Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.975
Filtrar
1.
Anticancer Res ; 40(9): 5211-5219, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878809

RESUMO

BACKGROUND/AIM: CBP is a transcriptional coactivator in the Wnt/ß-catenin pathway that is related to cell kinetics and differentiation. This study aimed to characterize ß-catenin-activated hepatocellular carcinoma (HCC) and evaluate the direct effects of PRI-724 (a selective inhibitor of Wnt/ß-catenin/CBP signaling) on HCC. MATERIALS AND METHODS: Immunohistochemistry for ß-catenin was performed in 199 HCC resected samples. Moreover, using cultured HCC cell lines, cell kinetics and its related proteins were analyzed after treatment of cells with C-82 (active form of PRI-724). RESULTS: Nuclear ß-catenin expression was found in 18% of HCC cases and the tumor sizes in these positive samples were larger. In HCC cell lines with a constitutively activated ß-catenin, C-82 inhibited cell proliferation. C-82 led to an increase in the percentage of cells in the G0/G1 phase of the cell cycle. The percentage of cells in the sub-G1 phase also increased. Moreover, C-82 treatment significantly decreased the expression of cell proliferating markers and increased the expression of apoptosis-related proteins. CONCLUSION: PRI-724(C-82) may be a novel drug for ß-catenin-activated HCC therapy.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Pirimidinonas/farmacologia , beta Catenina/metabolismo , Biomarcadores , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores
2.
Science ; 369(6506): 984-988, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820125

RESUMO

Germinal center (GC) responses potentiate the generation of follicular regulatory T (TFR) cells. However, the molecular cues driving TFR cell formation remain unknown. Here, we show that sclerostin domain-containing protein 1 (SOSTDC1), secreted by a subpopulation of follicular helper T (TFH) cells and T-B cell border-enriched fibroblastic reticular cells, is developmentally required for TFR cell generation. Fate tracking and transcriptome assessment in reporter mice establishes SOSTDC1-expressing TFH cells as a distinct T cell population that develops after SOSTDC1- TFH cells and loses the ability to help B cells for antibody production. Notably, Sostdc1 ablation in TFH cells results in substantially reduced TFR cell numbers and consequently elevated GC responses. Mechanistically, SOSTDC1 blocks the WNT-ß-catenin axis and facilitates TFR cell differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos B/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Mutantes , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
3.
Gene ; 758: 144967, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32707299

RESUMO

Bivalve mollusks are descendants of an early-Cambrian lineage and have successfully evolved unique strategies for reproduction. Nonetheless, the molecular mechanisms underlying reproductive regulation in mollusks remain to be elucidated. In this study, transcriptomes of ovary at four reproductive stages in female Chlamys farreri were characterized by RNA-Seq. Regarding signaling pathways, ECM-receptor interaction pathway, mTOR signaling pathway, Fanconi anemia pathway, FoxO signaling pathway, Wnt signaling pathway and Hedgehog signaling pathway were enriched during ovarian development processes. In addition, pathways related to energy metabolism such as Nitrogen metabolism and Arachidonic acid metabolism were enriched at spawn stage. Interestingly, Neuroactive ligand-receptor interaction was significantly enriched involved in ovarian development and spawn, and indicated the potential functions of nervous system on reproductive regulation in C. farreri. What's more, this study identified and characterized fourteen genes involved in "sex hormones synthesis and regulation", "ovarian development and spawn" and "maternal immunity" during the four reproductive stages in C. farreri. We determined that CYP17 uniquely affected gamete release by influencing the physiological balance among the steroid hormones and showed that receptors of the 5-HT and GABA neurotransmitters were tightly associated with ovarian maturation. Furthermore, to the best of our knowledge, this is the first study to report the maternal effect gene Zar1 in bivalve mollusks, likewise the maternal immunity genes displayed coordinated and cooperative expression during reproductive periods, which strengthened the environmental adaptation mechanisms of bivalves. Taken together, this study provides the first dynamic transcriptomic analysis of C. farreri at four key reproductive stages, which will assist in revealing the molecular mechanisms underlying bivalves on reproductive regulation in ovarian development and spawn.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Ovário/crescimento & desenvolvimento , Pectinidae/crescimento & desenvolvimento , Pectinidae/genética , Transcriptoma/genética , Animais , Metabolismo Energético/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Proteínas Hedgehog/metabolismo , Reprodução/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética
4.
Nature ; 585(7823): 85-90, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32699409

RESUMO

A relatively small number of proteins have been suggested to act as morphogens-signalling molecules that spread within tissues to organize tissue repair and the specification of cell fate during development. Among them are Wnt proteins, which carry a palmitoleate moiety that is essential for signalling activity1-3. How a hydrophobic lipoprotein can spread in the aqueous extracellular space is unknown. Several mechanisms, such as those involving lipoprotein particles, exosomes or a specific chaperone, have been proposed to overcome this so-called Wnt solubility problem4-6. Here we provide evidence against these models and show that the Wnt lipid is shielded by the core domain of a subclass of glypicans defined by the Dally-like protein (Dlp). Structural analysis shows that, in the presence of palmitoleoylated peptides, these glypicans change conformation to create a hydrophobic space. Thus, glypicans of the Dlp family protect the lipid of Wnt proteins from the aqueous environment and serve as a reservoir from which Wnt proteins can be handed over to signalling receptors.


Assuntos
Glipicanas/química , Glipicanas/metabolismo , Lipídeos , Transdução de Sinais , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Glipicanas/classificação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Masculino , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/genética , Domínios Proteicos , Transporte Proteico , Solubilidade , Proteína Wnt1/química , Proteína Wnt1/metabolismo
5.
Int J Nanomedicine ; 15: 4063-4078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606664

RESUMO

Background: Among various theories for the origin of cancer, the "stemness phenotype model" suggests a dynamic feature for tumor cells in which non-cancer stem cells (non-CSCs) can inter-convert to CSCs. Differentiation with histone-deacetylase inhibitor, vorinostat (SAHA), can induce stem cells to differentiate as well as enforces non-CSCs to reprogram to CSCs. To avoid this undesirable effect, one can block the Wnt-ßcatenin pathway. Thus, a dual delivery system of SAHA and a Wnt-ßcatenin blocker will be beneficial in the induction of differentiation of CSCs. Protein corona (PC) formation in nanoparticle has a biologic milieu, and despite all problematic properties, it can be employed as a medium for dual loading of the drugs. Materials and Methods: We prepared sphere gold nanoparticles (GNPs) with human plasma protein corona loaded with SAHA as differentiating agent and PKF118-310 (PKF) as a Wnt-ßcatenin antagonist. The MCF7 breast cancer stem cells were treated with NPs and the viability and differentiation were evaluated by Western blotting and sphere formation assay. Results: We found that both drugs loaded onto corona-capped GNPs had significant cytotoxicity in comparison to bare GNP-corona. Data demonstrated an increase in stem cell population and upregulation of mesenchymal marker, Snail by SAHA-loaded GNPs treatment; however, the combination of PKF loaded GNPs along with SAHA-loaded GNPs resulted in a reduction of stem cell populations and Snail marker. We have shown that in MCF7 and its CSCs simultaneous treatment with SAHA and PKF118-310 induced differentiation and inhibition of Snail induction. Conclusion: Our study reveals the PC-coated GNPs as a biocompatible career for both hydrophilic (PKF) and hydrophobic (SAHA) agents which can decrease breast cancer stem cell populations along with reduced stemness state regression.


Assuntos
Neoplasias da Mama/patologia , Carcinogênese/patologia , Ouro/química , Nanopartículas Metálicas/química , Células-Tronco Neoplásicas/patologia , Coroa de Proteína/química , Vorinostat/farmacologia , Proteínas Wnt/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células MCF-7 , Nanosferas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Espectrofotometria Ultravioleta , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
6.
Nature ; 584(7819): 98-101, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32581357

RESUMO

Formation of the body of vertebrate embryos proceeds sequentially by posterior addition of tissues from the tail bud. Cells of the tail bud and the posterior presomitic mesoderm, which control posterior elongation1, exhibit a high level of aerobic glycolysis that is reminiscent of the metabolic status of cancer cells experiencing the Warburg effect2,3. Glycolytic activity downstream of fibroblast growth factor controls WNT signalling in the tail bud3. In the neuromesodermal precursors of the tail bud4, WNT signalling promotes the mesodermal fate that is required for sustained axial elongation, at the expense of the neural fate3,5. How glycolysis regulates WNT signalling in the tail bud is currently unknown. Here we used chicken embryos and human tail bud-like cells differentiated in vitro from induced pluripotent stem cells to show that these cells exhibit an inverted pH gradient, with the extracellular pH lower than the intracellular pH, as observed in cancer cells6. Our data suggest that glycolysis increases extrusion of lactate coupled to protons via the monocarboxylate symporters. This contributes to elevating the intracellular pH in these cells, which creates a favourable chemical environment for non-enzymatic ß-catenin acetylation downstream of WNT signalling. As acetylated ß-catenin promotes mesodermal rather than neural fate7, this ultimately leads to activation of mesodermal transcriptional WNT targets and specification of the paraxial mesoderm in tail bud precursors. Our work supports the notion that some tumour cells reactivate a developmental metabolic programme.


Assuntos
Âmnio/embriologia , Glicólise , Proteínas Wnt/metabolismo , Acetilação , Animais , Padronização Corporal , Embrião de Galinha , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Mesoderma/metabolismo , beta Catenina/metabolismo
7.
PLoS Genet ; 16(6): e1008792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579612

RESUMO

While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster. Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and KIF11/Klp61F. These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions.


Assuntos
Variações do Número de Cópias de DNA , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Neurodesenvolvimento/genética , Animais , Olho Composto de Artrópodes/embriologia , Olho Composto de Artrópodes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Asas de Animais/embriologia , Asas de Animais/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
8.
Gene ; 754: 144892, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32534060

RESUMO

Breast cancer is the most commonly diagnosed malignancy in women worldwide. Recently, uncontrolled expression of microRNAs was detected in several human disorders like cardiovascular, neurological, intestinal and autoimmunity diseases. MicroRNAs (miRNAs) are now investigated as novel prognostic and diagnostic biomarkers for several solid tumors like breast, lung, and gastrointestinal cancers. Current data suggest that miRNAs are implicated in various oncogenic processes implicated in breast cancer carcinogenesis trough modulating canonical Wnt pathway. Aberrant activation of Wnt/b-catenin signaling was shown to be significantly associated with tumor progression and poor prognosis in patients with breast cancer. This review presents recent findings on the molecular mechanism of microRNAs in regulation of Wnt/ß-catenin signaling involved in tumorigenesis of breast cancer.


Assuntos
Neoplasias da Mama/patologia , Carcinogênese , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , MicroRNAs/genética , Proteínas Wnt/genética , beta Catenina/genética
9.
Hum Cell ; 33(3): 652-662, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32350750

RESUMO

The tumor microenvironment (TM) is an essential factor of tumor progression. Mesenchymal stem cells (MSCs) are important components of the TM and play critical roles in cancer metastasis. Resveratrol (RES) is a potential antitumor drug that has attracted extensive attention. However, it remains unclear whether RES can exert its antitumor activity by targeting MSCs located in the TM. In this study, we demonstrated that the conditioned medium of gastric-cancer-derived MSCs (GC-MSCs) promoted gastric cancer (GC) metastasis and facilitated the progression of epithelialmesenchymal transition (EMT) of GC cells. However, after pretreatment with RES, the prometastatic effect of GC-MSCs on GC cells was reversed. Furthermore, RES reduced GC-MSC (IL-6, IL-8, MCP-1, VEGF) gene expression and protein secretion, and counteracted the activation of the GC-MSC-induced Wnt/ß-catenin signaling of GC cells, with less ß-catenin nuclear transport and declined expression of ß-catenin, CD44, and CyclinD3 in GC cells. Re-expression of ß-catenin impaired the inhibitory effect of RES on GC cells. In conclusion, RES restricted the mobility increase of GC cells and reversed the progress of EMT induced by GC-MSCs by inactivating the Wnt/ß-catenin signaling. GC-MSCs are promising target for RES in the inhibition of GC metastasis.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Metástase Neoplásica/tratamento farmacológico , Resveratrol/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos Fitogênicos , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Células-Tronco Mesenquimais/patologia , Terapia de Alvo Molecular , Fitoterapia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Microambiente Tumoral , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(22): 12182-12191, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414917

RESUMO

In multicellular organisms, paralogs from gene duplication survive purifying selection by evolving tissue-specific expression and function. Whether this genetic redundancy is also selected for within a single cell type is unclear for multimember paralogs, as exemplified by the four obligatory Lef/Tcf transcription factors of canonical Wnt signaling, mainly due to the complex genetics involved. Using the developing mouse lung as a model system, we generate two quadruple conditional knockouts, four triple mutants, and various combinations of double mutants, showing that the four Lef/Tcf genes function redundantly in the presence of at least two Lef/Tcf paralogs, but additively upon losing additional paralogs to specify and maintain lung epithelial progenitors. Prelung-specification, pan-epithelial double knockouts have no lung phenotype; triple knockouts have varying phenotypes, including defective branching and tracheoesophageal fistulas; and the quadruple knockout barely forms a lung, resembling the Ctnnb1 mutant. Postlung-specification deletion of all four Lef/Tcf genes leads to branching defects, down-regulation of progenitor genes, premature alveolar differentiation, and derepression of gastrointestinal genes, again phenocopying the corresponding Ctnnb1 mutant. Our study supports a monotonic, positive signaling relationship between CTNNB1 and Lef/Tcf in lung epithelial progenitors as opposed to reported repressor functions of Lef/Tcf, and represents a thorough in vivo analysis of cell-type-specific genetic redundancy among the four Lef/Tcf paralogs.


Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , Células-Tronco/metabolismo , beta Catenina/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Feminino , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Pulmão/citologia , Camundongos , Camundongos Knockout , Análise de Célula Única , Células-Tronco/citologia , Proteína 1 Semelhante ao Fator 7 de Transcrição/fisiologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
11.
PLoS Genet ; 16(5): e1008767, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32357156

RESUMO

Despite the importance of dendritic targeting in neural circuit assembly, the mechanisms by which it is controlled still remain incompletely understood. We previously showed that in the developing Drosophila antennal lobe, the Wnt5 protein forms a gradient that directs the ~45˚ rotation of a cluster of projection neuron (PN) dendrites, including the adjacent DA1 and VA1d dendrites. We report here that the Van Gogh (Vang) transmembrane planar cell polarity (PCP) protein is required for the rotation of the DA1/VA1d dendritic pair. Cell type-specific rescue and mosaic analyses showed that Vang functions in the olfactory receptor neurons (ORNs), suggesting a codependence of ORN axonal and PN dendritic targeting. Loss of Vang suppressed the repulsion of the VA1d dendrites by Wnt5, indicating that Wnt5 signals through Vang to direct the rotation of the DA1 and VA1d glomeruli. We observed that the Derailed (Drl)/Ryk atypical receptor tyrosine kinase is also required for the rotation of the DA1/VA1d dendritic pair. Antibody staining showed that Drl/Ryk is much more highly expressed by the DA1 dendrites than the adjacent VA1d dendrites. Mosaic and epistatic analyses showed that Drl/Ryk specifically functions in the DA1 dendrites in which it antagonizes the Wnt5-Vang repulsion and mediates the migration of the DA1 glomerulus towards Wnt5. Thus, the nascent DA1 and VA1d glomeruli appear to exhibit Drl/Ryk-dependent biphasic responses to Wnt5. Our work shows that the final patterning of the fly olfactory map is the result of an interplay between ORN axons and PN dendrites, wherein converging pre- and postsynaptic processes contribute key Wnt5 signaling components, allowing Wnt5 to orient the rotation of nascent synapses through a PCP mechanism.


Assuntos
Antenas de Artrópodes/crescimento & desenvolvimento , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Wnt/metabolismo , Animais , Antenas de Artrópodes/metabolismo , Axônios/metabolismo , Padronização Corporal , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Neurônios Receptores Olfatórios/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Proteínas Wnt/genética
12.
J Pharmacol Sci ; 143(3): 148-155, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32268968

RESUMO

Aloe vera (L.) Burm.f. is widely used as laxative drugs, cosmetics, and functional food due to a variety of therapeutic effects. However, several studies indicated a colonic carcinogenic activity of Aloe vera. But the underline mechanism has not been well clarified. This study aimed to explore the potential mechanism at the post-transcriptional level. Identification of Differential Expressed Alternative Splicing (DEAS) genes and events and the corresponding functional enrichment analyses were conducted on RKO cells after treated with Aloe vera aqueous extract and its two active components, aloin and aloesin. And RT-qPCR was conducted for validation. Results indicated that they induced 2200, 2342 and 2133 DEAS events, respectively. The GO enrichment and the COG classification results of DEAS genes showed that they were associated with transcription, as well as functions like signal transduction mechanisms. Moreover, DEAS genes related to the two colorectal cancerous pathways, Wnt and Notch pathways, were annotated. In conclusion, aloe extract, aloin and aloesin significantly regulated the DEAS profile of RKO cells. The colonic carcinogenicity of Aloe vera may due to its post-transcriptional regulatory activity through Alternative Splicing (AS) on genes, especially on Wnt-related and Notch-related key genes.


Assuntos
Aloe , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Carcinogênese/induzido quimicamente , Cromonas/efeitos adversos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Emodina/análogos & derivados , Glucosídeos/efeitos adversos , Extratos Vegetais/efeitos adversos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Emodina/efeitos adversos , Humanos
13.
Hum Cell ; 33(3): 810-818, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32274658

RESUMO

Circular RNAs (circRNAs) exert pivotal effects on regulating the progression of osteosarcoma (OS). It was found through microarray analysis that circ-0002052 is abnormally expressed in OS, but the role of circ-0002052 in OS remains obscure. The results of this research manifested that relative to that in non-tumor controls, circ-0002052 level was raised in OS tissues. Up-regulated circ-0002052 was associated with advanced stage, tumor size, and metastasis. Additionally, circ-0002052 elevation indicated a low survival rate in OS patients and silencing of circ-0002052 suppressed proliferation, migration, and invasion of OS cells. It was proved that circ-0002052 sponged miR-382 and stimulated STX6 expression, thus activating Wnt/ß-catenin. The function of circ-0002052 reduction in OS cells was effectively reversed by miR-382 suppression. To sum up, it can be concluded that circ-0002052, functioning as a sponge for miR-382, enhances the activation of Wnt/ß-catenin mediated by STX6 to stimulate the progression of OS, and circ-0002052 may be an underlying treatment target and a biomarker for prognosis of osteosarcoma.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , RNA Circular/fisiologia , Linhagem Celular Tumoral , Humanos , Terapia de Alvo Molecular , Osteossarcoma/diagnóstico , Osteossarcoma/terapia , RNA Circular/genética , RNA Circular/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
14.
Am J Chin Med ; 48(3): 703-718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329642

RESUMO

Cinobufacini is a well-known Chinese medicine extracted from Venenum Bufonis, also called Chan Su. It has been used clinically for various cancers, including colon cancer. However, the function of Cinobufacini on colon cancer invasion and metastasis, and its underlying molecular mechanism, is still not clear. In this study, we investigated the function and mechanism of Cinobufacini on colon cancer invasion and metastasis both in vitro and in vivo studies. Human colon cancer cells were cultured. CCK assay was used to detect the effect of Cinobufacini on colon cancer cells proliferation. The invasion and migration abilities were observed by transwell assays, and the expression of invasion and migration related genes MMP2, MMP9, and epithelial-to-mesenchymal transition (EMT) relate genes were observed by Western blot assays. An orthotopic xenograft model in nude mice was established using colon cancer HCT116 cells, and the function of Cinobufacini on colon cancer invasion and metastasis were observed in vivo. We found Cinobufacini significantly inhibited colon cancer cell proliferation in a dose/time-dependent manner; the invasion and migration abilities of colon cancer were decreased after treated with Cinobufacini. The metastasis and EMT related genes MMP9, MMP2, N-cadherin and Snail were obviously down-regulated, while the expression of E-cadherin was up-regulated after treatment with Cinobufacini. The Wnt/ß-catenin signaling pathway related genes were observed using WB,and results show that the expression of ß-catenin, wnt3a, c-myc, cyclin D1, and MMP7 were all down-regulated after being treated with cinobufacini, while the expression of APC was up-regulated. In vivo studies of the volume and weight of orthotopic xenograft tumors showed significantly shrinkage in the Cinobufacini group compared to the control group. The enterocoelia and liver metastasis tumors were significantly decreased, and the expression of MMP9, MMP2, and ß-catenin were also down-regulated, while E-cadherin was up-regulated in vivo after the treatment with Cinobufacini. Our data proves that Cinobufacini can inhibit colon cancer invasion and metastasis both in vitro and in vivo; the mechanism is related by suppressing the Wnt/ß-catenin signaling pathway and then inhibiting the EMT of CRC.


Assuntos
Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica/patologia , Fitoterapia , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Células HCT116 , Humanos , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica/genética
15.
Chem Biol Interact ; 320: 109022, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112862

RESUMO

Epithelial mesenchymal transformation plays a crucial role in the metastasis of bladder cancer, which makes bladder cancer difficult to cure. Bladder cancer is the most common malignancy of the urinary system, and distant metastasis is the leading cause of death. Therefore, finding a bioactive drug that can specifically inhibit epithelial mesenchymal transformation may be a new direction for bladder cancer treatment in the future. Thymoquinone (TQ), the major active compound isolated from black seed oil (Nigella sativa), has been reported to exhibit anti-inflammatory and anticancer abilities. TQ can exhibit its antitumor effect by inhibiting the proliferation and metastasis of cancer cells. However, the underlying mechanism of TQ as a tumor inhibitor in bladder cancer remains poorly understood. First, in this research, we demonstrate that TQ can reverse EMT by upregulating epithelial markers, such as E-cadherin, and downregulating mesenchymal markers, such as N-cadherin and vimentin. Furthermore, we demonstrate that TQ can suppress the activation of the Wnt/ß-catenin signaling pathway and inhibit the expression of ß-catenin target genes, such as MYC, Axin-2, MMP7, CyclinD1 and MET, which play crucial roles in EMT and cancer progression. Additionally, we demonstrate that TQ can inhibit the growth of xenografts and restrict the formation of tumor metastatic foci in the lung. Taken together, our findings confirm the antimetastatic effect of TQ in bladder cancer cells for the first time and also provide new evidence for the development of TQ as a novel treatment for metastatic bladder cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzoquinonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Benzoquinonas/química , Linhagem Celular Tumoral , Ensaios de Migração Celular , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Proteínas Wnt/genética , beta Catenina/genética
16.
Am J Pathol ; 190(3): 602-613, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32113662

RESUMO

Casitas B-lineage lymphoma (c-Cbl) is a recently identified ubiquitin ligase of nuclear ß-catenin and a suppressor of colorectal cancer (CRC) growth in cell culture and mouse tumor xenografts. We hypothesized that reduction in c-Cbl in colonic epithelium is likely to increase the levels of nuclear ß-catenin in the intestinal crypt, augmenting CRC tumorigenesis in an adenomatous polyposis coli (APCΔ14/+) mouse model. Haploinsufficient c-Cbl mice (APCΔ14/+ c-Cbl+/-) displayed a significant (threefold) increase in atypical hyperplasia and adenocarcinomas in the small and large intestines; however, no differences were noted in the adenoma frequency. In contrast to the APCΔ14/+ c-Cbl+/+ mice, APCΔ14/+ c-Cbl+/- crypts showed nuclear ß-catenin throughout the length of the crypts and up-regulation of Axin2, a canonical Wnt target gene, and SRY-box transcription factor 9, a marker of intestinal stem cells. In contrast, haploinsufficiency of c-Cbl+/- alone was insufficient to induce tumorigenesis regardless of an increase in the number of intestinal epithelial cells with nuclear ß-catenin and SRY-box transcription factor 9 in APC+/+ c-Cbl+/- mice. This study demonstrates that haploinsufficiency of c-Cbl results in Wnt hyperactivation in intestinal crypts and accelerates CRC progression to adenocarcinoma in the milieu of APCΔ14/+, a phenomenon not found with wild-type APC. While emphasizing the role of APC as a gatekeeper in CRC, this study also demonstrates that combined partial loss of c-Cbl and inactivation of APC significantly contribute to CRC tumorigenesis.


Assuntos
Adenocarcinoma/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Haploinsuficiência , Linfoma/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Adenocarcinoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Carcinogênese , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
17.
Life Sci ; 249: 117535, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32151688

RESUMO

AIM: Schizophrenia is a chronic, disabling and one of the major neurological illnesses affecting nearly 1% of the global population. Currently available antipsychotic medications possess limited effects. The current research aimed at investigating potential therapeutic add-on benefit to enhance the effects of clozapine anti-schizophrenic. MAIN METHODS: To induce schizophrenia, ketamine was administered at a dose of 25 mg/kg i.p. for 14 consecutive days. Naringin was administered to Wistar rats at a dose of 100 mg/kg orally, alone or in combination with clozapine 5 mg/kg i.p from day 8 to day 14. Furthermore, behavioral tests were conducted to evaluate positive, negative and cognitive symptoms of schizophrenia. In addition, neurotransmitters' levels were detected using HPLC. Moreover, oxidative stress markers were assessed using spectrophotometry. Furthermore, apoptotic and wnt/ß-catenin pathway markers were determined using western blotting (Akt, GSK-3ß and ß-catenin), colorimetric methods (Caspase-3) and immunohistochemistry (Bax, Bcl2 and cytochrome c). KEY FINDINGS: Ketamine induced positive, negative and cognitive schizophrenia symptoms together with neurotransmitters' imbalance. In addition, ketamine treatment caused significant glutathione depletion, lipid peroxidation and reduction in catalase activity. Naringin and/or clozapine treatment significantly attenuated ketamine-induced schizophrenic symptoms and oxidative injury. Additionally, ketamine provoked apoptosis via increasing Bax/Bcl2 expression, caspase-3 activity, and Cytochrome C and Akt protein expression while naringin/clozapine treatment significantly inhibited this apoptotic effect. Moreover, naringin activated the neurodevelopmental wnt/ß-catenin signaling pathway evidenced by increasing pGSK-3ß and reducing pß-catenin protein expression. SIGNIFICANCE: These findings may suggest that naringin possesses a potential therapeutic add-on effect against ketamine-induced schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Flavanonas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Ketamina/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esquizofrenia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/uso terapêutico , Clozapina/administração & dosagem , Clozapina/farmacologia , Clozapina/uso terapêutico , Modelos Animais de Doenças , Flavanonas/administração & dosagem , Flavanonas/uso terapêutico , Masculino , Ratos , Ratos Wistar , Esquizofrenia/induzido quimicamente
18.
PLoS Biol ; 18(3): e3000647, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163403

RESUMO

Dendrite microtubules are polarized with minus-end-out orientation in Drosophila neurons. Nucleation sites concentrate at dendrite branch points, but how they localize is not known. Using Drosophila, we found that canonical Wnt signaling proteins regulate localization of the core nucleation protein γTubulin (γTub). Reduction of frizzleds (fz), arrow (low-density lipoprotein receptor-related protein [LRP] 5/6), dishevelled (dsh), casein kinase Iγ, G proteins, and Axin reduced γTub-green fluorescent protein (GFP) at branch points, and two functional readouts of dendritic nucleation confirmed a role for Wnt signaling proteins. Both dsh and Axin localized to branch points, with dsh upstream of Axin. Moreover, tethering Axin to mitochondria was sufficient to recruit ectopic γTub-GFP and increase microtubule dynamics in dendrites. At dendrite branch points, Axin and dsh colocalized with early endosomal marker Rab5, and new microtubule growth initiated at puncta marked with fz, dsh, Axin, and Rab5. We propose that in dendrites, canonical Wnt signaling proteins are housed on early endosomes and recruit nucleation sites to branch points.


Assuntos
Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Microtúbulos/metabolismo , Proteínas Wnt/metabolismo , Animais , Complexo de Sinalização da Axina/genética , Complexo de Sinalização da Axina/metabolismo , Axônios/metabolismo , Polaridade Celular , Dendritos/genética , Drosophila , Proteínas de Drosophila/genética , Endossomos/genética , Microtúbulos/genética , Mutação , Receptores Wnt/genética , Receptores Wnt/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(13): 7236-7244, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32184326

RESUMO

Spatial cellular organization is fundamental for embryogenesis. Remarkably, coculturing embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) recapitulates this process, forming embryo-like structures. However, mechanisms driving ESC-TSC interaction remain elusive. We describe specialized ESC-generated cytonemes that react to TSC-secreted Wnts. Cytoneme formation and length are controlled by actin, intracellular calcium stores, and components of the Wnt pathway. ESC cytonemes select self-renewal-promoting Wnts via crosstalk between Wnt receptors, activation of ionotropic glutamate receptors (iGluRs), and localized calcium transients. This crosstalk orchestrates Wnt signaling, ESC polarization, ESC-TSC pairing, and consequently synthetic embryogenesis. Our results uncover ESC-TSC contact-mediated signaling, reminiscent of the glutamatergic neuronal synapse, inducing spatial self-organization and embryonic cell specification.


Assuntos
Comunicação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Pseudópodes/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Drosophila , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Camundongos , Trofoblastos/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia
20.
Nat Commun ; 11(1): 929, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066735

RESUMO

Current treatments for clear cell renal cell cancer (ccRCC) are insufficient because two-thirds of patients with metastases progress within two years. Here we report the identification and characterization of a cancer stem cell (CSC) population in ccRCC. CSCs are quantitatively correlated with tumor aggressiveness and metastasis. Transcriptional profiling and single cell sequencing reveal that these CSCs exhibit an activation of WNT and NOTCH signaling. A significant obstacle to the development of rational treatments has been the discrepancy between model systems and the in vivo situation of patients. To address this, we use CSCs to establish non-adherent sphere cultures, 3D tumor organoids, and xenografts. Treatment with WNT and NOTCH inhibitors blocks the proliferation and self-renewal of CSCs in sphere cultures and organoids, and impairs tumor growth in patient-derived xenografts in mice. These findings suggest that our approach is a promising route towards the development of personalized treatments for individual patients.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Notch/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Rim/patologia , Neoplasias Renais/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Cultura Primária de Células , Pirimidinonas/farmacologia , RNA Interferente Pequeno/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Esferoides Celulares , Proteínas Wnt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA