Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.003
Filtrar
1.
Nat Commun ; 11(1): 4382, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873802

RESUMO

Fusarium graminearum is a causal agent of Fusarium head blight (FHB) and a deoxynivalenol (DON) producer. In this study, OSP24 is identified as an important virulence factor in systematic characterization of the 50 orphan secreted protein (OSP) genes of F. graminearum. Although dispensable for growth and initial penetration, OSP24 is important for infectious growth in wheat rachis tissues. OSP24 is specifically expressed during pathogenesis and its transient expression suppresses BAX- or INF1-induced cell death. Osp24 is translocated into plant cells and two of its 8 cysteine-residues are required for its function. Wheat SNF1-related kinase TaSnRK1α is identified as an Osp24-interacting protein and shows to be important for FHB resistance in TaSnRK1α-overexpressing or silencing transgenic plants. Osp24 accelerates the degradation of TaSnRK1α by facilitating its association with the ubiquitin-26S proteasome. Interestingly, TaSnRK1α also interacts with TaFROG, an orphan wheat protein induced by DON. TaFROG competes against Osp24 for binding with the same region of TaSnRKα and protects it from degradation. Overexpression of TaFROG stabilizes TaSnRK1α and increases FHB resistance. Taken together, Osp24 functions as a cytoplasmic effector by competing against TaFROG for binding with TaSnRK1α, demonstrating the counteracting roles of orphan proteins of both host and fungal pathogens during their interactions.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Triticum/microbiologia , Fatores de Virulência/metabolismo , Resistência à Doença , Fusarium/imunologia , Fusarium/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteólise , Tricotecenos/metabolismo , Triticum/imunologia
2.
Nat Commun ; 11(1): 4865, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978396

RESUMO

The metabolic state of an organism instructs gene expression modalities, leading to changes in complex life history traits, such as longevity. Dietary restriction (DR), which positively affects health and life span across species, leads to metabolic reprogramming that enhances utilisation of fatty acids for energy generation. One direct consequence of this metabolic shift is the upregulation of cytoprotective (CyTP) genes categorized in the Gene Ontology (GO) term of "Xenobiotic Detoxification Program" (XDP). How an organism senses metabolic changes during nutritional stress to alter gene expression programs is less known. Here, using a genetic model of DR, we show that the levels of polyunsaturated fatty acids (PUFAs), especially linoleic acid (LA) and eicosapentaenoic acid (EPA), are increased following DR and these PUFAs are able to activate the CyTP genes. This activation of CyTP genes is mediated by the conserved p38 mitogen-activated protein kinase (p38-MAPK) pathway. Consequently, genes of the PUFA biosynthesis and p38-MAPK pathway are required for multiple paradigms of DR-mediated longevity, suggesting conservation of mechanism. Thus, our study shows that PUFAs and p38-MAPK pathway function downstream of DR to help communicate the metabolic state of an organism to regulate expression of CyTP genes, ensuring extended life span.


Assuntos
Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Fenômenos Bioquímicos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Ácido Linoleico/metabolismo , Longevidade , Redes e Vias Metabólicas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
Nat Commun ; 11(1): 4666, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938943

RESUMO

Intercalated discs (ICD), specific cell-to-cell contacts that connect adjacent cardiomyocytes, ensure mechanical and electrochemical coupling during contraction of the heart. Mutations in genes encoding ICD components are linked to cardiovascular diseases. Here, we show that loss of Xinß, a newly-identified component of ICDs, results in cardiomyocyte proliferation defects and cardiomyopathy. We uncovered a role for Xinß in signaling via the Hippo-YAP pathway by recruiting NF2 to the ICD to modulate cardiac function. In Xinß mutant hearts levels of phosphorylated NF2 are substantially reduced, suggesting an impairment of Hippo-YAP signaling. Cardiac-specific overexpression of YAP rescues cardiac defects in Xinß knock-out mice-indicating a functional and genetic interaction between Xinß and YAP. Our study reveals a molecular mechanism by which cardiac-expressed intercalated disc protein Xinß modulates Hippo-YAP signaling to control heart development and cardiac function in a tissue specific manner. Consequently, this pathway may represent a therapeutic target for the treatment of cardiovascular diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas com Domínio LIM/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomiopatia Dilatada/genética , Comunicação Celular , Proteínas de Ciclo Celular/genética , Proliferação de Células , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/crescimento & desenvolvimento , Proteínas com Domínio LIM/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais
4.
Nat Commun ; 11(1): 4496, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901024

RESUMO

Aging is characterized by the loss of homeostasis and the general decline of physiological functions, accompanied by various degenerative diseases and increased rates of mortality. Aging targeting small molecule screens have been performed many times, however, few have focused on endogenous metabolic intermediates-metabolites. Here, using C. elegans lifespan assays, we conducted a worm metabolite screen and identified an eukaryotes conserved metabolite, myo-inositol (MI), to extend lifespan, increase mobility and reduce fat content. Genetic analysis of enzymes in MI metabolic pathway suggest that MI alleviates aging through its derivative PI(4,5)P2. MI and PI(4,5)P2 are precursors of PI(3,4,5)P3, which is negatively related to longevity. The longevity effect of MI is dependent on the tumor suppressor gene, daf-18 (homologous to mouse Pten), independent of its classical pathway downstream genes, akt or daf-16. Furthermore, we found MI effects on aging and lifespan act through mitophagy regulator PTEN induced kinase-1 (pink-1) and mitophagy. MI's anti-aging effect is also conserved in mouse, indicating a conserved mechanism in mammals.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inositol/metabolismo , Longevidade/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular Tumoral , Feminino , Fatores de Transcrição Forkhead/genética , Inositol/administração & dosagem , Locomoção/fisiologia , Longevidade/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Metabolômica , Camundongos , Mitofagia/fisiologia , Modelos Animais , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA-Seq
5.
Nat Commun ; 11(1): 4154, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814778

RESUMO

The DNA damage response (DDR) coordinates DNA metabolism with nuclear and non-nuclear processes. The DDR kinase Rad53CHK1/CHK2 controls histone degradation to assist DNA repair. However, Rad53 deficiency causes histone-dependent growth defects in the absence of DNA damage, pointing out unknown physiological functions of the Rad53-histone axis. Here we show that histone dosage control by Rad53 ensures metabolic homeostasis. Under physiological conditions, Rad53 regulates histone levels through inhibitory phosphorylation of the transcription factor Spt21NPAT on Ser276. Rad53-Spt21 mutants display severe glucose dependence, caused by excess histones through two separable mechanisms: dampening of acetyl-coenzyme A-dependent carbon metabolism through histone hyper-acetylation, and Sirtuin-mediated silencing of starvation-induced subtelomeric domains. We further demonstrate that repression of subtelomere silencing by physiological Tel1ATM and Rpd3HDAC activities coveys tolerance to glucose restriction. Our findings identify DDR mutations, histone imbalances and aberrant subtelomeric chromatin as interconnected causes of glucose dependence, implying that DDR kinases coordinate metabolism and epigenetic changes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Glucose/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Dano ao DNA , Reparo do DNA , Inativação Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética , Serina/metabolismo , Telômero/genética , Fatores de Transcrição/genética
6.
Nat Commun ; 11(1): 4214, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843632

RESUMO

Stomata are epidermal structures that modulate gas exchanges between plants and the atmosphere. The formation of stomata is regulated by multiple developmental and environmental signals, but how these signals are coordinated to control this process remains unclear. Here, we showed that the conserved energy sensor kinase SnRK1 promotes stomatal development under short-day photoperiod or in liquid culture conditions. Mutation of KIN10, the catalytic α-subunit of SnRK1, results in the decreased stomatal index; while overexpression of KIN10 significantly induces stomatal development. KIN10 displays the cell-type-specific subcellular location pattern. The nuclear-localized KIN10 proteins are highly enriched in the stomatal lineage cells to phosphorylate and stabilize SPEECHLESS, a master regulator of stomatal formation, thereby promoting stomatal development. Our work identifies a module links connecting the energy signaling and stomatal development and reveals that multiple regulatory mechanisms are in place for SnRK1 to modulate stomatal development in response to changing environments.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estômatos de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutação , Fosforilação , Fotoperíodo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
7.
PLoS Biol ; 18(8): e3000762, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760088

RESUMO

Centrosomes, the main microtubule organizing centers (MTOCs) of metazoan cells, contain an older "mother" and a younger "daughter" centriole. Stem cells either inherit the mother or daughter-centriole-containing centrosome, providing a possible mechanism for biased delivery of cell fate determinants. However, the mechanisms regulating centrosome asymmetry and biased centrosome segregation are unclear. Using 3D-structured illumination microscopy (3D-SIM) and live-cell imaging, we show in fly neural stem cells (neuroblasts) that the mitotic kinase Polo and its centriolar protein substrate Centrobin (Cnb) accumulate on the daughter centriole during mitosis, thereby generating molecularly distinct mother and daughter centrioles before interphase. Cnb's asymmetric localization, potentially involving a direct relocalization mechanism, is regulated by Polo-mediated phosphorylation, whereas Polo's daughter centriole enrichment requires both Wdr62 and Cnb. Based on optogenetic protein mislocalization experiments, we propose that the establishment of centriole asymmetry in mitosis primes biased interphase MTOC activity, necessary for correct spindle orientation.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mitose , Proteínas Serina-Treonina Quinases/genética , Animais , Animais Geneticamente Modificados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/ultraestrutura , Centrossomo/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interfase , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Optogenética/métodos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
8.
Nat Commun ; 11(1): 3816, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732870

RESUMO

Detection of microbial components such as lipopolysaccharide (LPS) by Toll-like receptor 4 (TLR4) on macrophages induces a robust pro-inflammatory response that is dependent on metabolic reprogramming. These innate metabolic changes have been compared to aerobic glycolysis in tumour cells. However, the mechanisms by which TLR4 activation leads to mitochondrial and glycolytic reprogramming are unknown. Here we show that TLR4 activation induces a signalling cascade recruiting TRAF6 and TBK-1, while TBK-1 phosphorylates STAT3 on S727. Using a genetically engineered mouse model incapable of undergoing STAT3 Ser727 phosphorylation, we show ex vivo and in vivo that STAT3 Ser727 phosphorylation is critical for LPS-induced glycolytic reprogramming, production of the central immune response metabolite succinate and inflammatory cytokine production in a model of LPS-induced inflammation. Our study identifies non-canonical STAT3 activation as the crucial signalling intermediary for TLR4-induced glycolysis, macrophage metabolic reprogramming and inflammation.


Assuntos
Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Expressão Gênica , Glicólise/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/genética , Serina/genética , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/genética
9.
Nat Commun ; 11(1): 4053, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792481

RESUMO

A significant proportion of patients with oestrogen receptor (ER) positive breast cancers (BC) develop resistance to endocrine treatments (ET) and relapse with metastatic disease. Here we perform whole exome sequencing and gene expression analysis of matched primary breast tumours and bone metastasis-derived patient-derived xenografts (PDX). Transcriptomic analyses reveal enrichment of the G2/M checkpoint and up-regulation of Polo-like kinase 1 (PLK1) in PDX. PLK1 inhibition results in tumour shrinkage in highly proliferating CCND1-driven PDX, including different RB-positive PDX with acquired palbociclib resistance. Mechanistic studies in endocrine resistant cell lines, suggest an ER-independent function of PLK1 in regulating cell proliferation. Finally, in two independent clinical cohorts of ER positive BC, we find a strong association between high expression of PLK1 and a shorter metastases-free survival and poor response to anastrozole. In conclusion, our findings support clinical development of PLK1 inhibitors in patients with advanced CCND1-driven BC, including patients progressing on palbociclib treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequenciamento Completo do Exoma/métodos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Variações do Número de Cópias de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Nus , Piperazinas/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pteridinas/uso terapêutico , Piridinas/uso terapêutico
10.
PLoS One ; 15(8): e0235634, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760078

RESUMO

Otitis media, the most common disease of childhood, is characterized by extensive changes in the morphology of the middle ear cavity. This includes hyperplasia of the mucosa that lines the tympanic cavity, from a simple monolayer of squamous epithelium into a greatly thickened, respiratory-type mucosa. The processes that control this response, which is critical to otitis media pathogenesis and recovery, are incompletely understood. Given the central role of protein phosphorylation in most intracellular processes, including cell proliferation and differentiation, we screened a library of kinase inhibitors targeting members of all the major families in the kinome for their ability to influence the growth of middle ear mucosal explants in vitro. Of the 160 inhibitors, 30 were found to inhibit mucosal growth, while two inhibitors enhanced tissue proliferation. The results suggest that the regulation of infection-mediated tissue growth in the ME mucosa involves multiple cellular processes that span the kinome. While some of the pathways and processes identified have been previously implicated in mucosa hyperplasia others are novel. The results were used to generate a global model of growth regulation by kinase pathways. The potential for therapeutic applications of the results are discussed.


Assuntos
Proliferação de Células/efeitos dos fármacos , Otite Média/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Haemophilus influenzae/patogenicidade , Ensaios de Triagem em Larga Escala , Humanos , Hiperplasia/tratamento farmacológico , Hiperplasia/microbiologia , Hiperplasia/patologia , Camundongos , Membrana Mucosa/efeitos dos fármacos , Membrana Mucosa/microbiologia , Membrana Mucosa/patologia , Otite Média/microbiologia , Otite Média/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Técnicas de Cultura de Tecidos
11.
PLoS One ; 15(8): e0232917, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32810161

RESUMO

In human lung cancer progression, the EMT process is characterized by the transformation of cancer cells into invasive forms that migrate to other organs. Targeting to EMT-related molecules is emerging as a novel therapeutic approach for the prevention of lung cancer cell migration and invasion. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as an anti-proliferative target molecule to regulate the Wnt signaling pathway in several types of cancer cells. In the present study, we evaluated the inhibitory effect of a tyrosine kinase inhibitor sunitinib and the integrin-αⅤß3 targeted cyclic peptide (cRGDfK) on EMT in human lung cancer cells. Sunitinib strongly inhibited the TGF-ß1-activated EMT through suppression of Wnt signaling, Smad and non-Smad signaling pathways. In addition, the cRGDfK also inhibited the expression of TGFß1-induced mesenchymal marker genes and proteins. The anti-EMT effect of sunitinib was enhanced when cRGDfK was treated together. When sunitinib was treated with cRGDfK, the mRNA and protein expression levels of mesenchymal markers were decreased compared to the treatment with sunitinib alone. Co-treatment of cRGDfK has shown the potential to improve the efficacy of anticancer agents in combination with therapeutic agents that may be toxic at high concentrations. These results provide new and improved therapies for treating and preventing EMT-related disorders, such as lung fibrosis and cancer metastasis, and relapse.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Peptídeos Cíclicos/administração & dosagem , Sunitinibe/administração & dosagem , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Células A549 , Trifosfato de Adenosina/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Integrina alfaVbeta3/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Smad/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
12.
Life Sci ; 258: 118204, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763296

RESUMO

AIMS: Liver kinase B1 (LKB1) is a serine/threonine kinase. Although many biological functions of LKB1 have been identified, the role of hypothalamic LKB1 in the regulation of central energy metabolism and susceptibility to obesity is unknown. Therefore, we constructed POMC neuron-specific LKB1 knockout mice (PomcLkb1 KO) and studied it at the physiological, morphological, and molecular biology levels. MAIN METHODS: Eight-week-old male PomcLkb1 KO mice and their littermates were fed a standard chow fat diet (CFD) or a high-fat diet (HFD) for 3 months. Body weight and food intake were monitored. Dual-energy X-ray absorptiometry was used to measure the fat mass and lean mass. Glucose and insulin tolerance tests and serum biochemical markers were evaluated in the experimental mice. In addition, the levels of peripheral lipogenesis genes and central energy metabolism were measured. KEY FINDINGS: PomcLkb1 KO mice did not exhibit impairments under normal physiological conditions. After HFD intervention, the metabolic phenotype of the PomcLkb1 KO mice changed, manifesting as increased food intake and an enhanced obesity phenotype. More seriously, PomcLkb1 KO mice showed increased leptin resistance, worsened hypothalamic inflammation and reduced POMC neuronal expression. SIGNIFICANCE: We provide evidence that LKB1 in POMC neurons plays a significant role in regulating energy homeostasis. LKB1 in POMC neurons emerges as a target for therapeutic intervention against HFD-induced obesity and metabolic diseases.


Assuntos
Deleção de Genes , Neurônios/enzimologia , Obesidade/enzimologia , Pró-Opiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica , Epididimo/patologia , Comportamento Alimentar , Regulação da Expressão Gênica , Glucose/metabolismo , Hipotálamo/patologia , Inflamação/patologia , Leptina/metabolismo , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Obesidade/sangue , Obesidade/patologia , Pró-Opiomelanocortina/genética , Ganho de Peso
13.
Nat Commun ; 11(1): 3914, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764676

RESUMO

Cell polarity is fundamental to the development of both eukaryotes and prokaryotes, yet the mechanisms behind its formation are not well understood. Here we found that, phytohormone auxin-induced, sterol-dependent nanoclustering of cell surface transmembrane receptor kinase 1 (TMK1) is critical for the formation of polarized domains at the plasma membrane (PM) during the morphogenesis of cotyledon pavement cells (PC) in Arabidopsis. Auxin-induced TMK1 nanoclustering stabilizes flotillin1-associated ordered nanodomains, which in turn promote the nanoclustering of ROP6 GTPase that acts downstream of TMK1 to regulate cortical microtubule organization. In turn, cortical microtubules further stabilize TMK1- and flotillin1-containing nanoclusters at the PM. Hence, we propose a new paradigm for polarity formation: A diffusive signal triggers cell polarization by promoting cell surface receptor-mediated nanoclustering of signaling components and cytoskeleton-mediated positive feedback that reinforces these nanodomains into polarized domains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Polaridade Celular/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Membrana Celular/metabolismo , Polaridade Celular/genética , Metabolismo dos Lipídeos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Reguladores de Crescimento de Planta/metabolismo , Plantas Geneticamente Modificadas , Agregados Proteicos , Estabilidade Proteica , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais
14.
PLoS Genet ; 16(8): e1008569, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810145

RESUMO

Correct bioriented attachment of sister chromatids to the mitotic spindle is essential for chromosome segregation. In budding yeast, the conserved protein shugoshin (Sgo1) contributes to biorientation by recruiting the protein phosphatase PP2A-Rts1 and the condensin complex to centromeres. Using peptide prints, we identified a Serine-Rich Motif (SRM) of Sgo1 that mediates the interaction with condensin and is essential for centromeric condensin recruitment and the establishment of biorientation. We show that the interaction is regulated via phosphorylation within the SRM and we determined the phospho-sites using mass spectrometry. Analysis of the phosphomimic and phosphoresistant mutants revealed that SRM phosphorylation disrupts the shugoshin-condensin interaction. We present evidence that Mps1, a central kinase in the spindle assembly checkpoint, directly phosphorylates Sgo1 within the SRM to regulate the interaction with condensin and thereby condensin localization to centromeres. Our findings identify novel mechanisms that control shugoshin activity at the centromere in budding yeast.


Assuntos
Adenosina Trifosfatases/metabolismo , Centrômero/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
15.
PLoS Pathog ; 16(6): e1008610, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603377

RESUMO

Newcastle disease virus (NDV), a member of the Paramyxoviridae family, can activate PKR/eIF2α signaling cascade to shutoff host and facilitate viral mRNA translation during infection, however, the mechanism remains unclear. In this study, we revealed that NDV infection up-regulated host cap-dependent translation machinery by activating PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways. In addition, NDV infection induced p38 MAPK/Mnk1 signaling participated 4E-BP1 hyperphosphorylation for efficient viral protein synthesis when mTOR signaling is inhibited. Furthermore, NDV NP protein was found to be important for selective cap-dependent translation of viral mRNAs through binding to eIF4E during NDV infection. Taken together, NDV infection activated multiple signaling pathways for selective viral protein synthesis in infected cells, via interaction between viral NP protein and host translation machinery. Our results may help to design novel targets for therapeutic intervention against NDV infection and to understand the NDV anti-oncolytic mechanism.


Assuntos
Proteínas Aviárias , Fator de Iniciação 4E em Eucariotos , Sistema de Sinalização das MAP Quinases , Vírus da Doença de Newcastle , Nucleoproteínas , RNA Mensageiro , RNA Viral , Proteínas Virais , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Galinhas , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Nucleoproteínas/biossíntese , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Nat Commun ; 11(1): 3344, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620751

RESUMO

Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome associated with ribosomal gene mutations that lead to ribosomal insufficiency. DBA is characterized by anemia, congenital anomalies, and cancer predisposition. Treatment for DBA is associated with significant morbidity. Here, we report the identification of Nemo-like kinase (NLK) as a potential target for DBA therapy. To identify new DBA targets, we screen for small molecules that increase erythroid expansion in mouse models of DBA. This screen identified a compound that inhibits NLK. Chemical and genetic inhibition of NLK increases erythroid expansion in mouse and human progenitors, including bone marrow cells from DBA patients. In DBA models and patient samples, aberrant NLK activation is initiated at the Megakaryocyte/Erythroid Progenitor (MEP) stage of differentiation and is not observed in non-erythroid hematopoietic lineages or healthy erythroblasts. We propose that NLK mediates aberrant erythropoiesis in DBA and is a potential target for therapy.


Assuntos
Anemia de Diamond-Blackfan/patologia , Células-Tronco Hematopoéticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Anemia de Diamond-Blackfan/dietoterapia , Anemia de Diamond-Blackfan/genética , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Dioxóis/farmacologia , Dioxóis/uso terapêutico , Modelos Animais de Doenças , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , RNA Interferente Pequeno/metabolismo , Proteínas Ribossômicas/genética
17.
Nat Commun ; 11(1): 3563, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678104

RESUMO

Rapidly increasing availability of genomic data and ensuing identification of disease associated mutations allows for an unbiased insight into genetic drivers of disease development. However, determination of molecular mechanisms by which individual genomic changes affect biochemical processes remains a major challenge. Here, we develop a multilayered proteomic workflow to explore how genetic lesions modulate the proteome and are translated into molecular phenotypes. Using this workflow we determine how expression of a panel of disease-associated mutations in the Dyrk2 protein kinase alter the composition, topology and activity of this kinase complex as well as the phosphoproteomic state of the cell. The data show that altered protein-protein interactions caused by the mutations are associated with topological changes and affected phosphorylation of known cancer driver proteins, thus linking Dyrk2 mutations with cancer-related biochemical processes. Overall, we discover multiple mutation-specific functionally relevant changes, thus highlighting the extensive plasticity of molecular responses to genetic lesions.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Proteínas Quinases/genética , Proteômica/métodos , Linhagem Celular , Humanos , Espectrometria de Massas , Complexos Multiproteicos , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica , Mapas de Interação de Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteoma/metabolismo
18.
Gene ; 758: 144960, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32687947

RESUMO

As a member of the ubiquitin-specific protease (USP) family, USP22 could remove ubiquitin moieties from its target proteins to control the function of the target proteins. Accumulating studies show that USP22 essentially participates in diverse types of cancer as an oncogene-like protein. However, the roles of USP22 in human pancreatic ductal adenocarcinoma (PDAC) and the underlying mechanism are unknown. Here we report that USP22 promotes the growth of PDAC cells by promoting the expression of dual-specificity tyrosine regulated kinase 1A (DYRK1A). Our results showed that the expression levels of USP22 were up-regulated in human PDAC tissues and cell lines (BxPC-3, AsPC-1, MIA-PaCa-2, PANC-1, and CAPAN-1). Lentivirus-mediated knockdown of USP22 repressed the rate of proliferation and capacity of colony formation of BxPC3 and CAPAN1 cancer cells and USP22 overexpression promoted the proliferation and capacity of the colony formation of BxPC3 and CAPAN1 cancer cells. The further mechanism study showed that USP22 elevated the expression of the mRNA and protein levels of DYRK1A in PDAC cancer cells. Inhibition of DYRK1A with EHT-5732 or lentivirus-mediated knockdown of DYRK1A blocked the function of USP22 overexpression in the regulation of the proliferation and colony formation of PDAC cells. Taken together, our findings demonstrated that USP22 overexpression in PDAC promoted the growth of the cancer cells partially through upregulating the expression of DYRK1A.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ubiquitina Tiolesterase/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Oncogenes/genética , Ductos Pancreáticos/patologia , RNA Mensageiro/genética , Transplante Heterólogo
19.
Life Sci ; 257: 118021, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32621919

RESUMO

AIMS: Tribbles homolog 3 (TRIB3) is emerging as a multifunctional oncoprotein associated with various cellular events in different tumors. However, the regulatory mechanism of TRIB3 in acute myeloid leukemia (AML) remains unknown. This study aims to investigate the molecular mechanisms and uncover the functions of TRIB3 in AML. METHODS: Western blotting and quantitative real-time PCR were used to analyze the expression levels of TRIB3, peroxisome proliferator-activated receptor α (PPARα), apoptosis markers and autophagy markers in AML cells. Flow cytometry was used to assess cell apoptosis. The interaction of TRIB3 and PPARα was evaluated by immunofluorescence, coimmunoprecipitation, and in vivo ubiquitination assays. KEY FINDINGS: We demonstrated that downregulating TRIB3 in leukemic cells effectively induced apoptosis and autophagy by regulating the degradation of PPARα. Mechanistically, TRIB3 interacted with PPARα and contributed to its destabilization by promoting its ubiquitination. When PPARα was activated by its specific agonist clofibrate, the apoptosis and autophagy of AML cells were significantly enhanced. These results were confirmed by rescue experiments. Blocking PPARα expression using the PPARα inhibitor GW6471 reversed the functional influence of TRIB3 on AML cells. SIGNIFICANCE: The aim of this study is to provide evidence of the degradation of PPARα by TRIB3 via ubiquitin-dependent proteasomal degradation. This process meditates the progression of AML and prolongs the survival of leukemic cells. As a result, these data indicate that TRIB3 is a novel and promising therapeutic target for AML treatment.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Bases de Dados Genéticas , Humanos , Leucemia Mieloide Aguda/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteostase/fisiologia , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , Ubiquitinação
20.
Mol Cell ; 79(3): 376-389.e8, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640193

RESUMO

Activation of dual-specificity tyrosine-phosphorylation-regulated kinases 1A and 1B (DYRK1A and DYRK1B) requires prolyl hydroxylation by PHD1 prolyl hydroxylase. Prolyl hydroxylation of DYRK1 initiates a cascade of events leading to the release of molecular constraints on von Hippel-Lindau (VHL) ubiquitin ligase tumor suppressor function. However, the proline residue of DYRK1 targeted by hydroxylation and the role of prolyl hydroxylation in tyrosine autophosphorylation of DYRK1 are unknown. We found that a highly conserved proline in the CMGC insert of the DYRK1 kinase domain is hydroxylated by PHD1, and this event precedes tyrosine autophosphorylation. Mutation of the hydroxylation acceptor proline precludes tyrosine autophosphorylation and folding of DYRK1, resulting in a kinase unable to preserve VHL function and lacking glioma suppression activity. The consensus proline sequence is shared by most CMGC kinases, and prolyl hydroxylation is essential for catalytic activation. Thus, formation of prolyl-hydroxylated intermediates is a novel mechanism of kinase maturation and likely a general mechanism of regulation of CMGC kinases in eukaryotes.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isoenzimas/genética , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Xenoenxertos , Humanos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Mutação , Neuroglia/metabolismo , Neuroglia/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA