Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.532
Filtrar
1.
Biochemistry (Mosc) ; 84(11): 1256-1267, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31760916

RESUMO

The review discusses the role of small heat shock proteins (sHsps) in human neurodegenerative disorders, such as Charcot-Marie-Tooth disease (CMT), Parkinson's and Alzheimer's diseases, and different forms of tauopathies. The effects of CMT-associated mutations in two small heat shock proteins (HspB1 and HspB8) on the protein stability, oligomeric structure, and chaperone-like activity are described. Mutations in HspB1 shift the equilibrium between different protein oligomeric forms, leading to the alterations in its chaperone-like activity and interaction with protein partners, which can induce damage of the cytoskeleton and neuronal death. Mutations in HspB8 affect its interaction with the adapter protein Bag3, as well as the process of autophagy, also resulting in neuronal death. The impact of sHsps on different forms of amyloidosis is discussed. Experimental studies have shown that sHsps interact with monomers or small oligomers of amyloidogenic proteins, stabilize their structure, prevent their aggregation, and/or promote their specific proteolytic degradation. This effect might be due to the interaction between the ß-strands of sHsps and ß-strands of target proteins, which prevents aggregation of the latter. In cooperation with the other heat shock proteins, sHsps can promote disassembly of oligomers formed by amyloidogenic proteins. Despite significant achievements, further investigations are required for understanding the role of sHsps in protection against various neurodegenerative diseases.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Doenças Neurodegenerativas/patologia , Amiloidose/metabolismo , Amiloidose/patologia , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/genética , Humanos , Doenças Neurodegenerativas/metabolismo , Conformação Proteica em Folha beta , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
J Agric Food Chem ; 67(44): 12208-12218, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31608624

RESUMO

To explore the role of apple polyphenol extract (APE) in ameliorating hepatic steatosis and the potential mechanisms involved, we conducted this study. Thirty-three male C57BL/6 mice were randomly divided into three groups: high-fat diet (HFD) with aseptic water ig. (CON), HFD with 125 or 500 mg/(kg·bw·day) APE ig., namely 100 or 400 mg/(kg·bw·day) apple polyphenols (LAP or HAP) for 12 weeks. Compared with the CON group, the APE treatment significantly decreased the body weight gain and increased the ratio of serum albumin/globulin. High dose of APE treatment significantly decreased the liver weight, reduced the hepatic contents of triglyceride and cholesterol, and improved the histopathological features of hepatic steatosis, accompanied by significantly upregulated protein expressions of LKB1, phosphorylated-AMPK, phosphorylated-ACC, and SIRT1, downregulated mTOR, p70 s6k, and HMGCR in the liver, increased mRNA expressions of Ampk and Cyp27a1, and reduced expressions of Srebp-1c, Fas, and Hmgcr. Our data provided new evidence supporting the preventive role of 500 mg/(kg·bw·day) APE treatment in the HFD-induced hepatic steatosis in C57BL/6 mice via the LKB1/AMPK pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Clorogênico/administração & dosagem , Fígado Gorduroso/tratamento farmacológico , Flavonoides/administração & dosagem , Proteínas Serina-Treonina Quinases/metabolismo , Taninos/administração & dosagem , Proteínas Quinases Ativadas por AMP/genética , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Triglicerídeos/metabolismo
3.
Nature ; 574(7777): 249-253, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578523

RESUMO

The integrity of the mammalian epidermis depends on a balance of proliferation and differentiation in the resident population of stem cells1. The kinase RIPK4 and the transcription factor IRF6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft-tissue fusions that result in neonatal lethality2-5. Our understanding of how these genes control epidermal differentiation is incomplete. Here we show that the role of RIPK4 in mouse development requires its kinase activity; that RIPK4 and IRF6 expressed in the epidermis regulate the same biological processes; and that the phosphorylation of IRF6 at Ser413 and Ser424 primes IRF6 for activation. Using RNA sequencing (RNA-seq), histone chromatin immunoprecipitation followed by sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) of skin in wild-type and IRF6-deficient mouse embryos, we define the transcriptional programs that are regulated by IRF6 during epidermal differentiation. IRF6 was enriched at bivalent promoters, and IRF6 deficiency caused defective expression of genes that are involved in the metabolism of lipids and the formation of tight junctions. Accordingly, the lipid composition of the stratum corneum of Irf6-/- skin was abnormal, culminating in a severe defect in the function of the epidermal barrier. Collectively, our results explain how RIPK4 and IRF6 function to ensure the integrity of the epidermis and provide mechanistic insights into why developmental syndromes that are characterized by orofacial, skin and genital abnormalities result when this axis goes awry.


Assuntos
Diferenciação Celular , Células Epidérmicas/citologia , Epiderme/fisiologia , Fatores Reguladores de Interferon/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Anormalidades Múltiplas/genética , Animais , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Células Epidérmicas/metabolismo , Epiderme/embriologia , Anormalidades do Olho/genética , Feminino , Dedos/anormalidades , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Joelho/anormalidades , Articulação do Joelho/anormalidades , Lábio/anormalidades , Metabolismo dos Lipídeos/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sindactilia/genética , Anormalidades Urogenitais/genética
4.
Exp Suppl ; 111: 385-416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31588541

RESUMO

In addition to the common types of diabetes mellitus, two major monogenic diabetes forms exist. Maturity-onset diabetes of the young (MODY) represents a heterogenous group of monogenic, autosomal dominant diseases. MODY accounts for 1-2% of all diabetes cases, and it is not just underdiagnosed but often misdiagnosed to type 1 or type 2 diabetes. More than a dozen MODY genes have been identified to date, and their molecular classification is of great importance in the correct treatment decision and in the judgment of the prognosis. The most prevalent subtypes are HNF1A, GCK, and HNF4A. Genetic testing for MODY has changed recently due to the technological advancements, as contrary to the sequential testing performed in the past, nowadays all MODY genes can be tested simultaneously by next-generation sequencing. The other major group of monogenic diabetes is neonatal diabetes mellitus which can be transient or permanent, and often the diabetes is a part of a syndrome. It is a severe monogenic disease appearing in the first 6 months of life. The hyperglycemia usually requires insulin. There are two forms, permanent neonatal diabetes mellitus (PNDM) and transient neonatal diabetes mellitus (TNDM). In TNDM, the diabetes usually reverts within several months but might relapse later in life. The incidence of NDM is 1:100,000-1:400,000 live births, and PNDM accounts for half of the cases. Most commonly, neonatal diabetes is caused by mutations in KCNJ11 and ABCC8 genes encoding the ATP-dependent potassium channel of the ß cell. Neonatal diabetes has experienced a quick and successful transition into the clinical practice since the discovery of the molecular background. In case of both genetic diabetes groups, recent guidelines recommend genetic testing.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus/genética , Doenças do Recém-Nascido/genética , Testes Genéticos , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Humanos , Recém-Nascido , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas Serina-Treonina Quinases/genética , Receptores Sulfonilureia/genética
5.
J Cancer Res Clin Oncol ; 145(10): 2413-2422, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31492983

RESUMO

PURPOSE: Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase that regulates centriole duplication. PLK4 deregulation causes centrosome number abnormalities, mitotic defects, chromosomal instability and, consequently, tumorigenesis. Therefore, PLK4 has emerged as a therapeutic target for the treatment of multiple cancers. In this review, we summarize the critical role of centrosome amplification and PLK4 in cancer. We also highlight recent advances in the development of PLK4 inhibitors and discuss potential combination therapies for cancer. METHODS: The relevant literature from PubMed is reviewed in this article. The ClinicalTrials.gov database was searched for clinical trials related to the specific topic. RESULTS: PLK4 is aberrantly expressed in multiple cancers and has prognostic value. Targeting PLK4 with inhibitors suppresses tumor growth in vitro and in vivo. CONCLUSIONS: PLK4 plays an important role in centrosome amplification and tumor progression. PLK4 inhibitors used alone or in combination with other drugs have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for cancer. The results of relevant clinical trials await evaluation.


Assuntos
Biomarcadores Tumorais , Neoplasias/etiologia , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Centrossomo/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Especificidade de Órgãos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Gene ; 721: 144097, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31493507

RESUMO

BACKGROUND: Polo-like kinase 1 (PLK1) is a potential prognostic marker in colorectal cancer (CRC). Nevertheless, the clinicopathological and prognostic roles of PLK1 in CRC are still undefined. Therefore, we performed a meta-analysis to investigate the clinicopathological and prognostic relevance of PLK1 expression in CRC patients. METHODS: Studies published between 2003 and 2016 were selected for the meta-analysis based on an electronic literature search (PubMed, EMBASE and Chinese databases). Studies that investigated the clinicopathological and prognostic impacts of PLK1 expression in CRC patients were included for this analysis. RESULTS: Eleven studies that enrolled 1147 CRC patients were included in our meta-analysis. The effect of PLK1 level on overall survival (OS) was reported in five studies, which included 702 patients. Ten studies investigated the clinicopathological role of PLK1 expression in CRC patients. Consequently, PLK1 overexpression was associated with poorer OS in CRC patients. Furthermore, the results revealed that higher PLK1 levels were also observed in CRC tissues compared with that of normal colorectal tissues. In addition, this meta-analysis also revealed positive correlations between PLK1 upregulation and lymph node metastasis or invasion. PLK1 overexpression was significantly correlated with advanced TNM stages and higher Dukes stages. CONCLUSION: This meta-analysis strongly supports the hypothesis that PLK1 might serve as an important factor in evaluating the biological behavior and prognosis of CRC.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas de Ciclo Celular/biossíntese , Neoplasias Colorretais , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Humanos , Metástase Linfática , Estadiamento de Neoplasias , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Taxa de Sobrevida
7.
J Agric Food Chem ; 67(40): 11167-11178, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31542928

RESUMO

Milk contains a number of beneficial fatty acids including short and medium chain and unsaturated conjugated and nonconjugated fatty acids. In this study, microRNA sequencing of mammary tissue collected in early-, peak-, mid-, and late-lactation periods was performed to determine the miRNA expression profiles. miR-16a was one of the differentially expressed miRNA and was selected for in-depth functional studies pertaining to fatty acid metabolism. The mimic of miR-16a impaired fat metabolism [triacylglycerol (TAG) and cholesterol] while knock-down of miR-16a promoted fat metabolism in vitro in bovine mammary epithelial cells (BMECs). In addition, the in vitro work with BMECs also revealed that miR-16a had a negative effect on the cellular concentration of cis 9-C18:1, total C18:1, C20:1, and C22:1 and long-chain polyunsaturated fatty acids. Therefore, these data suggesting a negative effect on fatty acid metabolism extend the discovery of the key role of miR-16a in mediating adipocyte differentiation. Through a combination of bioinformatics analysis, target gene 3' UTR luciferase reporter assays, and western blotting, we identified large tumor suppressor kinase 1 (LATS1) as a target of miR-16a. Transfection of siRNA-LATS1 into BMECs led to increases in TAG, cholesterol, and cellular fatty acid concentrations, suggesting a positive role of LATS1 in mammary cell fatty acid metabolism. In summary, data suggest that miR-16a regulates biological processes associated with intracellular TAG, cholesterol, and unsaturated fatty acid synthesis through LATS1. These data provide a theoretical and experimental framework for further clarifying the regulation of lipid metabolism in mammary cells of dairy cows.


Assuntos
Bovinos/metabolismo , Células Epiteliais/enzimologia , Metabolismo dos Lipídeos , Glândulas Mamárias Animais/enzimologia , MicroRNAs/metabolismo , Leite/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Bovinos/genética , Colesterol/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Triglicerídeos/metabolismo
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(9): 862-865, 2019 Sep 10.
Artigo em Chinês | MEDLINE | ID: mdl-31515776

RESUMO

OBJECTIVE: To screen for pathogenic variants in the coding regions of STK11 gene among Chinese patients with Peutz-Jeghers syndrome (PJS). METHODS: Peripheral blood samples were collected from 64 patients. The coding regions of the STK11 gene were detected by PCR and Sanger sequencing. RESULTS: Fourty-eight patients were found to harbor STK11 gene variants, which included 39 types of variants consisting of missense, nonsense, insertional, deletional and splice site variants. Among 64 PJS patients, the detection rate of point variants was 75.00% (48/64), of which missense variants accounted for 29.17% (14/48), nonsense variants accounted for 29.17%(14/48), insertion variants accounted for 2.08% (1/48), deletional variants accounted for 10.42% (5/48), and splice site variants accounted for 29.17% (14/48). The detection rates of sporadic cases and those with a family history were 71.8% (28/39) and 80.0% (20/25), respectively. Two variants (c.250A>T, c.580G>A) occurred in 3 PJS probands. Thirteen variants were unreported previously and were considered to be pathogenic. CONCLUSION: The detection rate of variants among Chinese PJS patients is similar to that of other countries. A number of novel common variant sites were discovered, which enriched the spectrum of PJS-related variants.


Assuntos
Síndrome de Peutz-Jeghers/genética , Proteínas Serina-Treonina Quinases/genética , Grupo com Ancestrais do Continente Asiático , China , Análise Mutacional de DNA , Humanos
9.
Endocrinology ; 160(10): 2388-2394, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369074

RESUMO

N6-Methyladenosine (m6A) is the most common and abundant mRNA modification that involves regulating the RNA metabolism. However, the role of m6A in regulating the ß-cell function is unclear. Methyltransferase-like 14 (METTL14) is a key component of the m6A methyltransferase complex. To define the role of m6A in regulating the ß-cell function, we generated ß-cell METTL14-specific knockout (ßKO) mice by tamoxifen administration. Acute deletion of Mettl14 in ß-cells results in glucose intolerance as a result of a reduction in insulin secretion in ß-cells even though ß-cell mass is increased, which is related to increased ß-cell proliferation. To define the molecular mechanism, we performed RNA sequencing to detect the gene expression in ßKO islets. The genes responsible for endoplasmic reticulum stress, such as Ire1α, were among the top upregulated genes. Both mRNA and protein levels of IRE1α and spliced X-box protein binding 1 (sXBP-1) were increased in ßKO islets. The protein levels of proinsulin and insulin were decreased in ßKO islets. These results suggest that acute METTL14 deficiency in ß-cells induces glucose intolerance by increasing the IRE1α/sXBP-1 pathway.


Assuntos
Endorribonucleases/metabolismo , Intolerância à Glucose/genética , Células Secretoras de Insulina/metabolismo , Metiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Linhagem Celular , Endorribonucleases/genética , Regulação da Expressão Gênica/fisiologia , Insulinoma/metabolismo , Metiltransferases/genética , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Regulação para Cima , Proteína 1 de Ligação a X-Box/genética
10.
J Microbiol Biotechnol ; 29(8): 1316-1323, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31434175

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging coronavirus which is zoonotic from bats and camels. Its infection in humans can be fatal especially in patients with preexisting conditions due to smoking and chronic obstructive pulmonary disease (COPD). Among the 25 proteins encoded by MERS-CoV, 5 accessory proteins seem to be involved in viral evasion of the host immune responses. Here we report that ORF4a, ORF4b, and ORF8b proteins, alone or in combination, effectively antagonize nuclear factor kappa B (NF-κB) activation. Interestingly, the inhibition of NF-κB by MERS-CoV accessory proteins was mostly at the level of pattern recognition receptors: melanoma differentiationassociated gene 5 (MDA5). ORF4a and ORF4b additively inhibit MDA5-mediated activation of NF-κB while that of retinoic acid-inducible gene 1 (RIG-I) is largely not perturbed. Of note, ORF8b was found to be a novel antagonist of MDA5-mediated NF-kκB activation. In addition, ORF8b also strongly inhibits Tank-binding kinase 1 (TBK1)-mediated induction of NF-κB signaling. Taken together, MERS-CoV accessory proteins are involved in viral escape of NF-κB-mediated antiviral immune responses.


Assuntos
Helicase IFIH1 Induzida por Interferon/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Infecções por Coronavirus/imunologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Virais/genética
11.
J Agric Food Chem ; 67(35): 9757-9771, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31373492

RESUMO

BAK1 effects on plant stress responses have been well documented, but little is known regarding its effects on plant growth. In this study, we functionally characterized MdBAK1. Overexpressing MdBAK1 in Arabidopsis thaliana and apple trees promoted growth. Longitudinal stem cells were longer in transgenic plants than in wild-type plants. The size and number of cells and the area of the transverse stem were greater in the transgenic lines than in the wild-type plants. Moreover, transgenic A. thaliana and apple plants were more sensitive to an exogenous brassinosteroid. A transcriptome analysis of wild-type and transgenic apple revealed that MdBAK1 overexpression activated the brassinosteroid and ethylene signals, xylem production, and stress responses. Trend and Venn analyses indicated that carbohydrate, energy, and hormone metabolic activities were greater in transgenic plants during different periods. Moreover, a weighted gene coexpression network analysis proved that carbohydrate, hormone, and xylem metabolism as well as cell growth may be critical for MdBAK1-mediated apple tree growth and development. Compared with the corresponding levels in wild-type plants, the endogenous brassinosteroid, cytokinin, starch, sucrose, trehalose, glucose, fructose, and total sugar contents were considerably different in transgenic plants. Our results imply that MdBAK1 helps to regulate the growth of apple tree through the above-mentioned pathways. These findings provide new information regarding the effects of MdBAK1 onplant growth and development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Malus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
12.
Exp Parasitol ; 204: 107727, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31344389

RESUMO

BACKGROUND: Trypanosoma rangeli is a protozoan parasite that is non-virulent to the mammalian host and is morphologically and genomically related to Trypanosoma cruzi, whose proliferation within the mammalian host is controversially discussed. OBJECTIVES: We aimed to investigate the T. rangeli cell cycle in vitro and in vivo by characterizing the timespan of the parasite life cycle and by proposing a molecular marker to assess cytokinesis. METHODOLOGY: The morphological events and their timing during the cell cycle of T. rangeli epimastigotes were assessed using DNA staining, flagellum labelling and bromodeoxyuridine incorporation. Messenger RNA levels of four genes previously associated with the cell cycle of trypanosomatids (AUK1, PLK, MOB1 and TRACK) were evaluated in the different T. rangeli forms. FINDINGS: T. rangeli epimastigotes completed the cell cycle in vitro in 20.8 h. PLK emerged as a potential molecular marker for cell division, as its mRNA levels were significantly increased in exponentially growing epimastigotes compared with growth-arrested parasites or in vitro-differentiated trypomastigotes. PLK expression in T. rangeli can be detected near the flagellum protrusion site, reinforcing its role in the cell cycle. Interestingly, T. rangeli bloodstream trypomastigotes exhibited very low mRNA levels of PLK and were almost entirely composed of parasites in G1 phase. MAIN CONCLUSIONS: Our work is the first to describe the T. rangeli cell cycle in vitro and proposes that PLK mRNA levels could be a useful tool to investigate the T. rangeli ability to proliferate within the mammalian host bloodstream.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Citocinese/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/análise , Trypanosoma rangeli/citologia , Animais , Bromodesoxiuridina/metabolismo , Ciclo Celular/efeitos dos fármacos , Citocinese/genética , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Citometria de Fluxo , Imunofluorescência , Hidroxiureia/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , Fatores de Tempo , Trypanosoma rangeli/efeitos dos fármacos , Trypanosoma rangeli/enzimologia , Trypanosoma rangeli/genética , Tripanossomíase/parasitologia
13.
Nucleic Acids Res ; 47(16): 8838-8859, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31329944

RESUMO

Regnase-1-mediated mRNA decay (RMD), in which inflammatory mRNAs harboring specific stem-loop structures are degraded, is a critical part of proper immune homeostasis. Prior to initial translation, Regnase-1 associates with target stem-loops but does not carry out endoribonucleolytic cleavage. Single molecule imaging revealed that UPF1 is required to first unwind the stem-loops, thus licensing Regnase-1 to proceed with RNA degradation. Following translation, Regnase-1 physically associates with UPF1 using two distinct points of interaction: The Regnase-1 RNase domain binds to SMG1-phosphorylated residue T28 in UPF1; in addition, an intrinsically disordered segment in Regnase-1 binds to the UPF1 RecA domain, enhancing the helicase activity of UPF1. The SMG1-UPF1-Regnase-1 axis targets pioneer rounds of translation and is critical for rapid resolution of inflammation through restriction of the number of proteins translated by a given mRNA. Furthermore, small-molecule inhibition of SMG1 prevents RNA unwinding in dendritic cells, allowing post-transcriptional control of innate immune responses.


Assuntos
Macrófagos Peritoneais/imunologia , Degradação do RNAm Mediada por Códon sem Sentido/imunologia , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Ribonucleases/genética , Transativadores/genética , Animais , Fibroblastos/citologia , Fibroblastos/imunologia , Células HEK293 , Células HeLa , Homeostase/genética , Homeostase/imunologia , Humanos , Imunidade Inata , Inflamação , Sequências Repetidas Invertidas , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos Peritoneais/citologia , Camundongos , Camundongos Knockout , Mutação , Cultura Primária de Células , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/imunologia , RNA Mensageiro/metabolismo , Ribonucleases/deficiência , Ribonucleases/imunologia , Imagem Individual de Molécula , Transativadores/imunologia
14.
Nat Commun ; 10(1): 2983, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278301

RESUMO

Ttriple-negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype. Enhanced TNBC cell motility is a prerequisite of TNBC cell dissemination. Here, we apply an imaging-based RNAi phenotypic cell migration screen using two highly motile TNBC cell lines (Hs578T and MDA-MB-231) to provide a repository of signaling determinants that functionally drive TNBC cell motility. We have screened ~4,200 target genes individually and discovered 133 and 113 migratory modulators of Hs578T and MDA-MB-231, respectively, which are linked to signaling networks predictive for breast cancer progression. The splicing factors PRPF4B and BUD31 and the transcription factor BPTF are essential for cancer cell migration, amplified in human primary breast tumors and associated with metastasis-free survival. Depletion of PRPF4B, BUD31 and BPTF causes primarily down regulation of genes involved in focal adhesion and ECM-interaction pathways. PRPF4B is essential for TNBC metastasis formation in vivo, making PRPF4B a candidate for further drug development.


Assuntos
Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Matriz Extracelular/metabolismo , Feminino , Adesões Focais/genética , Humanos , Microscopia Intravital , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Processamento de RNA/genética , RNA Interferente Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Transdução de Sinais/genética , Análise de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade
15.
Hypertension ; 74(3): 555-563, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31280647

RESUMO

Salt-sensing mechanisms in hypertension involving the kidney, vasculature, and central nervous system have been well studied; however, recent studies suggest that immune cells can sense sodium (Na+). Antigen-presenting cells (APCs) including dendritic cells critically modulate inflammation by activating T cells and producing cytokines. We recently found that Na+ enters dendritic cells through amiloride-sensitive channels including the α and γ subunits of the epithelial sodium channel (ENaC) and mediates nicotinamide adenine dinucleotide phosphate oxidase-dependent formation of immunogenic IsoLG (isolevuglandin)-protein adducts leading to inflammation and hypertension. Here, we describe a novel pathway in which the salt-sensing kinase SGK1 (serum/glucocorticoid kinase 1) in APCs mediates salt-induced expression and assembly of ENaC-α and ENaC-γ and promotes salt-sensitive hypertension by activation of the nicotinamide adenine dinucleotide phosphate oxidase and formation of IsoLG-protein adducts. Mice lacking SGK1 in CD11c+ cells were protected from renal inflammation, endothelial dysfunction, and developed blunted hypertension during the high salt feeding phase of the N-Nitro-L-arginine methyl ester hydrochloride/high salt model of salt-sensitive hypertension. CD11c+ APCs treated with high salt exhibited increased expression of ENaC-γ which coimmunoprecipitated with ENaC-α. This was associated with increased activation and expression of various nicotinamide adenine dinucleotide phosphate oxidase subunits. Genetic deletion or pharmacological inhibition of SGK1 in CD11c+ cells prevented the high salt-induced expression of ENaC and nicotinamide adenine dinucleotide phosphate oxidase. These studies indicate that expression of SGK1 in CD11c+ APCs contributes to the pathogenesis of salt-sensitive hypertension.


Assuntos
Antígeno CD11c/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Nefrite/patologia , Proteínas Serina-Treonina Quinases/genética , Cloreto de Sódio na Dieta/metabolismo , Análise de Variância , Animais , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD11c/imunologia , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Hipertensão/tratamento farmacológico , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Nefrite/metabolismo , Distribuição Aleatória , Transdução de Sinais/genética , Cloreto de Sódio/metabolismo , Estatísticas não Paramétricas
16.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261893

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative disorders involving devastating loss of dopaminergic neurons in the substantia nigra. Early steps in PD pathogenesis include mitochondrial dysfunction, and mutations in mitochondrial genes have been linked to familial forms of the disease. However, low penetrance of mutations indicates a likely important role for environmental factors in PD risk through gene by environment interactions. Herein, we study how genetic deficiencies in mitochondrial dynamics processes including fission, fusion, and mitophagy interact with environmental exposures to impact neurodegeneration. METHODS: We utilized the powerful model organism Caenorhabditis elegans to study ultraviolet C radiation (UVC)- and 6-hydroxydopamine-induced degeneration of fluorescently-tagged dopaminergic neurons in the background of fusion deficiency (MFN1/2 homolog, fzo-1), fission deficiency (DMN1L homolog, drp-1), and mitochondria-specific autophagy (mitophagy) deficiency (PINK1 and PRKN homologs, pink-1 and pdr-1). RESULTS: Overall, we found that deficiency in either mitochondrial fusion or fission sensitizes nematodes to UVC exposure (used to model common environmental pollutants) but protects from 6-hydroxydopamine-induced neurodegeneration. By contrast, mitophagy deficiency makes animals more sensitive to these stressors with an interesting exception-pink-1 deficiency conferred remarkable protection from 6-hydroxydopamine. We found that this protection could not be explained by compensatory antioxidant gene expression in pink-1 mutants or by differences in mitochondrial morphology. CONCLUSIONS: Together, our results support a strong role for gene by environment interactions in driving dopaminergic neurodegeneration and suggest that genetic deficiency in mitochondrial processes can have complex effects on neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Dinâmica Mitocondrial , Doença de Parkinson/genética , Tolerância a Radiação/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos da radiação , Dinaminas/genética , GTP Fosfo-Hidrolases/genética , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Raios Ultravioleta/efeitos adversos
17.
DNA Cell Biol ; 38(8): 824-839, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31295023

RESUMO

Tea plant is an important economic crop on a global scale. Its yield and quality are affected by abiotic stress. The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) family genes play irreplaceable roles in plant development and stress resistance. More and more CBL-CIPK genes have been identified, but a few CBL-CIPK genes have been cloned and characterized in tea plants. In this study, 7 CsCBLs and 18 CsCIPKs were identified based on the tea plant genome. Physicochemical properties, phylogenetic, conserved motifs, gene structure, homologous gene network, and promoter upstream elements of these 25 genes were analyzed. Conserved motifs of these genes varied with phylogenetic tree node. From the genetic structure, members of the tea plant CIPK gene family can be divided into two types: intron rich and no intron. Many stress-related elements were found in the 2000 bp upstream of the promoter, and PlantCARE predicted that CsCBL4 contained 30 stress-related elements. PlantPAN2 shows that CsCIPK6 contains 48 ABRELATERD1; CsCIPK17 contains 37 GT1CONSENSUS; CsCIPK3 contains 64 MYBCOREATCYCB1; CsCBL3 contains 52 SORLIP1AT; CsCBL5 contains 65 SURECOREATSULTR11; and CsCIPK11 contains 83 WBOXATNPR1. In addition, eight genes were selected for quantitative real-time PCR (RT-qPCR) to detect their expression profiles under high-temperature, low-temperature, salt, and drought treatments. These genes were found to be responsive to one or more abiotic stress treatments. The expression levels of CsCBL4, CsCIPK2, and CsCIPK14 were similar, and they were homologous to AtSOS3 and AtSIP3 and AtSIP4 in Arabidopsis, which were involved in the SOS pathway. This study provides insight into the potential functions of the CsCBL and CsCIPK of tea plant.


Assuntos
Camellia sinensis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Camellia sinensis/fisiologia , Sequência Conservada , Secas , Evolução Molecular , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
18.
BMC Evol Biol ; 19(1): 141, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296160

RESUMO

BACKGROUND: The LysM receptor-like kinases (LysM-RLKs) are important to both plant defense and symbiosis. Previous studies described three clades of LysM-RLKs: LysM-I/LYKs (10+ exons per gene and containing conserved kinase residues), LysM-II/LYRs (1-5 exons per gene, lacking conserved kinase residues), and LysM-III (two exons per gene, with a kinase unlike other LysM-RLK kinases and restricted to legumes). LysM-II gene products are presumably not functional as conventional receptor kinases, but several are known to operate in complexes with other LysM-RLKs. One aim of our study was to take advantage of recently mapped wild tomato transcriptomes to evaluate the evolutionary history of LysM-RLKs within and between species. The second aim was to place these results into a broader phylogenetic context by integrating them into a sequence analysis of LysM-RLKs from other functionally well-characterized model plant species. Furthermore, we sought to assess whether the Group III LysM-RLKs were restricted to the legumes or found more broadly across Angiosperms. RESULTS: Purifying selection was found to be the prevailing form of natural selection within species at LysM-RLKs. No signatures of balancing selection were found in species-wide samples of two wild tomato species. Most genes showed a greater extent of purifying selection in their intracellular domains, with the exception of SlLYK3 which showed strong purifying selection in both the extracellular and intracellular domains in wild tomato species. The phylogenetic analysis did not reveal a clustering of microbe/functional specificity to groups of closely related proteins. We also discovered new putative LysM-III genes in a range of Rosid species, including Eucalyptus grandis. CONCLUSIONS: The LysM-III genes likely originated before the divergence of E. grandis from other Rosids via a fusion of a Group II LysM triplet and a kinase from another RLK family. SlLYK3 emerges as an especially interesting candidate for further study due to the high protein sequence conservation within species, its position in a clade of LysM-RLKs with distinct LysM domains, and its close evolutionary relationship with LYK3 from Arabidopsis thaliana.


Assuntos
Evolução Molecular , Lycopersicon esculentum/enzimologia , Lycopersicon esculentum/genética , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Filogenia , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Seleção Genética , Transcriptoma
19.
Nat Commun ; 10(1): 3067, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296851

RESUMO

WalKR (YycFG) is the only essential two-component regulator in the human pathogen Staphylococcus aureus. WalKR regulates peptidoglycan synthesis, but this function alone does not explain its essentiality. Here, to further understand WalKR function, we investigate a suppressor mutant that arose when WalKR activity was impaired; a histidine to tyrosine substitution (H271Y) in the cytoplasmic Per-Arnt-Sim (PASCYT) domain of the histidine kinase WalK. Introducing the WalKH271Y mutation into wild-type S. aureus activates the WalKR regulon. Structural analyses of the WalK PASCYT domain reveal a metal-binding site, in which a zinc ion (Zn2+) is tetrahedrally-coordinated by four amino acids including H271. The WalKH271Y mutation abrogates metal binding, increasing WalK kinase activity and WalR phosphorylation. Thus, Zn2+-binding negatively regulates WalKR. Promoter-reporter experiments using S. aureus confirm Zn2+ sensing by this system. Identification of a metal ligand recognized by the WalKR system broadens our understanding of this critical S. aureus regulon.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Staphylococcus aureus/metabolismo , Zinco/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cátions Bivalentes/metabolismo , Histidina/genética , Histidina Quinase/química , Histidina Quinase/genética , Simulação de Dinâmica Molecular , Mutação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Regulon/genética , Staphylococcus aureus/genética , Tirosina/genética
20.
Cell Mol Life Sci ; 76(19): 3827-3841, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302748

RESUMO

The Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine-threonine kinases that have been implicated in DNA replication, DNA repair, transcription, chromatin structure, viral latency, cell cycle checkpoint control and chromosomal stability in various organisms. The functions of the TLKs appear to depend largely on their ability to regulate the H3/H4 histone chaperone ASF1, although numerous TLK substrates have been proposed. Over the last few years, a clearer picture of TLK function has emerged through the identification of new partners, the definition of specific roles in development and the elucidation of their structural and biochemical properties. In addition, the TLKs have been clearly linked to human disease; both TLK1 and TLK2 are frequently amplified in human cancers and TLK2 mutations have been identified in patients with neurodevelopmental disorders characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. A better understanding of the substrates, regulation and diverse roles of the TLKs is needed to understand their functions in neurodevelopment and determine if they are viable targets for cancer therapy. In this review, we will summarize current knowledge of TLK biology and its potential implications in development and disease.


Assuntos
Instabilidade Genômica , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Epigênese Genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA