Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.900
Filtrar
1.
PLoS Comput Biol ; 16(9): e1007740, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32881861

RESUMO

The circadian clock is a complex system that plays many important roles in most organisms. Previously, many mathematical models have been used to sharpen our understanding of the Arabidopsis clock, which brought to light the roles of each transcriptional and post-translational regulations. However, the presence of both regulations, instead of either transcription or post-translation, raised curiosity of whether the combination of these two regulations is important for the clock's system. In this study, we built a series of simplified oscillators with different regulations to study the importance of post-translational regulation (specifically, 26S proteasome degradation) in the clock system. We found that a simple transcriptional-based oscillator can already generate sustained oscillation, but the oscillation can be easily destroyed in the presence of transcriptional leakage. Coupling post-translational control with transcriptional-based oscillator in a feed-forward loop will greatly improve the robustness of the oscillator in the presence of basal leakage. Using these general models, we were able to replicate the increased variability observed in the E3 ligase mutant for both plant and mammalian clocks. With this insight, we also predict a plausible regulator of several E3 ligase genes in the plant's clock. Thus, our results provide insights into and the plausible importance in coupling transcription and post-translation controls in the clock system.


Assuntos
Relógios Circadianos/genética , Modelos Biológicos , Processamento de Proteína Pós-Traducional/genética , Transcrição Genética/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biologia Computacional , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
PLoS Biol ; 18(9): e3000783, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925907

RESUMO

Plant nucleotide-binding (NB) leucine-rich repeat (LRR) receptor (NLR) proteins function as intracellular immune receptors that perceive the presence of pathogen-derived virulence proteins (effectors) to induce immune responses. The 2 major types of plant NLRs that "sense" pathogen effectors differ in their N-terminal domains: these are Toll/interleukin-1 receptor resistance (TIR) domain-containing NLRs (TNLs) and coiled-coil (CC) domain-containing NLRs (CNLs). In many angiosperms, the RESISTANCE TO POWDERY MILDEW 8 (RPW8)-CC domain containing NLR (RNL) subclass of CNLs is encoded by 2 gene families, ACTIVATED DISEASE RESISTANCE 1 (ADR1) and N REQUIREMENT GENE 1 (NRG1), that act as "helper" NLRs during multiple sensor NLR-mediated immune responses. Despite their important role in sensor NLR-mediated immunity, knowledge of the specific, redundant, and synergistic functions of helper RNLs is limited. We demonstrate that the ADR1 and NRG1 families act in an unequally redundant manner in basal resistance, effector-triggered immunity (ETI) and regulation of defense gene expression. We define RNL redundancy in ETI conferred by some TNLs and in basal resistance against virulent pathogens. We demonstrate that, in Arabidopsis thaliana, the 2 RNL families contribute specific functions in ETI initiated by specific CNLs and TNLs. Time-resolved whole genome expression profiling revealed that RNLs and "classical" CNLs trigger similar transcriptome changes, suggesting that RNLs act like other CNLs to mediate ETI downstream of sensor NLR activation. Together, our genetic data confirm that RNLs contribute to basal resistance, are fully required for TNL signaling, and can also support defense activation during CNL-mediated ETI.


Assuntos
Arabidopsis/imunologia , Proteínas NLR/fisiologia , Imunidade Vegetal/genética , Receptores Imunológicos/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Família Multigênica/genética , Família Multigênica/fisiologia , Proteínas NLR/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Receptores Imunológicos/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcriptoma
3.
Am J Bot ; 107(9): 1309-1318, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32965027

RESUMO

PREMISE: The importance of chloroplast movement for plant growth in constant, controlled light and of nonphotochemical quenching (NPQ) in variable, natural light are known. Here we concurrently investigated growth and reproduction of several Arabidopsis thaliana mutants to assess the relative importance of photoprotection via chloroplast movement and NPQ. METHODS: Plants were grown outdoors (natural conditions) or in a growth chamber with variable light and chilling temperatures (controlled conditions). Phenotypic growth and reproductive variables were determined at set times before maturity in wild-type (WT) and phot1, phot2, phot1phot2 (e.g., impaired chloroplast movement, stomatal conductance, leaf flattening), chup1 (impaired chloroplast movement), and npq1 (reduced NPQ) plants. RESULTS: Mutants were most adversely affected in natural conditions, with phot1phot2 and chup1 most severely impacted. These mutants bolted later and produced fewer leaves and siliques, less leaf biomass, and fewer secondary inflorescences than WT. In controlled conditions, leaf traits of these mutants were unaffected, but phot1phot2 bolted later and produced fewer secondary inflorescences and siliques than WT. For most variables, there were significant interactions between growth conditions and plant genotype. Many variables were correlated, but those relationships changed with growth conditions and genotype. CONCLUSIONS: Phenotypic variables at the time of the harvest were strongly affected by growth conditions and genotype. In natural conditions, phot1phot2 and chup1 mutants were most adversely affected, demonstrating the importance of chloroplast movement. In controlled conditions, only phot1phot2 was consistently affected, also emphasizing the important, pleiotropic effects of phototropins. In both conditions, NPQ was less important.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos , Luz , Mutação , Fototropinas/genética , Folhas de Planta
4.
Nat Commun ; 11(1): 4859, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978401

RESUMO

Cell death is intrinsically linked with immunity. Disruption of an immune-activated MAPK cascade, consisting of MEKK1, MKK1/2, and MPK4, triggers cell death and autoimmunity through the nucleotide-binding leucine-rich repeat (NLR) protein SUMM2 and the MAPK kinase kinase MEKK2. In this study, we identify a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L), named LETUM2/MEDOS1 (LET2/MDS1), and the glycosylphosphatidylinositol (GPI)-anchored protein LLG1 as regulators of mekk1-mkk1/2-mpk4 cell death. LET2/MDS1 functions additively with LET1, another CrRLK1L, and acts genetically downstream of MEKK2 in regulating SUMM2 activation. LET2/MDS1 complexes with LET1 and promotes LET1 phosphorylation, revealing an intertwined regulation between different CrRLK1Ls. LLG1 interacts with the ectodomain of LET1/2 and mediates LET1/2 transport to the plasma membrane, corroborating its function as a co-receptor of LET1/2 in the mekk1-mkk1/2-mpk4 cell death pathway. Thus, our data suggest that a trimeric complex consisting of two CrRLK1Ls LET1, LET2/MDS1, and a GPI-anchored protein LLG1 that regulates the activation of NLR SUMM2 for initiating cell death and autoimmunity.


Assuntos
Autoimunidade/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoimunidade/fisiologia , Proteínas de Transporte/imunologia , Catharanthus/genética , Catharanthus/metabolismo , Morte Celular/genética , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica de Plantas , Glicosilfosfatidilinositóis , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Interferência de RNA , Transcriptoma
5.
Nat Commun ; 11(1): 4509, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908151

RESUMO

Glycolysis is one of the primordial pathways of metabolism, playing a pivotal role in energy metabolism and biosynthesis. Glycolytic enzymes are known to form transient multi-enzyme assemblies. Here we examine the wider protein-protein interactions of plant glycolytic enzymes and reveal a moonlighting role for specific glycolytic enzymes in mediating the co-localization of mitochondria and chloroplasts. Knockout mutation of phosphoglycerate mutase or enolase resulted in a significantly reduced association of the two organelles. We provide evidence that phosphoglycerate mutase and enolase form a substrate-channelling metabolon which is part of a larger complex of proteins including pyruvate kinase. These results alongside a range of genetic complementation experiments are discussed in the context of our current understanding of chloroplast-mitochondrial interactions within photosynthetic eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Cloroplastos/enzimologia , Glicólise/fisiologia , Mitocôndrias/enzimologia , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Metabolismo Energético/fisiologia , Mutação , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Fotossíntese/fisiologia , Plantas Geneticamente Modificadas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/fisiologia , Piruvato Quinase/genética , Piruvato Quinase/metabolismo
6.
Plant Mol Biol ; 104(3): 263-281, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32740898

RESUMO

KEY MESSAGE: Plant-specific Dof transcription factors VDOF1 and VDOF2 are novel regulators of vascular cell differentiation through the course of a lifetime in Arabidopsis, with shifting their transcriptional target genes. Vascular system is one of critical tissues for vascular plants to transport low-molecular compounds, such as water, minerals, and the photosynthetic product, sucrose. Here, we report the involvement of two Dof transcription factors, named VASCULAR-RELATED DOF1 (VDOF1)/VDOF4.6 and VDOF2/VDOF1.8, in vascular cell differentiation and lignin biosynthesis in Arabidopsis. VDOF genes were expressed in vascular tissues, but the detailed expression sites were partly different between VDOF1 and VDOF2. Vein patterning and lignin analysis of VDOF overexpressors and double mutant vdof1 vdof2 suggested that VDOF1 and VDOF2 would function as negative regulators of vein formation in seedlings, and lignin deposition in inflorescence stems. Interestingly, effects of VDOF overexpression in lignin deposition were different by developmental stages of inflorescence stems, and total lignin contents were increased and decreased in VDOF1 and VDOF2 overexpressors, respectively. RNA-seq analysis of inducible VDOF overexpressors demonstrated that the genes for cell wall biosynthesis, including lignin biosynthetic genes, and the transcription factor genes related to stress response and brassinosteroid signaling were commonly affected by VDOF1 and VDOF2 overexpression. Taken together, we concluded that VDOF1 and VDOF2 are novel regulators of vascular cell differentiation through the course of a lifetime, with shifting their transcriptional target genes: in seedlings, the VDOF genes negatively regulate vein formation, while at reproductive stages, the VDOF proteins target lignin biosynthesis.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Lignina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Inflorescência , Mutação , Caules de Planta/citologia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes , Análise de Sequência
7.
Plant Mol Biol ; 104(3): 235-248, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32757127

RESUMO

KEY MESSAGE: Two PaGL1-like genes were identified in London plane and functional in Arabidopsis, moreover, may play an important role in the regulation of trichome development in London plane. Trichome development is governed by a complex regulatory network. In Arabidopsis, subgroup 15 of the R2R3 MYB transcription factor family, which includes GLABRA1 (GL1), is involved in trichome development. In this study, we isolated and characterized two PaGL1-like genes from London plane (Platanus acerifolia). Sequence alignment and phylogenetic analysis indicated that these PaGL1-like genes are homologous to AtGL1. Quantitative real-time PCR (qRT-PCR) analysis showed that PaGL1-like1 was expressed in all of the tested organs taken from adult London plane trees, including trichomes, petioles after trichome removal, stems after trichome removal, and leaves after trichome removal, and also in the roots, cotyledons, hypocotyls and true leaves of seedlings. By contrast, the PaGL1-like2 was expressed only in the trichomes and leaves after trichome removal from adult trees, and in the cotyledons and true leaves of seedlings. Overexpression of PaGL1-like genes caused trichome abortion when transferred into wild type Arabidopsis and promoted trichome formation in the gl1 mutant. The expression profiles of some trichome-related genes were changed in transgenic Arabidopsis lines, and yeast two-hybrid analysis indicated that PaGL1-like proteins can directly interact with trichome-related bHLH proteins from both P. acerifolia and Arabidopsis. These results suggest that PaGL1-like genes are functional in Arabidopsis and may play an important role in the regulation of trichome development in London plane.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Traqueófitas/genética , Tricomas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Filogenia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Traqueófitas/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Tricomas/crescimento & desenvolvimento
8.
Nat Commun ; 11(1): 4285, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855390

RESUMO

Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citocininas/metabolismo , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/química , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brefeldina A/farmacologia , Citocininas/química , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Meristema/citologia , Meristema/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Nat Commun ; 11(1): 4284, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855409

RESUMO

Cytokinins are mobile multifunctional plant hormones with roles in development and stress resilience. Although their Histidine Kinase receptors are substantially localised to the endoplasmic reticulum, cellular sites of cytokinin perception and importance of spatially heterogeneous cytokinin distribution continue to be debated. Here we show that cytokinin perception by plasma membrane receptors is an effective additional path for cytokinin response. Readout from a Two Component Signalling cytokinin-specific reporter (TCSn::GFP) closely matches intracellular cytokinin content in roots, yet we also find cytokinins in extracellular fluid, potentially enabling action at the cell surface. Cytokinins covalently linked to beads that could not pass the plasma membrane increased expression of both TCSn::GFP and Cytokinin Response Factors. Super-resolution microscopy of GFP-labelled receptors and diminished TCSn::GFP response to immobilised cytokinins in cytokinin receptor mutants, further indicate that receptors can function at the cell surface. We argue that dual intracellular and surface locations may augment flexibility of cytokinin responses.


Assuntos
Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas Recombinantes/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Líquido Extracelular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Mutação , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Transdução de Sinais
10.
PLoS Pathog ; 16(8): e1008835, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32785253

RESUMO

Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Fatores de Virulência/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Virulência , Fatores de Virulência/genética
11.
Nat Commun ; 11(1): 4214, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843632

RESUMO

Stomata are epidermal structures that modulate gas exchanges between plants and the atmosphere. The formation of stomata is regulated by multiple developmental and environmental signals, but how these signals are coordinated to control this process remains unclear. Here, we showed that the conserved energy sensor kinase SnRK1 promotes stomatal development under short-day photoperiod or in liquid culture conditions. Mutation of KIN10, the catalytic α-subunit of SnRK1, results in the decreased stomatal index; while overexpression of KIN10 significantly induces stomatal development. KIN10 displays the cell-type-specific subcellular location pattern. The nuclear-localized KIN10 proteins are highly enriched in the stomatal lineage cells to phosphorylate and stabilize SPEECHLESS, a master regulator of stomatal formation, thereby promoting stomatal development. Our work identifies a module links connecting the energy signaling and stomatal development and reveals that multiple regulatory mechanisms are in place for SnRK1 to modulate stomatal development in response to changing environments.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estômatos de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutação , Fosforilação , Fotoperíodo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
12.
Nat Commun ; 11(1): 4316, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859932

RESUMO

Plants utilize a UV-B (280 to 315 nm) photoreceptor UVR8 (UV RESISTANCE LOCUS 8) to sense environmental UV levels and regulate gene expression to avoid harmful UV effects. Uniquely, UVR8 uses intrinsic tryptophan for UV-B perception with a homodimer structure containing 26 structural tryptophan residues. However, besides 8 tryptophans at the dimer interface to form two critical pyramid perception centers, the other 18 tryptophans' functional role is unknown. Here, using ultrafast fluorescence spectroscopy, computational methods and extensive mutations, we find that all 18 tryptophans form light-harvesting networks and funnel their excitation energy to the pyramid centers to enhance light-perception efficiency. We determine the timescales of all elementary tryptophan-to-tryptophan energy-transfer steps in picoseconds to nanoseconds, in excellent agreement with quantum computational calculations, and finally reveal a significant leap in light-perception quantum efficiency from 35% to 73%. This photoreceptor is the first system discovered so far, to be best of our knowledge, using natural amino-acid tryptophans to form networks for both light harvesting and light perception.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Transferência de Energia , Fluorescência , Cinética , Luz , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Triptofano/metabolismo , Raios Ultravioleta
13.
Nat Commun ; 11(1): 4140, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811829

RESUMO

Investigating the evolution of complex phenotypes and the underlying molecular bases of their variation is critical to understand how organisms adapt to their environment. Applying classical quantitative genetics on a segregating population derived from a Can-0xCol-0 cross, we identify the MADS-box transcription factor FLOWERING LOCUS M (FLM) as a player of the phenotypic variation in plant growth and color. We show that allelic variation at FLM modulates plant growth strategy along the leaf economics spectrum, a trade-off between resource acquisition and resource conservation, observable across thousands of plant species. Functional differences at FLM rely on a single intronic substitution, disturbing transcript splicing and leading to the accumulation of non-functional FLM transcripts. Associations between this substitution and phenotypic and climatic data across Arabidopsis natural populations, show how noncoding genetic variation at a single gene might be adaptive through pleiotropic effects.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Processamento de RNA/genética , Alelos , Arabidopsis/metabolismo , Evolução Molecular , Pleiotropia Genética , Variação Genética , Íntrons , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Locos de Características Quantitativas/genética , Temperatura
14.
Nat Commun ; 11(1): 4082, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796832

RESUMO

The phytohormone ethylene has numerous effects on plant growth and development. Its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), is a non-proteinogenic amino acid produced by ACC SYNTHASE (ACS). ACC is often used to induce ethylene responses. Here, we demonstrate that ACC exhibits ethylene-independent signaling in Arabidopsis thaliana reproduction. By analyzing an acs octuple mutant with reduced seed set, we find that ACC signaling in ovular sporophytic tissue is involved in pollen tube attraction, and promotes secretion of the pollen tube chemoattractant LURE1.2. ACC activates Ca2+-containing ion currents via GLUTAMATE RECEPTOR-LIKE (GLR) channels in root protoplasts. In COS-7 cells expressing moss PpGLR1, ACC induces the highest cytosolic Ca2+ elevation compared to all twenty proteinogenic amino acids. In ovules, ACC stimulates transient Ca2+ elevation, and Ca2+ influx in octuple mutant ovules rescues LURE1.2 secretion. These findings uncover a novel ACC function and provide insights for unraveling new physiological implications of ACC in plants.


Assuntos
Arabidopsis/metabolismo , Etilenos/metabolismo , Óvulo Vegetal/metabolismo , Tubo Polínico/metabolismo , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Liases/metabolismo , Reguladores de Crescimento de Planta/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(33): 20316-20324, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32737163

RESUMO

Xyloglucan (XyG) is an abundant component of the primary cell walls of most plants. While the structure of XyG has been well studied, much remains to be learned about its biosynthesis. Here we employed reverse genetics to investigate the role of Arabidopsis cellulose synthase like-C (CSLC) proteins in XyG biosynthesis. We found that single mutants containing a T-DNA in each of the five Arabidopsis CSLC genes had normal levels of XyG. However, higher-order cslc mutants had significantly reduced XyG levels, and a mutant with disruptions in all five CSLC genes had no detectable XyG. The higher-order mutants grew with mild tissue-specific phenotypes. Despite the apparent lack of XyG, the cslc quintuple mutant did not display significant alteration of gene expression at the whole-genome level, excluding transcriptional compensation. The quintuple mutant could be complemented by each of the five CSLC genes, supporting the conclusion that each of them encodes a XyG glucan synthase. Phylogenetic analyses indicated that the CSLC genes are widespread in the plant kingdom and evolved from an ancient family. These results establish the role of the CSLC genes in XyG biosynthesis, and the mutants described here provide valuable tools with which to study both the molecular details of XyG biosynthesis and the role of XyG in plant cell wall structure and function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Glucanos/biossíntese , Glucosiltransferases/metabolismo , Células Vegetais/metabolismo , Xilanos/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Mutação , Filogenia
16.
Proc Natl Acad Sci U S A ; 117(33): 20325-20333, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747542

RESUMO

Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1ß. Unlike DSP1α, DSP1ß is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.


Assuntos
Processamento Alternativo/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , RNA Nuclear Pequeno/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Pólen , Sementes/genética , Sementes/metabolismo
17.
PLoS Genet ; 16(7): e1008883, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609718

RESUMO

Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many levels. While negative regulatory factors that inhibit development and are counteracted by BRs exist in the root meristem, these factors have not been characterized. The functions of UPB1 transcription factor in BR-regulated root growth have not been established, although its role in regulating root are well documented. Here, we found that BIN2 interacts with and phosphorylates the UPB1 transcription factor consequently promoting UPB1 stability and transcriptional activity. Genetic analysis revealed that UPB1 deficiency could partially recover the short-root phenotype of BR-deficient mutants. Expression of a mutated UPB1S37AS41A protein lacking a conserved BIN2 phosphorylation sites can rescue shorter root phenotype of bin2-1 mutant. In addition, UPB1 was repressed by BES1 at the transcriptional level. The paclobutrazol-resistant protein family (PRE2/3) interacts with UPB1 and inhibits its transcriptional activity to promote root meristem development, and BIN2-mediated phosphorylation of UPB1 suppresses its interaction with PRE2/3, and subsequently impairing root meristem development. Taken together, our data elucidate a molecular mechanism by which BR promotes root growth via inhibiting BIN2-UPB1 module.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Brassinosteroides/metabolismo , Proteínas Quinases/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Fosforilação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Transdução de Sinais/genética
18.
PLoS Genet ; 16(7): e1008900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667955

RESUMO

In this study we performed a genotype-phenotype association analysis of meiotic stability in 10 autotetraploid Arabidopsis lyrata and A. lyrata/A. arenosa hybrid populations collected from the Wachau region and East Austrian Forealps. The aim was to determine the effect of eight meiosis genes under extreme selection upon adaptation to whole genome duplication. Individual plants were genotyped by high-throughput sequencing of the eight meiosis genes (ASY1, ASY3, PDS5b, PRD3, REC8, SMC3, ZYP1a/b) implicated in synaptonemal complex formation and phenotyped by assessing meiotic metaphase I chromosome configurations. Our results reveal that meiotic stability varied greatly (20-100%) between individual tetraploid plants and associated with segregation of a novel ASYNAPSIS3 (ASY3) allele derived from A. lyrata. The ASY3 allele that associates with meiotic stability possesses a putative in-frame tandem duplication (TD) of a serine-rich region upstream of the coiled-coil domain that appears to have arisen at sites of DNA microhomology. The frequency of multivalents observed in plants homozygous for the ASY3 TD haplotype was significantly lower than in plants heterozygous for ASY3 TD/ND (non-duplicated) haplotypes. The chiasma distribution was significantly altered in the stable plants compared to the unstable plants with a shift from proximal and interstitial to predominantly distal locations. The number of HEI10 foci at pachytene that mark class I crossovers was significantly reduced in a plant homozygous for ASY3 TD compared to a plant heterozygous for ASY3 ND/TD. Fifty-eight alleles of the 8 meiosis genes were identified from the 10 populations analysed, demonstrating dynamic population variability at these loci. Widespread chimerism between alleles originating from A. lyrata/A. arenosa and diploid/tetraploids indicates that this group of rapidly evolving genes may provide precise adaptive control over meiotic recombination in the tetraploids, the very process that gave rise to them.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Meiose/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Pareamento Cromossômico/genética , Segregação de Cromossomos , Cromossomos de Plantas/genética , Proteínas de Ligação a DNA/genética , Diploide , Tetraploidia
19.
PLoS One ; 15(7): e0227466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32678822

RESUMO

Trans-methylation reactions are intrinsic to cellular metabolism in all living organisms. In land plants, a range of substrate-specific methyltransferases catalyze the methylation of DNA, RNA, proteins, cell wall components and numerous species-specific metabolites, thereby providing means for growth and acclimation in various terrestrial habitats. Trans-methylation reactions consume vast amounts of S-adenosyl-L-methionine (SAM) as a methyl donor in several cellular compartments. The inhibitory reaction by-product, S-adenosyl-L-homocysteine (SAH), is continuously removed by SAH hydrolase (SAHH), which essentially maintains trans-methylation reactions in all living cells. Here we report on the evolutionary conservation and post-translational control of SAHH in land plants. We provide evidence suggesting that SAHH forms oligomeric protein complexes in phylogenetically divergent land plants and that the predominant protein complex is composed by a tetramer of the enzyme. Analysis of light-stress-induced adjustments of SAHH in Arabidopsis thaliana and Physcomitrella patens further suggests that regulatory actions may take place on the levels of protein complex formation and phosphorylation of this metabolically central enzyme. Collectively, these data suggest that plant adaptation to terrestrial environments involved evolution of regulatory mechanisms that adjust the trans-methylation machinery in response to environmental cues.


Assuntos
Adenosil-Homocisteinase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Evolução Molecular , Adenosil-Homocisteinase/classificação , Adenosil-Homocisteinase/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Eletroforese em Gel Bidimensional , Focalização Isoelétrica , Luz , Filogenia , Folhas de Planta/enzimologia , Processamento de Proteína Pós-Traducional/efeitos da radiação , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Estresse Fisiológico
20.
Plant Mol Biol ; 104(3): 249-261, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32715397

RESUMO

Secondary cell wall not only provides rigidity and mechanical resistance to plants, but also has a large impact on plant growth and adaptation to environments. Biosynthesis of secondary cell wall is regulated by a complicated signaling transduction network; however, it is still unclear how the transcriptional regulation of secondary cell wall biosynthesis works at the molecular level. Here, we report in rice that OVATE family proteins 6 (OsOFP6) is a positive regulator in modulating expression of the genes related to biosynthesis of the secondary cell wall. Transgenic plants with knock-down of OsOFP6 by RNA interference showed increased leaf angle, which resulted from the thinner secondary cell wall with reduced amounts of cellulose and lignin, whilst overexpression of OsOFP6 in rice led to the thinker secondary cell wall with increased lignin content. Protein-protein interaction analysis revealed that OsOFP6 interacts with Oryza sativa homeobox 15 (OSH15), a class I KNOX protein. The interaction of OsOFP6 and OSH15 enhanced the transcriptional activity of OSH15 which binds to the promoter of OsIRX9 (Oryza sativa IRREGULAR XYLEM 9). Taken together, our study provides insights into the function of OsOFP6 in regulating leaf angle and the control of biosynthesis of secondary cell wall.


Assuntos
Parede Celular/metabolismo , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/ultraestrutura , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Lignina/metabolismo , Oryza/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA