , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Genômica , Hepatócitos , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Serina-Treonina Quinases/genética , Receptores Androgênicos/genética
9.
Theranostics ; 11(16): 7658-7670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335956

RESUMO

SNAI1 is widely regarded as a master driver of epithelial-mesenchymal transition (EMT) and associated with breast cancer progression and metastasis. This pro-malignant role is strongly linked to posttranslational modification, especially phosphorylation, which controls its protein levels and subcellular localization. While multiple kinases are implicated in regulation of SNAI1 stability, the precise mechanism by which SNAI1 is stabilized in tumors remains to be fully elucidated. Methods: A series of in vitro and in vivo experiments were conducted to reveal the regulation of SNAI1 by Serine/Threonine Kinase 39 (STK39) and the role of STK39 in breast cancer metastasis. Results: We identified STK39, a member of Stem 20-like serine/threonine kinase family, as a novel posttranslational regulator that enhances the stability of SNAI1. Inhibition of STK39 via knockdown or use of a specific inhibitor resulted in SNAI1 destabilization. Mechanistically, STK39 interacted with and phosphorylated SNAI1 at T203, which is critical for its nuclear retention. Functionally, STK39 inhibition markedly impaired the EMT phenotype and decreased tumor cell migration, invasion, and metastasis both in vitro and in vivo. These effects were rescued by ectopic SNAI1 expression. In addition, depletion of STK39 dramatically enhanced sensitivity to chemotherapeutic agents. Conclusions: Our study demonstrated that STK39 is a key mediator of SNAI1 stability and is associated with the pro-metastatic cellular process, highlighting the STK39-SNAI1 signaling axis as promising therapeutic targets for treatments of metastatic breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Animais , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos SCID , Invasividade Neoplásica/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200497

RESUMO

Left ventricular (LV) heart failure (HF) is a significant and increasing cause of death worldwide. HF is characterized by myocardial remodeling and excessive fibrosis. Transcriptional co-activator Yes-associated protein (Yap), the downstream effector of HIPPO signaling pathway, is an essential factor in cardiomyocyte survival; however, its status in human LV HF is not entirely elucidated. Here, we report that Yap is elevated in LV tissue of patients with HF, and is associated with down-regulation of its upstream inhibitor HIPPO component large tumor suppressor 1 (LATS1) activation as well as upregulation of the fibrosis marker connective tissue growth factor (CTGF). Applying the established profibrotic combined stress of TGFß and hypoxia to human ventricular cardiac fibroblasts in vitro increased Yap protein levels, down-regulated LATS1 activation, increased cell proliferation and collagen I production, and decreased ribosomal protein S6 and S6 kinase phosphorylation, a hallmark of mTOR activation, without any significant effect on mTOR and raptor protein expression or phosphorylation of mTOR or 4E-binding protein 1 (4EBP1), a downstream effector of mTOR pathway. As previously reported in various cell types, TGFß/hypoxia also enhanced cardiac fibroblast Akt and ERK1/2 phosphorylation, which was similar to our observation in LV tissues from HF patients. Further, depletion of Yap reduced TGFß/hypoxia-induced cardiac fibroblast proliferation and Akt phosphorylation at Ser 473 and Thr308, without any significant effect on TGFß/hypoxia-induced ERK1/2 activation or reduction in S6 and S6 kinase activities. Taken together, these data demonstrate that Yap is a mediator that promotes human cardiac fibroblast proliferation and suggest its possible contribution to remodeling of the LV, opening the door to further studies to decipher the cell-specific roles of Yap signaling in human HF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Insuficiência Cardíaca/patologia , Miofibroblastos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Estudos de Casos e Controles , Células Cultivadas , Feminino , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Miofibroblastos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Ativação Transcricional
11.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203295

RESUMO

A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear. Herein, we identify cyclin-dependent kinase 1 (CDK1), also termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1 reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle. The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7, and CDK9 did not change in PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1, CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting in potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove beneficial in the treatment of this disease.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box M1/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteína Quinase CDC2/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proliferação de Células/fisiologia , Proteína Forkhead Box M1/genética , Humanos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/genética , Remodelação Vascular/fisiologia
12.
Arterioscler Thromb Vasc Biol ; 41(9): 2431-2451, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34196217

RESUMO

Objective: Arterial restenosis is the pathological narrowing of arteries after endovascular procedures, and it is an adverse event that causes patients to experience recurrent occlusive symptoms. Following angioplasty, vascular smooth muscle cells (SMCs) change their phenotype, migrate, and proliferate, resulting in neointima formation, a hallmark of arterial restenosis. SIKs (salt-inducible kinases) are a subfamily of the AMP-activated protein kinase family that play a critical role in metabolic diseases including hepatic lipogenesis and glucose metabolism. Their role in vascular pathological remodeling, however, has not been explored. In this study, we aimed to understand the role and regulation of SIK3 in vascular SMC migration, proliferation, and neointima formation. Approach and Results: We observed that SIK3 expression was low in contractile aortic SMCs but high in proliferating SMCs. It was also highly induced by growth medium in vitro and in neointimal lesions in vivo. Inactivation of SIKs significantly attenuated vascular SMC proliferation and up-regulated p21CIP1 and p27KIP1. SIK inhibition also suppressed SMC migration and modulated actin polymerization. Importantly, we found that inhibition of SIKs reduced neointima formation and vascular inflammation in a femoral artery wire injury model. In mechanistic studies, we demonstrated that inactivation of SIKs mainly suppressed SMC proliferation by down-regulating AKT (protein kinase B) and PKA (protein kinase A)-CREB (cAMP response element-binding protein) signaling. CRTC3 (CREB-regulated transcriptional coactivator 3) signaling likely contributed to SIK inactivation-mediated antiproliferative effects. Conclusions: These findings suggest that SIK3 may play a critical role in regulating SMC proliferation, migration, and arterial restenosis. This study provides insights into SIK inhibition as a potential therapeutic strategy for treating restenosis in patients with peripheral arterial disease.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesões do Sistema Vascular/enzimologia , Animais , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Constrição Patológica , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Feminino , Artéria Femoral/enzimologia , Artéria Femoral/lesões , Artéria Femoral/patologia , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neointima , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia
13.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L576-L594, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318710

RESUMO

The paramyxoviridae, respiratory syncytial virus (RSV), and murine respirovirus are enveloped, negative-sense RNA viruses that are the etiological agents of vertebrate lower respiratory tract infections (LRTIs). We observed that RSV infection in human small airway epithelial cells induced accumulation of glycosylated proteins within the endoplasmic reticulum (ER), increased glutamine-fructose-6-phosphate transaminases (GFPT1/2) and accumulation of uridine diphosphate (UDP)-N-acetylglucosamine, indicating activation of the hexosamine biosynthetic pathway (HBP). RSV infection induces rapid formation of spliced X-box binding protein 1 (XBP1s) and processing of activating transcription factor 6 (ATF6). Using pathway selective inhibitors and shRNA silencing, we find that the inositol-requiring enzyme (IRE1α)-XBP1 arm of the unfolded protein response (UPR) is required not only for activation of the HBP, but also for expression of mesenchymal transition (EMT) through the Snail family transcriptional repressor 1 (SNAI1), extracellular matrix (ECM)-remodeling proteins fibronectin (FN1), and matrix metalloproteinase 9 (MMP9). Probing RSV-induced open chromatin domains by ChIP, we find XBP1 binds and recruits RNA polymerase II to the IL6, SNAI1, and MMP9 promoters and the intragenic superenhancer of glutamine-fructose-6-phosphate transaminase 2 (GFPT2). The UPR is sustained through RSV by an autoregulatory loop where XBP1 enhances Pol II binding to its own promoter. Similarly, we investigated the effects of murine respirovirus infection on its natural host (mouse). Murine respirovirus induces mucosal growth factor response, EMT, and the indicators of ECM remodeling in an IRE1α-dependent manner, which persists after viral clearance. These data suggest that IRE1α-XBP1s arm of the UPR pathway is responsible for paramyxovirus-induced metabolic adaptation and mucosal remodeling via EMT and ECM secretion.


Assuntos
Endorribonucleases/metabolismo , Células Epiteliais/metabolismo , Hexosaminas/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Mucosa Respiratória/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/fisiologia , Resposta a Proteínas não Dobradas , Replicação Viral , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Linhagem Celular Transformada , Endorribonucleases/genética , Células Epiteliais/patologia , Células Epiteliais/virologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Hexosaminas/genética , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/patologia , Proteína 1 de Ligação a X-Box/genética
14.
Cell Death Dis ; 12(7): 671, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34218254

RESUMO

The balanced functionality of cellular proteostatic modules is central to both proteome stability and mitochondrial physiology; thus, the age-related decline of proteostasis also triggers mitochondrial dysfunction, which marks multiple degenerative disorders. Non-functional mitochondria are removed by mitophagy, including Parkin/Pink1-mediated mitophagy. A common feature of neuronal or muscle degenerative diseases, is the accumulation of damaged mitochondria due to disrupted mitophagy rates. Here, we exploit Drosophila as a model organism to investigate the functional role of Parkin/Pink1 in regulating mitophagy and proteostatic responses, as well as in suppressing degenerative phenotypes at the whole organism level. We found that Parkin or Pink1 knock down in young flies modulated proteostatic components in a tissue-dependent manner, increased cell oxidative load, and suppressed mitophagy in neuronal and muscle tissues, causing mitochondrial aggregation and neuromuscular degeneration. Concomitant to Parkin or Pink1 knock down cncC/Nrf2 overexpression, induced the proteostasis network, suppressed oxidative stress, restored mitochondrial function, and elevated mitophagy rates in flies' tissues; it also, largely rescued Parkin or Pink1 knock down-mediated neuromuscular degenerative phenotypes. Our in vivo findings highlight the critical role of the Parkin/Pink1 pathway in mitophagy, and support the therapeutic potency of Nrf2 (a druggable pathway) activation in age-related degenerative diseases.


Assuntos
Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Mitocôndrias Musculares/enzimologia , Mitofagia , Músculo Esquelético/enzimologia , Degeneração Neural , Neurônios/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Neurônios/patologia , Estresse Oxidativo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteostase , Proteínas Repressoras/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
15.
Arterioscler Thromb Vasc Biol ; 41(9): 2483-2493, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320838

RESUMO

Objective: Despite considerable research, the goal of finding nonsurgical remedies against thoracic aortic aneurysm and acute aortic dissection remains elusive. We sought to identify a novel aortic PK (protein kinase) that can be pharmacologically targeted to mitigate aneurysmal disease in a well-established mouse model of early-onset progressively severe Marfan syndrome (MFS). Approach and Results: Computational analyses of transcriptomic data derived from the ascending aorta of MFS mice predicted a probable association between thoracic aortic aneurysm and acute aortic dissection development and the multifunctional, stress-activated HIPK2 (homeodomain-interacting protein kinase 2). Consistent with this prediction, Hipk2 gene inactivation significantly extended the survival of MFS mice by slowing aneurysm growth and delaying transmural rupture. HIPK2 also ranked among the top predicted PKs in computational analyses of DEGs (differentially expressed genes) in the dilated aorta of 3 MFS patients, which strengthened the clinical relevance of the experimental finding. Additional in silico analyses of the human and mouse data sets identified the TGF (transforming growth factor)-ß/Smad3 signaling pathway as a potential target of HIPK2 in the MFS aorta. Chronic treatment of MFS mice with an allosteric inhibitor of HIPK2-mediated stimulation of Smad3 signaling validated this prediction by mitigating thoracic aortic aneurysm and acute aortic dissection pathology and partially improving aortic material stiffness. Conclusions: HIPK2 is a previously unrecognized determinant of aneurysmal disease and an attractive new target for antithoracic aortic aneurysm and acute aortic dissection multidrug therapy.


Assuntos
Aneurisma Dissecante/prevenção & controle , Aorta Torácica/efeitos dos fármacos , Aneurisma da Aorta Torácica/prevenção & controle , Fibrilina-1/genética , Síndrome de Marfan/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Remodelação Vascular/efeitos dos fármacos , Adulto , Aneurisma Dissecante/enzimologia , Aneurisma Dissecante/genética , Aneurisma Dissecante/patologia , Animais , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Síndrome de Marfan/complicações , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Proteína Smad3/metabolismo
16.
Front Immunol ; 12: 563336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248923

RESUMO

The innate immune and host-protective responses to viruses, such as the airway pathogen human metapneumovirus (HMPV), depend on interferons (IFNs) that is induced through TANK-binding kinase 1 (TBK1) and IFN regulatory factors (IRFs). The transcription factor IRF1 is important for host resistance against several viruses and has a key role in induction of IFN-λ at mucosal surfaces. In most cell types IRF1 is expressed at very low levels, but its mRNA is rapidly induced when the demand for IRF1 activity arises. Despite general recognition of the importance of IRF1 to antiviral responses, the molecular mechanisms by which IRF1 is regulated during viral infections are not well understood. Here we identify the serine/threonine kinase TBK1 and IFN-ß as critical regulators of IRF1 mRNA and protein levels in human monocyte-derived macrophages. We find that inhibition of TBK1 activity either by the semi-selective TBK1/IKKε inhibitor BX795 or by siRNA-mediated knockdown abrogates HMPV-induced expression of IRF1. Moreover, we show that canonical NF-κB signaling is involved in IRF1 induction and that the TBK1/IKKε inhibitor BX795, but not siTBK1 treatment, impairs HMPV-induced phosphorylation of the NF-κB subunit p65. At later time-points of the infection, IRF1 expression depended heavily on IFN-ß-mediated signaling via the IFNAR-STAT1 pathway. Hence, our results suggest that TBK1 activation and TBK1/IKKε-mediated phosphorylation of the NF-κB subunit p65 control transcription of IRF1. Our study identifies a novel mechanism for IRF1 induction in response to viral infection of human macrophages that could be relevant not only to defense against HMPV, but also to other viral, bacterial and fungal pathogens.


Assuntos
Imunidade Inata , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Interferon Tipo I/imunologia , Metapneumovirus/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Linhagem Celular , Células Cultivadas , Humanos , Interferon Tipo I/genética , Metapneumovirus/genética , Monócitos/imunologia , Monócitos/virologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
17.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281223

RESUMO

Recent reports suggest a link between positive regulation of the Hippo pathway with bipolar disorder (BD), and the Hippo pathway is known to interact with multiple other signaling pathways previously associated with BD and other psychiatric disorders. In this study, neuronal-like NT2 cells were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM), or vehicle control for 24 h. Genome-wide mRNA expression was quantified and analyzed using gene set enrichment analysis (GSEA), with genes belonging to Hippo, Wnt, Notch, TGF- ß, and Hedgehog retrieved from the KEGG database. Five of the eight drugs downregulated the genes of the Hippo pathway and modulated several genes involved in the interacting pathways. We speculate that the regulation of these genes, especially by aripiprazole, clozapine, and quetiapine, results in a reduction of MAPK and NFκB pro-inflammatory signaling through modulation of Hippo, Wnt, and TGF-ß pathways. We also employed connectivity map analysis to identify compounds that act on these pathways in a similar manner to the known psychiatric drugs. Thirty-six compounds were identified. The presence of antidepressants and antipsychotics validates our approach and reveals possible new targets for drug repurposing.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Psicotrópicos/farmacologia , Esquizofrenia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Serina-Treonina Quinases/genética , Psicotrópicos/uso terapêutico , Fatores de Transcrição/metabolismo
18.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203974

RESUMO

In the two decades since the discovery of TNNI3K it has been implicated in multiple cardiac phenotypes and physiological processes. TNNI3K is an understudied kinase, which is mainly expressed in the heart. Human genetic variants in TNNI3K are associated with supraventricular arrhythmias, conduction disease, and cardiomyopathy. Furthermore, studies in mice implicate the gene in cardiac hypertrophy, cardiac regeneration, and recovery after ischemia/reperfusion injury. Several new papers on TNNI3K have been published since the last overview, broadening the clinical perspective of TNNI3K variants and our understanding of the underlying molecular biology. We here provide an overview of the role of TNNI3K in cardiomyopathy and arrhythmia covering both a clinical perspective and basic science advancements. In addition, we review the potential of TNNI3K as a target for clinical treatments in different cardiac diseases.


Assuntos
Cardiopatias/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Modelos Animais de Doenças , Cardiopatias/genética , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Terapia de Alvo Molecular , Proteínas Serina-Treonina Quinases/genética , Regeneração
19.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204950

RESUMO

The dysregulation of autophagy is important in the development of many cancers, including thyroid cancer, where V600EBRAF is a main oncogene. Here, we analyse the effect of V600EBRAF inhibition on autophagy, the mechanisms involved in this regulation and the role of autophagy in cell survival of thyroid cancer cells. We reveal that the inhibition of V600EBRAF activity with its specific inhibitor PLX4720 or the depletion of its expression by siRNA induces autophagy in thyroid tumour cells. We show that V600EBRAF downregulation increases LKB1-AMPK signalling and decreases mTOR activity through a MEK/ERK-dependent mechanism. Moreover, we demonstrate that PLX4720 activates ULK1 and increases autophagy through the activation of the AMPK-ULK1 pathway, but not by the inhibition of mTOR. In addition, we find that autophagy blockade decreases cell viability and sensitize thyroid cancer cells to V600EBRAF inhibition by PLX4720 treatment. Finally, we generate a thyroid xenograft model to demonstrate that autophagy inhibition synergistically enhances the anti-proliferative and pro-apoptotic effects of V600EBRAF inhibition in vivo. Collectively, we uncover a new role of AMPK in mediating the induction of cytoprotective autophagy by V600EBRAF inhibition. In addition, these data establish a rationale for designing an integrated therapy targeting V600EBRAF and the LKB1-AMPK-ULK1-autophagy axis for the treatment of V600EBRAF-positive thyroid tumours.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Apoptose/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
20.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205123

RESUMO

Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.


Assuntos
Doença de Alzheimer/genética , Quinases relacionadas a CDC2 e CDC28/genética , Síndrome de Down/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Doença de Alzheimer/tratamento farmacológico , Diferenciação Celular/genética , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Síndrome de Down/tratamento farmacológico , Humanos , Fosforilação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...