Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.004
Filtrar
1.
Planta ; 254(4): 69, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34498125

RESUMO

MAIN CONCLUSION: Indole 3-hexanoic acid is a novel auxin and regulates plant growth and development. Auxin is a signaling molecule that influences most aspects of plant development. Although many small bioactive molecules have been developed as auxin analogues, naturally occurring auxin and the detailed mechanisms of its specific actions in plants remain to be fully elucidated. In this study, to screen auxin responses, we used a novel picolinate synthetic auxin, 3-indole hexanoic acid (IHA), which is similar in structure to indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). IHA showed classical auxin activity in the regulation of root growth, gene expression, and PIN-FORMED abundance. Physiological and genetic analyses indicated that IHA may be perceived by the auxin receptor TIR1 and transported by the G-class ATP-binding cassette protein ABCG36 and its homolog ABCG37. Importantly, IHA was detected in planta and converted into IBA depending on the peroxisomal ß-oxidation. Together, these findings reveal a novel auxin pathway component and suggest possible undiscovered modes of auxin metabolism regulation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Caproatos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Indóis , Raízes de Plantas/metabolismo
2.
BMC Genomics ; 22(1): 642, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482814

RESUMO

BACKGROUND: RNA polymerase II plays critical roles in transcription in eukaryotic organisms. C-terminal Domain Phosphatase-like 1 (CPL1) regulates the phosphorylation state of the C-terminal domain of RNA polymerase II subunit B1, which is critical in determining RNA polymerase II activity. CPL1 plays an important role in miRNA biogenesis, plant growth and stress responses. Although cpl1 mutant showes delayed-flowering phenotype, the molecular mechanism behind CPL1's role in floral transition is still unknown. RESULTS: To study the role of CPL1 during the floral transition, we first tested phenotypes of cpl1-3 mutant, which harbors a point-mutation. The cpl1-3 mutant contains a G-to-A transition in the second exon, which results in an amino acid substitution from Glu to Lys (E116K). Further analyses found that the mutated amino acid (Glu) was conserved in these species. As a result, we found that the cpl1-3 mutant experienced delayed flowering under both long- and short-day conditions, and CPL1 is involved in the vernalization pathway. Transcriptome analysis identified 109 genes differentially expressed in the cpl1 mutant, with 2 being involved in floral transition. Differential expression of the two flowering-related DEGs was further validated by qRT-PCR. CONCLUSIONS: Flowering genetic pathways analysis coupled with transciptomic analysis provides potential genes related to floral transition in the cpl1-3 mutant, and a framework for future studies of the molecular mechanisms behind CPL1's role in floral transition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Mutação , Fosfoproteínas Fosfatases/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo
3.
BMC Plant Biol ; 21(1): 402, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470613

RESUMO

BACKGROUND: Plant-parasitic nematodes and herbivorous insects have a significant negative impact on global crop production. A successful approach to protect crops from these pests is the in planta expression of nematotoxic or entomotoxic proteins such as crystal proteins from Bacillus thuringiensis (Bt) or plant lectins. However, the efficacy of this approach is threatened by emergence of resistance in nematode and insect populations to these proteins. To solve this problem, novel nematotoxic and entomotoxic proteins are needed. During the last two decades, several cytoplasmic lectins from mushrooms with nematicidal and insecticidal activity have been characterized. In this study, we tested the potential of Marasmius oreades agglutinin (MOA) to furnish Arabidopsis plants with resistance towards three economically important crop pests: the two plant-parasitic nematodes Heterodera schachtii and Meloidogyne incognita and the herbivorous diamondback moth Plutella xylostella. RESULTS: The expression of MOA does not affect plant growth under axenic conditions which is an essential parameter in the engineering of genetically modified crops. The transgenic Arabidopsis lines showed nearly complete resistance to H. schachtii, in that the number of female and male nematodes per cm root was reduced by 86-91 % and 43-93 % compared to WT, respectively. M. incognita proved to be less susceptible to the MOA protein in that 18-25 % and 26-35 % less galls and nematode egg masses, respectively, were observed in the transgenic lines. Larvae of the herbivorous P. xylostella foraging on MOA-expression lines showed a lower relative mass gain (22-38 %) and survival rate (15-24 %) than those feeding on WT plants. CONCLUSIONS: The results of our in planta experiments reveal a robust nematicidal and insecticidal activity of the fungal lectin MOA against important agricultural pests which may be exploited for crop protection.


Assuntos
Aglutininas/farmacologia , Arabidopsis/parasitologia , Herbivoria , Marasmius/química , Nematoides/fisiologia , Aglutininas/química , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mariposas/fisiologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas
4.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445331

RESUMO

Plant WRKY transcription factors play crucial roles in plant growth and development, as well as plant responses to biotic and abiotic stresses. In this study, we identified and characterized a WRKY transcription factor in rice, OsWRKY50. OsWRKY50 functions as a transcriptional repressor in the nucleus. The transcription of OsWRKY50 was repressed under salt stress conditions, but activated after abscisic acid (ABA) treatment. OsWRKY50-overexpression (OsWRKY50-OX) plants displayed increased tolerance to salt stress compared to wild type and control plants. The expression of OsLEA3, OsRAB21, OsHKT1;5, and OsP5CS1 in OsWRKY50-OX were much higher than wild type and control plants under salt stress. Furthermore, OsWRKY50-OX displayed hyposensitivity to ABA-regulated seed germination and seedling establishment. The protoplast-based transient expression system and yeast hybrid assay demonstrated that OsWRKY50 directly binds to the promoter of OsNCED5, and thus further inhibits its transcription. Taken together, our results demonstrate that rice transcription repressor OsWRKY50 mediates ABA-dependent seed germination and seedling growth and enhances salt stress tolerance via an ABA-independent pathway.


Assuntos
Ácido Abscísico/farmacologia , Oryza , Tolerância ao Sal , Fatores de Transcrição/fisiologia , Proteínas de Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Análise de Sequência de DNA , Homologia de Sequência , Fatores de Transcrição/genética
5.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445480

RESUMO

Multivesicular body (MVB)-mediated endosomal sorting and macroautophagy are the main pathways mediating the transport of cellular components to the vacuole and are essential for maintaining cellular homeostasis. The interplay of these two pathways remains poorly understood in plants. In this study, we show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific component of the endosomal sorting complex required for transport (ESCRT), essential for MVB biogenesis and plant growth, can be transported to the vacuole for degradation in response to iron deficiency. The vacuolar transport of ubiquitinated FREE1 protein is mediated by the autophagy pathway. As a consequence, the autophagy deficient mutants, atg5-1 and atg7-2, accumulate more endogenous FREE1 protein and display hypersensitivity to iron deficiency. Furthermore, under iron-deficient growth condition autophagy related genes are upregulated to promote the autophagic degradation of FREE1, thereby possibly relieving the repressive effect of FREE1 on iron absorption. Collectively, our findings demonstrate a unique regulatory mode of protein turnover of the ESCRT machinery through the autophagy pathway to respond to iron deficiency in plants.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteínas Relacionadas à Autofagia/genética , Ferro/metabolismo , Proteínas de Transporte Vesicular/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia , Transporte Biológico , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Mutação , Proteólise , Ubiquitinação
6.
Nat Commun ; 12(1): 4979, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404804

RESUMO

Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Genoma de Planta , Poliploidia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Alcaloides de Triptamina e Secologanina/metabolismo , Solo/química
7.
Planta ; 254(3): 54, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410495

RESUMO

MAIN CONCLUSION: The expression of full-length cDNAs encoding lavender AGAMOUS-like (LaAG-like) and SEPALLATA3-like (LaSEP3-like) transcription factors induces early flowering and impacts the leaf morphology at a strong expression level in Arabidopsis. Lavandula angustifolia is widely cultivated as an ornamental plant due to its attractive flower structure, and as a source of valuable essential oils for use in cosmetics, alternative medicines, and culinary products. We recently employed RNA-Seq and transcript profiling to describe a number of transcription factors (TFs) that potentially control flower development in this plant. In this study, we investigated the roles of two TFs, LaAGAMOUS-like (LaAG-like) and LaSEPALLATA3-like (LaSEP3-like), that exhibited substantial homology to Arabidopsis thaliana floral development genes, AGAMOUS and SEPALLATA3, respectively, in flowering initiation in Arabidopsis. We stably and constitutively expressed LaAG-like and LaSEP3-like cDNAs in separate Arabidopsis plants. All transgenic plants flowered earlier than the wild-type controls. However, plants that modestly overexpressed the gene were phenotypically normal, while those that strongly expressed the transgene developed curly leaves. We also assessed the expression of five endogenous flowering time regulating genes, from which high expression of Flowering Locus T (AtFT) mRNA in both LaAG-like (type-I and -II) and LaSEP3-like (type-I), and Leafy (AtLFY) mRNAs in LaSEP3-like (type-I) transgenic plants were detected, compared to wild-type controls. Our results suggest that with controlled expression, lavender AG-like and SEP3-like genes are potentially useful for the regulation of flowering time in commercial lavender species, and could be used for plant improvement studies through molecular genetics and targeted breeding programs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lavandula , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Lavandula/metabolismo , Proteínas de Domínio MADS/genética , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras
8.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360680

RESUMO

Plants have evolutionarily established resistance responses to a variety of abiotic stress conditions, in which ABA mediates the integrated regulation of these stress responses. Numerous proteins function at the transcription level or at the protein level when contributing to controls of the ABA signaling process. Although osmotin is identified as a salt-inducible protein, its function in the abiotic stress response is yet to be elucidated. To examine the role of Arabidopsis OSMOTIN 34 (OSM34) in the ABA signaling pathway, a deletion mutant osm34 generated by a CRISPR/Cas9 system and the double mutant osm34 osml (osmotin 34-like) were analyzed for various ABA responses. Both osm34 and osm34 osml showed reduced levels of ABA responses in seeds and leaves. Moreover, proline level and expression of the proline biosynthesis gene P5CS1 was significantly reduced in osm34 osml. Interestingly, OSM34 binds to SKP2A, an F-Box protein whose transcription is induced by ABA. The protein stability of OSM34 was determined to be under the control of the 26S proteasome. In conclusion, our data suggest that OSM34 functions as a positive regulator in the generation of ABA responses and is under post-translational control.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transdução de Sinais , Estresse Fisiológico , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glutamato-5-Semialdeído Desidrogenase/genética , Complexos Multienzimáticos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prolina/análise , Proteólise
9.
Nat Commun ; 12(1): 4760, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362909

RESUMO

The MADS transcription factors (TF) are an ancient eukaryotic protein family. In plants, the family is divided into two main lineages. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the MADS domain (M domain) called the Intervening domain (I domain) that was previously defined only in type II lineage MADS. Structural elucidation of the MI domains from the floral regulator, SEPALLATA3 (SEP3), shows a conserved fold with the I domain acting to stabilise the M domain. Using the floral organ identity MADS TFs, SEP3, APETALA1 (AP1) and AGAMOUS (AG), domain swapping demonstrate that the I domain alters genome-wide DNA-binding specificity and dimerisation specificity. Introducing AG carrying the I domain of AP1 in the Arabidopsis ap1 mutant resulted in strong complementation and restoration of first and second whorl organs. Taken together, these data demonstrate that the I domain acts as an integral part of the DNA-binding domain and significantly contributes to the functional identity of the MADS TF.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Homeodomínio/química , Fatores de Transcrição/química , Proteína AGAMOUS de Arabidopsis/química , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/metabolismo , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
BMC Plant Biol ; 21(1): 369, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384381

RESUMO

BACKGROUND: Low temperature severely limits the growth, yield, and geographic distributions of soybean. Soybean plants respond to cold stress by reprogramming the expression of a series of cold-responsive genes. However, the intrinsic mechanism underlying cold-stress tolerance in soybean remains unclear. A. thaliana tolerant to chilling and freezing 1 (AtTCF1) is a regulator of chromosome condensation 1 (RCC1) family protein and regulates freezing tolerance through an independent C-repeat binding transcription factor (CBF) signaling pathway. RESULTS: In this study, we identified a homologous gene of AtTCF1 in soybean (named GmTCF1a), which mediates plant tolerance to low temperature. Like AtTCF1, GmTCF1a contains five RCC1 domains and is located in the nucleus. GmTCF1a is strongly and specifically induced by cold stress. Interestingly, ectopic overexpression of GmTCF1a in Arabidopsis greatly increased plant survival rate and decreased electrolyte leakage under freezing stress. A cold-responsive gene, COR15a, was highly induced in the GmTCF1a-overexpressing transgenic lines. CONCLUSIONS: GmTCF1a responded specifically to cold stress, and ectopic expression of GmTCF1a enhanced cold tolerance and upregulated COR15a levels. These results indicate that GmTCF1a positively regulates cold tolerance in soybean and may provide novel insights into genetic improvement of cold tolerance in crops.


Assuntos
Aclimatação/genética , Genes de Plantas , Soja/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Temperatura Baixa , Resposta ao Choque Frio/genética , Proteínas Nucleares/genética , Soja/fisiologia
11.
Nat Commun ; 12(1): 4674, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344879

RESUMO

In most organisms, the number and distribution of crossovers that occur during meiosis are tightly controlled. All chromosomes must receive at least one 'obligatory crossover' and crossovers are prevented from occurring near one another by 'crossover interference'. However, the mechanistic basis of this phenomenon of crossover interference has remained mostly mysterious. Using quantitative super-resolution cytogenetics and mathematical modelling, we investigate crossover positioning in the Arabidopsis thaliana wild-type, an over-expressor of the conserved E3 ligase HEI10, and a hei10 heterozygous line. We show that crossover positions can be explained by a predictive, diffusion-mediated coarsening model, in which large, approximately evenly-spaced HEI10 foci grow at the expense of smaller, closely-spaced clusters. We propose this coarsening process explains many aspects of Arabidopsis crossover positioning, including crossover interference. Consistent with this model, we also demonstrate that crossover positioning can be predictably modified in vivo simply by altering HEI10 dosage, with higher and lower dosage leading to weaker and stronger crossover interference, respectively. As HEI10 is a conserved member of the RING finger protein family that functions in the interference-sensitive pathway for crossover formation, we anticipate that similar mechanisms may regulate crossover positioning in diverse eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cromossômicas não Histona/metabolismo , Troca Genética/genética , Meiose/genética , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Simulação por Computador , Dosagem de Genes , Estágio Paquíteno/genética , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
12.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361039

RESUMO

Plant G proteins are versatile components of transmembrane signaling transduction pathways. The deficient mutant of heterotrimeric G protein leads to defects in plant growth and development, suggesting that it regulates the GA pathway in Arabidopsis. However, the molecular mechanism of G protein regulation of the GA pathway is not understood in plants. In this study, two G protein ß subunit (AGB1) mutants, agb1-2 and N692967, were dwarfed after exogenous application of GA3. AGB1 interacts with the DNA-binding domain MYB62, a GA pathway suppressor. Transgenic plants were obtained through overexpression of MYB62 in two backgrounds including the wild-type (MYB62/WT Col-0) and agb1 mutants (MYB62/agb1) in Arabidopsis. Genetic analysis showed that under GA3 treatment, the height of the transgenic plants MYB62/WT and MYB62/agb1 was lower than that of WT. The height of MYB62/agb1 plants was closer to MYB62/WT plants and higher than that of mutants agb1-2 and N692967, suggesting that MYB62 is downstream of AGB1 in the GA pathway. qRT-PCR and competitive DNA binding assays indicated that MYB62 can bind MYB elements in the promoter of GA2ox7, a GA degradation gene, to activate GA2ox7 transcription. AGB1 affected binding of MYB62 on the promoter of GA2ox7, thereby negatively regulating th eactivity of MYB62.


Assuntos
Proteínas de Arabidopsis/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Giberelinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Sítios de Ligação , Subunidades beta da Proteína de Ligação ao GTP/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica
13.
Nat Commun ; 12(1): 4804, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376671

RESUMO

Plants respond to warm temperature by increased elongation growth of organs to enhance cooling capacity. Phytohormones, such as auxin and brassinosteroids, regulate this growth process. However, our view on the players involved in warm temperature-mediated growth remains fragmentary. Here, we show that warm temperature leads to an increased expression of JOXs and ST2A, genes controlling jasmonate catabolism. This leads to an elevated 12HSO4-JA level and consequently to a reduced level of bioactive jasmonates. Ultimately this results in more JAZ proteins, which facilitates plant growth under warm temperature conditions. Taken together, understanding the conserved role of jasmonate signalling during thermomorphogenesis contributes to ensuring food security under a changing climate.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Temperatura , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais
14.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360890

RESUMO

The thylakoid lumen houses proteins that are vital for photosynthetic electron transport, including water-splitting at photosystem (PS) II and shuttling of electrons from cytochrome b6f to PSI. Other lumen proteins maintain photosynthetic activity through biogenesis and turnover of PSII complexes. Although all lumen proteins are soluble, these known details have highlighted interactions of some lumen proteins with thylakoid membranes or thylakoid-intrinsic proteins. Meanwhile, the functional details of most lumen proteins, as well as their distribution between the soluble and membrane-associated lumen fractions, remain unknown. The current study isolated the soluble free lumen (FL) and membrane-associated lumen (MAL) fractions from Arabidopsis thaliana, and used gel- and mass spectrometry-based proteomics methods to analyze the contents of each proteome. These results identified 60 lumenal proteins, and clearly distinguished the difference between the FL and MAL proteomes. The most abundant proteins in the FL fraction were involved in PSII assembly and repair, while the MAL proteome was enriched in proteins that support the oxygen-evolving complex (OEC). Novel proteins, including a new PsbP domain-containing isoform, as well as several novel post-translational modifications and N-termini, are reported, and bi-dimensional separation of the lumen proteome identified several protein oligomers in the thylakoid lumen.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membranas Intracelulares/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Proteoma , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Espectrometria de Massas/métodos , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Filogenia , Processamento de Proteína Pós-Traducional , Proteômica/métodos
15.
Planta ; 254(3): 58, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426887

RESUMO

MAIN CONCLUSION: Arabidopsis AtPRP17, a homolog of yeast splicing factor gene PRP17, is expressed in siliques and embryos and functions in embryo development via regulating embryonic patterning. Yeast splicing factor PRP17/CDC40 is essential for cell growth through involvement in cell cycle regulation. Arabidopsis genome encodes a homolog of PRP17, AtPRP17; however, its function in Arabidopsis development is unknown. This study showed that AtPRP17 was highly expressed in siliques and embryos, and the protein was localized in the nucleus. The loss-of-function mutation of AtPRP17 led to shrunken seeds in Arabidopsis mature siliques. Further analysis revealed that the defective mature seeds of the mutant resulted from abnormal embryos with shriveled cotyledons, unequal cotyledons, swollen and shortened hypocotyls, or shortened radicles. During embryogenesis, mutant embryos showed delayed development and defective patterning of the apical and base domains, such as inhibited cotyledons and disorganized quiescent center cells and columella. Our results suggested that AtPRP17 functions in Arabidopsis embryo development via regulating embryonic patterning.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cotilédone/genética , Desenvolvimento Embrionário , Hipocótilo
16.
New Phytol ; 232(1): 221-236, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197643

RESUMO

Dimethylation of histone H3 at lysine 9 (H3K9me2) is associated with heterochromatinization and transcriptional gene silencing in plants. The activation of sets of genes by drought stress is correlated with reduced H3K9me2 levels, but the role of H3K9 methylation in the regulation of drought-stress responses remains elusive. Here, we show that the Jumonji domain-containing H3K9 demethylase JMJ27 positively regulates drought-stress responses through its histone demethylase activity. RNA-seq analysis identified JMJ27-regulated genes, including positive regulators of drought stress GALACTINOL SYNTHASE 2 (GOLS2) and RESPONSE TO DESICCATION 20 (RD20). Genetic analysis demonstrated that JMJ27 positively regulates drought-stress responses at least partly through GOLS2 and RD20. JMJ27 directly associated with GOLS2 and RD20, and protected these loci from silencing by reducing H3K9me2 levels under normal conditions. REGULATORY PARTICLE NON-ATPASE 1a (RPN1a), a subunit of the 26S proteasome, interacted with JMJ27 and negatively regulated JMJ27 accumulation. Drought stress diminished RPN1a abundance, resulting in increased JMJ27 abundance. The drought stress-promoted occupancy of JMJ27 at GOLS2 and RD20 chromatin may reinforce their transcriptional induction by locally reducing the H3K9me2 levels. These results indicate that the RPN1a-JMJ27 module precisely regulates dynamic H3K9me2 deposition plasticity, ensuring proper adaptation to drought stress in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desmetilação , Secas , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji
17.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202673

RESUMO

Trichome formation in Arabidopsis is regulated by several key regulators, and plants hormones such as gibberellin, salicylic acid, jasmonic acid and cytokinins have been shown to regulate trichome formation by affecting the transcription or activities of the key regulators. We report here the identification of two abscisic acid (ABA) responsive genes, SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) and SVB2 as trichome formation regulator genes in Arabidopsis. The expression levels of SVB and SVB2 were increased in response to ABA treatment, their expression levels were reduced in the ABA biosynthesis mutant aba1-5, and they have similar expression pattern. In addition to the trichome defects reported previously for the svb single mutant, we found that even though the trichome numbers were largely unaffected in both the svb and svb2 single mutants generate by using CRISPR/Cas9 gene editing, the trichome numbers were greatly reduced in the svb svb2 double mutants. On the other hand, trichome numbers were increased in SVB or SVB2 overexpression plants. RT-PCR results show that the expression of the trichome formation key regulator gene ENHANCER OF GLABRA3 (EGL3) was affected in the svb svb2 double mutants. Our results suggest that SVB and SVB2 are ABA responsive genes, and SVB and SVB2 function redundantly to regulate trichome formation in Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Tricomas/metabolismo , Sequência de Aminoácidos , Arabidopsis/classificação , Proteínas de Arabidopsis/química , Mutação , Fenótipo , Filogenia , Desenvolvimento Vegetal , Transporte Proteico , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
18.
Nat Commun ; 12(1): 4327, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267202

RESUMO

Trivalent rare earth elements (REEs) are widely used in agriculture. Aerially applied REEs enter leaf epidermal cells by endocytosis and act systemically to improve the growth of the whole plant. The mechanistic basis of their systemic activity is unclear. Here, we show that treatment of Arabidopsis leaves with trivalent lanthanum [La(III)], a representative of REEs, triggers systemic endocytosis from leaves to roots. La(III)-induced systemic endocytosis requires AtrbohD-mediated reactive oxygen species production and jasmonic acid. Systemic endocytosis impacts the accumulation of mineral elements and the development of roots consistent with the growth promoting effects induced by aerially applied REEs. These findings provide insights into the mechanistic basis of REE activity in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Lantânio/farmacologia , NADPH Oxidases/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Endocitose/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Minerais/metabolismo , NADPH Oxidases/genética , Oxilipinas/metabolismo , Células Vegetais/efeitos dos fármacos , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais
19.
Plant Mol Biol ; 106(6): 555-567, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275101

RESUMO

KEY MESSAGE: Root-specific expression of a cytokinin-degrading CKX gene in maize roots causes formation of a larger root system leading to higher element content in shoot organs. The size and architecture of the root system is functionally relevant for the access to water and soil nutrients. A great number of mostly unknown genes are involved in regulating root architecture complicating targeted breeding of plants with a larger root system. Here, we have explored whether root-specific degradation of the hormone cytokinin, which is a negative regulator of root growth, can be used to genetically engineer maize (Zea mays L.) plants with a larger root system. Root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE (CKX) gene of Arabidopsis caused the formation of up to 46% more root dry weight while shoot growth of these transgenic lines was similar as in non-transgenic control plants. The concentration of several elements, in particular of those with low soil mobility (K, P, Mo, Zn), was increased in leaves of transgenic lines. In kernels, the changes in concentration of most elements were less pronounced, but the concentrations of Cu, Mn and Zn were significantly increased in at least one of the three independent lines. Our data illustrate the potential of an increased root system as part of efforts towards achieving biofortification. Taken together, this work has shown that root-specific expression of a CKX gene can be used to engineer the root system of maize and alter shoot element composition.


Assuntos
Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Proteínas de Membrana/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Folhas de Planta/genética , Raízes de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Manganês/metabolismo , Proteínas de Membrana/metabolismo , Minerais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zinco/metabolismo
20.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298863

RESUMO

Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), which is anchored to the outer membranes of chloroplasts and mitochondria, affects carbon metabolism by modulating the import of some preproteins into chloroplasts and mitochondria. AtPAP9 bears a 72% amino acid sequence identity with AtPAP2, and both proteins carry a hydrophobic motif at their C-termini. Here, we show that AtPAP9 is a tail-anchored protein targeted to the outer membrane of chloroplasts. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that both AtPAP9 and AtPAP2 bind to a small subunit of rubisco 1B (AtSSU1B) and a number of chloroplast proteins. Chloroplast import assays using [35S]-labeled AtSSU1B showed that like AtPAP2, AtPAP9 also plays a role in AtSSU1B import into chloroplasts. Based on these data, we propose that AtPAP9 and AtPAP2 perform overlapping roles in modulating the import of specific proteins into chloroplasts. Most plant genomes contain only one PAP-like sequence encoding a protein with a hydrophobic motif at the C-terminus. The presence of both AtPAP2 and AtPAP9 in the Arabidopsis genome may have arisen from genome duplication in Brassicaceae. Unlike AtPAP2 overexpression lines, the AtPAP9 overexpression lines did not exhibit early-bolting or high-seed-yield phenotypes. Their differential growth phenotypes could be due to the inability of AtPAP9 to be targeted to mitochondria, as the overexpression of AtPAP2 on mitochondria enhances the capacity of mitochondria to consume reducing equivalents.


Assuntos
Fosfatase Ácida/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sequência de Aminoácidos , Brassicaceae/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Genoma de Planta/genética , Mitocôndrias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...