Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.874
Filtrar
1.
Nat Commun ; 11(1): 4859, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978401

RESUMO

Cell death is intrinsically linked with immunity. Disruption of an immune-activated MAPK cascade, consisting of MEKK1, MKK1/2, and MPK4, triggers cell death and autoimmunity through the nucleotide-binding leucine-rich repeat (NLR) protein SUMM2 and the MAPK kinase kinase MEKK2. In this study, we identify a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L), named LETUM2/MEDOS1 (LET2/MDS1), and the glycosylphosphatidylinositol (GPI)-anchored protein LLG1 as regulators of mekk1-mkk1/2-mpk4 cell death. LET2/MDS1 functions additively with LET1, another CrRLK1L, and acts genetically downstream of MEKK2 in regulating SUMM2 activation. LET2/MDS1 complexes with LET1 and promotes LET1 phosphorylation, revealing an intertwined regulation between different CrRLK1Ls. LLG1 interacts with the ectodomain of LET1/2 and mediates LET1/2 transport to the plasma membrane, corroborating its function as a co-receptor of LET1/2 in the mekk1-mkk1/2-mpk4 cell death pathway. Thus, our data suggest that a trimeric complex consisting of two CrRLK1Ls LET1, LET2/MDS1, and a GPI-anchored protein LLG1 that regulates the activation of NLR SUMM2 for initiating cell death and autoimmunity.


Assuntos
Autoimunidade/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoimunidade/fisiologia , Proteínas de Transporte/imunologia , Catharanthus/genética , Catharanthus/metabolismo , Morte Celular/genética , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica de Plantas , Glicosilfosfatidilinositóis , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Interferência de RNA , Transcriptoma
2.
PLoS Comput Biol ; 16(9): e1007740, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32881861

RESUMO

The circadian clock is a complex system that plays many important roles in most organisms. Previously, many mathematical models have been used to sharpen our understanding of the Arabidopsis clock, which brought to light the roles of each transcriptional and post-translational regulations. However, the presence of both regulations, instead of either transcription or post-translation, raised curiosity of whether the combination of these two regulations is important for the clock's system. In this study, we built a series of simplified oscillators with different regulations to study the importance of post-translational regulation (specifically, 26S proteasome degradation) in the clock system. We found that a simple transcriptional-based oscillator can already generate sustained oscillation, but the oscillation can be easily destroyed in the presence of transcriptional leakage. Coupling post-translational control with transcriptional-based oscillator in a feed-forward loop will greatly improve the robustness of the oscillator in the presence of basal leakage. Using these general models, we were able to replicate the increased variability observed in the E3 ligase mutant for both plant and mammalian clocks. With this insight, we also predict a plausible regulator of several E3 ligase genes in the plant's clock. Thus, our results provide insights into and the plausible importance in coupling transcription and post-translation controls in the clock system.


Assuntos
Relógios Circadianos/genética , Modelos Biológicos , Processamento de Proteína Pós-Traducional/genética , Transcrição Genética/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biologia Computacional , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Commun ; 11(1): 4509, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908151

RESUMO

Glycolysis is one of the primordial pathways of metabolism, playing a pivotal role in energy metabolism and biosynthesis. Glycolytic enzymes are known to form transient multi-enzyme assemblies. Here we examine the wider protein-protein interactions of plant glycolytic enzymes and reveal a moonlighting role for specific glycolytic enzymes in mediating the co-localization of mitochondria and chloroplasts. Knockout mutation of phosphoglycerate mutase or enolase resulted in a significantly reduced association of the two organelles. We provide evidence that phosphoglycerate mutase and enolase form a substrate-channelling metabolon which is part of a larger complex of proteins including pyruvate kinase. These results alongside a range of genetic complementation experiments are discussed in the context of our current understanding of chloroplast-mitochondrial interactions within photosynthetic eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Cloroplastos/enzimologia , Glicólise/fisiologia , Mitocôndrias/enzimologia , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Metabolismo Energético/fisiologia , Mutação , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Fotossíntese/fisiologia , Plantas Geneticamente Modificadas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/fisiologia , Piruvato Quinase/genética , Piruvato Quinase/metabolismo
4.
Ecotoxicol Environ Saf ; 203: 110999, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888604

RESUMO

Aluminium (Al) is a key element that plays a major role in inhibiting plant growth and productivity under acidic soils. While lipids may be involved in plant tolerance/sensitivity to Al, the role of monogalactosyldiacylglycerol (MGDG) in Al response remains unknown. In this study, Arabidopsis MGDG synthase (AtMGD) mutants (mgd1, mgd2 and mgd3) and wild-type (Col-0) plants were treated with AlCl3; the effect of aluminium on root growth, aluminium distribution, plasma membrane integrity, lipid peroxidation, hydrogen peroxide content and membrane lipid compositions were analysed. Under Al stress, mgd mutants exhibited a more severe root growth inhibition, plasma membrane integrity damage and lipid peroxidation compared to Col-0. Al accumulation in root tips showed no difference between Col-0 and mutants under Al stress. Lipid analysis demonstrated that under Al treatment the MGDG content in all plants and MGDG/DGDG (digalactosyldiacylglycerol) remarkably reduced, especially in mutants impairing the stability and permeability of the plasma membrane. These results indicate that the Arabidopsis mgd mutants are hypersensitive to Al stress due to the reduction in MGDG content, and this is of great significance in the discovery of effective measures for plants to inhibit aluminium toxicity.


Assuntos
Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Galactolipídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Alumínio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Galactolipídeos/genética , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(37): 23140-23147, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868422

RESUMO

In higher plants, molecular responses to exogenous hypoxia are driven by group VII ethylene response factors (ERF-VIIs). These transcriptional regulators accumulate in the nucleus under hypoxia to activate anaerobic genes but are destabilized in normoxic conditions through the action of oxygen-sensing plant cysteine oxidases (PCOs). The PCOs catalyze the reaction of oxygen with the conserved N-terminal cysteine of ERF-VIIs to form cysteine sulfinic acid, triggering degradation via the Cys/Arg branch of the N-degron pathway. The PCOs are therefore a vital component of the plant oxygen signaling system, connecting environmental stimulus with cellular and physiological response. Rational manipulation of PCO activity could regulate ERF-VII levels and improve flood tolerance, but requires detailed structural information. We report crystal structures of the constitutively expressed PCO4 and PCO5 from Arabidopsis thaliana to 1.24 and 1.91 Å resolution, respectively. The structures reveal that the PCOs comprise a cupin-like scaffold, which supports a central metal cofactor coordinated by three histidines. While this overall structure is consistent with other thiol dioxygenases, closer inspection of the active site indicates that other catalytic features are not conserved, suggesting that the PCOs may use divergent mechanisms to oxidize their substrates. Conservative substitution of two active site residues had dramatic effects on PCO4 function both in vitro and in vivo, through yeast and plant complementation assays. Collectively, our data identify key structural elements that are required for PCO activity and provide a platform for engineering crops with improved hypoxia tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigênio/metabolismo , Cisteína Dioxigenase/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredução , Transdução de Sinais/fisiologia , Fatores de Transcrição
6.
BMC Bioinformatics ; 21(1): 365, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32838742

RESUMO

BACKGROUND: The amount of published full-text articles has increased dramatically. Text mining tools configure an essential approach to building biological networks, updating databases and providing annotation for new pathways. PESCADOR is an online web server based on LAITOR and NLProt text mining tools, which retrieves protein-protein co-occurrences in a tabular-based format, adding a network schema. Here we present an HPC-oriented version of PESCADOR's native text mining tool, renamed to LAITOR4HPC, aiming to access an unlimited abstract amount in a short time to enrich available networks, build new ones and possibly highlight whether fields of research have been exhaustively studied. RESULTS: By taking advantage of parallel computing HPC infrastructure, the full collection of MEDLINE abstracts available until June 2017 was analyzed in a shorter period (6 days) when compared to the original online implementation (with an estimated 2 years to run the same data). Additionally, three case studies were presented to illustrate LAITOR4HPC usage possibilities. The first case study targeted soybean and was used to retrieve an overview of published co-occurrences in a single organism, retrieving 15,788 proteins in 7894 co-occurrences. In the second case study, a target gene family was searched in many organisms, by analyzing 15 species under biotic stress. Most co-occurrences regarded Arabidopsis thaliana and Zea mays. The third case study concerned the construction and enrichment of an available pathway. Choosing A. thaliana for further analysis, the defensin pathway was enriched, showing additional signaling and regulation molecules, and how they respond to each other in the modulation of this complex plant defense response. CONCLUSIONS: LAITOR4HPC can be used for an efficient text mining based construction of biological networks derived from big data sources, such as MEDLINE abstracts. Time consumption and data input limitations will depend on the available resources at the HPC facility. LAITOR4HPC enables enough flexibility for different approaches and data amounts targeted to an organism, a subject, or a specific pathway. Additionally, it can deliver comprehensive results where interactions are classified into four types, according to their reliability.


Assuntos
Software , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bases de Dados Factuais , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Zea mays/metabolismo
7.
PLoS Pathog ; 16(8): e1008835, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32785253

RESUMO

Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Fatores de Virulência/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Virulência , Fatores de Virulência/genética
8.
Nat Commun ; 11(1): 4285, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855390

RESUMO

Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citocininas/metabolismo , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/química , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brefeldina A/farmacologia , Citocininas/química , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Meristema/citologia , Meristema/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Nat Commun ; 11(1): 4284, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855409

RESUMO

Cytokinins are mobile multifunctional plant hormones with roles in development and stress resilience. Although their Histidine Kinase receptors are substantially localised to the endoplasmic reticulum, cellular sites of cytokinin perception and importance of spatially heterogeneous cytokinin distribution continue to be debated. Here we show that cytokinin perception by plasma membrane receptors is an effective additional path for cytokinin response. Readout from a Two Component Signalling cytokinin-specific reporter (TCSn::GFP) closely matches intracellular cytokinin content in roots, yet we also find cytokinins in extracellular fluid, potentially enabling action at the cell surface. Cytokinins covalently linked to beads that could not pass the plasma membrane increased expression of both TCSn::GFP and Cytokinin Response Factors. Super-resolution microscopy of GFP-labelled receptors and diminished TCSn::GFP response to immobilised cytokinins in cytokinin receptor mutants, further indicate that receptors can function at the cell surface. We argue that dual intracellular and surface locations may augment flexibility of cytokinin responses.


Assuntos
Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas Recombinantes/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Líquido Extracelular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Mutação , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Transdução de Sinais
10.
Nat Commun ; 11(1): 3914, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764676

RESUMO

Cell polarity is fundamental to the development of both eukaryotes and prokaryotes, yet the mechanisms behind its formation are not well understood. Here we found that, phytohormone auxin-induced, sterol-dependent nanoclustering of cell surface transmembrane receptor kinase 1 (TMK1) is critical for the formation of polarized domains at the plasma membrane (PM) during the morphogenesis of cotyledon pavement cells (PC) in Arabidopsis. Auxin-induced TMK1 nanoclustering stabilizes flotillin1-associated ordered nanodomains, which in turn promote the nanoclustering of ROP6 GTPase that acts downstream of TMK1 to regulate cortical microtubule organization. In turn, cortical microtubules further stabilize TMK1- and flotillin1-containing nanoclusters at the PM. Hence, we propose a new paradigm for polarity formation: A diffusive signal triggers cell polarization by promoting cell surface receptor-mediated nanoclustering of signaling components and cytoskeleton-mediated positive feedback that reinforces these nanodomains into polarized domains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Polaridade Celular/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Membrana Celular/metabolismo , Polaridade Celular/genética , Metabolismo dos Lipídeos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Reguladores de Crescimento de Planta/metabolismo , Plantas Geneticamente Modificadas , Agregados Proteicos , Estabilidade Proteica , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais
11.
Plant Mol Biol ; 104(3): 283-296, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32740897

RESUMO

KEY MESSAGE: Differences in FAE1 enzyme affinity for the acyl-CoA substrates, as well as the balance between the different pathways involved in their incorporation to triacylglycerol might be determinant of the different composition of the seed oil in Brassicaceae. Brassicaceae present a great heterogeneity of seed oil and fatty acid composition, accumulating Very Long Chain Fatty Acids with industrial applications. However, the molecular determinants of these differences remain elusive. We have studied the ß-ketoacyl-CoA synthase from the high erucic feedstock Thlaspi arvense (Pennycress). Functional characterization of the Pennycress FAE1 enzyme was performed in two Arabidopsis backgrounds; Col-0, with less than 2.5% of erucic acid in its seed oil and the fae1-1 mutant, deficient in FAE1 activity, that did not accumulate erucic acid. Seed-specific expression of the Pennycress FAE1 gene in Col-0 resulted in a 3 to fourfold increase of erucic acid content in the seed oil. This increase was concomitant with a decrease of eicosenoic acid levels without changes in oleic ones. Interestingly, only small changes in eicosenoic and erucic acid levels occurred when the Pennycress FAE1 gene was expressed in the fae1-1 mutant, with high levels of oleic acid available for elongation, suggesting that the Pennycress FAE1 enzyme showed higher affinity for eicosenoic acid substrates, than for oleic ones in Arabidopsis. Erucic acid was incorporated to triacylglycerol in the transgenic lines without significant changes in their levels in the diacylglycerol fraction, suggesting that erucic acid was preferentially incorporated to triacylglycerol via DGAT1. Expression analysis of FAE1, AtDGAT1, AtLPCAT1 and AtPDAT1 genes in the transgenic lines further supported this conclusion. Differences in FAE1 affinity for the oleic and eicosenoic substrates among Brassicaceae, as well as their incorporation to triacylglycerol might explain the differences in composition of their seed oil.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Biocombustíveis , Vias Biossintéticas , Brassicaceae/metabolismo , Thlaspi/enzimologia , Thlaspi/metabolismo , Triglicerídeos/biossíntese , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Erúcicos/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Óleos Vegetais/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Análise de Sequência , Thlaspi/genética , Transcriptoma
12.
Plant Mol Biol ; 104(3): 263-281, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32740898

RESUMO

KEY MESSAGE: Plant-specific Dof transcription factors VDOF1 and VDOF2 are novel regulators of vascular cell differentiation through the course of a lifetime in Arabidopsis, with shifting their transcriptional target genes. Vascular system is one of critical tissues for vascular plants to transport low-molecular compounds, such as water, minerals, and the photosynthetic product, sucrose. Here, we report the involvement of two Dof transcription factors, named VASCULAR-RELATED DOF1 (VDOF1)/VDOF4.6 and VDOF2/VDOF1.8, in vascular cell differentiation and lignin biosynthesis in Arabidopsis. VDOF genes were expressed in vascular tissues, but the detailed expression sites were partly different between VDOF1 and VDOF2. Vein patterning and lignin analysis of VDOF overexpressors and double mutant vdof1 vdof2 suggested that VDOF1 and VDOF2 would function as negative regulators of vein formation in seedlings, and lignin deposition in inflorescence stems. Interestingly, effects of VDOF overexpression in lignin deposition were different by developmental stages of inflorescence stems, and total lignin contents were increased and decreased in VDOF1 and VDOF2 overexpressors, respectively. RNA-seq analysis of inducible VDOF overexpressors demonstrated that the genes for cell wall biosynthesis, including lignin biosynthetic genes, and the transcription factor genes related to stress response and brassinosteroid signaling were commonly affected by VDOF1 and VDOF2 overexpression. Taken together, we concluded that VDOF1 and VDOF2 are novel regulators of vascular cell differentiation through the course of a lifetime, with shifting their transcriptional target genes: in seedlings, the VDOF genes negatively regulate vein formation, while at reproductive stages, the VDOF proteins target lignin biosynthesis.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Lignina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Inflorescência , Mutação , Caules de Planta/citologia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes , Análise de Sequência
13.
Plant Mol Biol ; 104(3): 235-248, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32757127

RESUMO

KEY MESSAGE: Two PaGL1-like genes were identified in London plane and functional in Arabidopsis, moreover, may play an important role in the regulation of trichome development in London plane. Trichome development is governed by a complex regulatory network. In Arabidopsis, subgroup 15 of the R2R3 MYB transcription factor family, which includes GLABRA1 (GL1), is involved in trichome development. In this study, we isolated and characterized two PaGL1-like genes from London plane (Platanus acerifolia). Sequence alignment and phylogenetic analysis indicated that these PaGL1-like genes are homologous to AtGL1. Quantitative real-time PCR (qRT-PCR) analysis showed that PaGL1-like1 was expressed in all of the tested organs taken from adult London plane trees, including trichomes, petioles after trichome removal, stems after trichome removal, and leaves after trichome removal, and also in the roots, cotyledons, hypocotyls and true leaves of seedlings. By contrast, the PaGL1-like2 was expressed only in the trichomes and leaves after trichome removal from adult trees, and in the cotyledons and true leaves of seedlings. Overexpression of PaGL1-like genes caused trichome abortion when transferred into wild type Arabidopsis and promoted trichome formation in the gl1 mutant. The expression profiles of some trichome-related genes were changed in transgenic Arabidopsis lines, and yeast two-hybrid analysis indicated that PaGL1-like proteins can directly interact with trichome-related bHLH proteins from both P. acerifolia and Arabidopsis. These results suggest that PaGL1-like genes are functional in Arabidopsis and may play an important role in the regulation of trichome development in London plane.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Traqueófitas/genética , Tricomas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Filogenia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Traqueófitas/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Tricomas/crescimento & desenvolvimento
14.
Nat Commun ; 11(1): 4140, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811829

RESUMO

Investigating the evolution of complex phenotypes and the underlying molecular bases of their variation is critical to understand how organisms adapt to their environment. Applying classical quantitative genetics on a segregating population derived from a Can-0xCol-0 cross, we identify the MADS-box transcription factor FLOWERING LOCUS M (FLM) as a player of the phenotypic variation in plant growth and color. We show that allelic variation at FLM modulates plant growth strategy along the leaf economics spectrum, a trade-off between resource acquisition and resource conservation, observable across thousands of plant species. Functional differences at FLM rely on a single intronic substitution, disturbing transcript splicing and leading to the accumulation of non-functional FLM transcripts. Associations between this substitution and phenotypic and climatic data across Arabidopsis natural populations, show how noncoding genetic variation at a single gene might be adaptive through pleiotropic effects.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Processamento de RNA/genética , Alelos , Arabidopsis/metabolismo , Evolução Molecular , Pleiotropia Genética , Variação Genética , Íntrons , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Locos de Características Quantitativas/genética , Temperatura
15.
Nat Commun ; 11(1): 4316, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859932

RESUMO

Plants utilize a UV-B (280 to 315 nm) photoreceptor UVR8 (UV RESISTANCE LOCUS 8) to sense environmental UV levels and regulate gene expression to avoid harmful UV effects. Uniquely, UVR8 uses intrinsic tryptophan for UV-B perception with a homodimer structure containing 26 structural tryptophan residues. However, besides 8 tryptophans at the dimer interface to form two critical pyramid perception centers, the other 18 tryptophans' functional role is unknown. Here, using ultrafast fluorescence spectroscopy, computational methods and extensive mutations, we find that all 18 tryptophans form light-harvesting networks and funnel their excitation energy to the pyramid centers to enhance light-perception efficiency. We determine the timescales of all elementary tryptophan-to-tryptophan energy-transfer steps in picoseconds to nanoseconds, in excellent agreement with quantum computational calculations, and finally reveal a significant leap in light-perception quantum efficiency from 35% to 73%. This photoreceptor is the first system discovered so far, to be best of our knowledge, using natural amino-acid tryptophans to form networks for both light harvesting and light perception.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Transferência de Energia , Fluorescência , Cinética , Luz , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Triptofano/metabolismo , Raios Ultravioleta
16.
PLoS One ; 15(8): e0237448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790800

RESUMO

We established that Endosidin2 (ES2) affected the trafficking routes of both newly synthesized and endocytic pools of PIN-FORMED2 (PIN2) in Arabidopsis root epidermal cells. PIN2 populations accumulated in separated patches, which gradually merged into large and compact ES2 aggregates (ES2As). FM4-64 endocytic tracer labeled ES2As as well. Both PIN2 pools also appeared in vacuoles. Accelerated endocytosis of PIN2, its aggregation in the cytoplasm, and redirection of PIN2 flows to vacuoles led to a substantial reduction of the abundance of this protein in the plasma membrane. Whereas PIN-FORMED3 and PIN-FORMED4 also aggregated in the cytoplasm, SYT1 was not sensitive to ES2 treatment and did not appear either in the cytoplasmic aggregates or vacuoles. Ultrastructural analysis revealed that ES2 affects the Golgi apparatus so that stacks acquired cup-shape and even circular shape surrounded by several vesicles. Abnormally shaped Golgi stacks, stack remnants, multi-lamellar structures, separated Golgi cisterna rings, tubular structures, and vesicles formed discrete clusters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endocitose/efeitos dos fármacos , Limoninas/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Parede Celular/metabolismo , Citoplasma/metabolismo , Complexo de Golgi/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transporte Proteico/efeitos dos fármacos , Sinaptotagmina I/metabolismo
17.
Nat Commun ; 11(1): 4214, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843632

RESUMO

Stomata are epidermal structures that modulate gas exchanges between plants and the atmosphere. The formation of stomata is regulated by multiple developmental and environmental signals, but how these signals are coordinated to control this process remains unclear. Here, we showed that the conserved energy sensor kinase SnRK1 promotes stomatal development under short-day photoperiod or in liquid culture conditions. Mutation of KIN10, the catalytic α-subunit of SnRK1, results in the decreased stomatal index; while overexpression of KIN10 significantly induces stomatal development. KIN10 displays the cell-type-specific subcellular location pattern. The nuclear-localized KIN10 proteins are highly enriched in the stomatal lineage cells to phosphorylate and stabilize SPEECHLESS, a master regulator of stomatal formation, thereby promoting stomatal development. Our work identifies a module links connecting the energy signaling and stomatal development and reveals that multiple regulatory mechanisms are in place for SnRK1 to modulate stomatal development in response to changing environments.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estômatos de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutação , Fosforilação , Fotoperíodo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
18.
Nat Commun ; 11(1): 4082, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796832

RESUMO

The phytohormone ethylene has numerous effects on plant growth and development. Its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), is a non-proteinogenic amino acid produced by ACC SYNTHASE (ACS). ACC is often used to induce ethylene responses. Here, we demonstrate that ACC exhibits ethylene-independent signaling in Arabidopsis thaliana reproduction. By analyzing an acs octuple mutant with reduced seed set, we find that ACC signaling in ovular sporophytic tissue is involved in pollen tube attraction, and promotes secretion of the pollen tube chemoattractant LURE1.2. ACC activates Ca2+-containing ion currents via GLUTAMATE RECEPTOR-LIKE (GLR) channels in root protoplasts. In COS-7 cells expressing moss PpGLR1, ACC induces the highest cytosolic Ca2+ elevation compared to all twenty proteinogenic amino acids. In ovules, ACC stimulates transient Ca2+ elevation, and Ca2+ influx in octuple mutant ovules rescues LURE1.2 secretion. These findings uncover a novel ACC function and provide insights for unraveling new physiological implications of ACC in plants.


Assuntos
Arabidopsis/metabolismo , Etilenos/metabolismo , Óvulo Vegetal/metabolismo , Tubo Polínico/metabolismo , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Liases/metabolismo , Reguladores de Crescimento de Planta/metabolismo
19.
Ecotoxicol Environ Saf ; 204: 111056, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763566

RESUMO

Strontium (Sr) is an emerging environmental pollutant that has become a major global concern after the nuclear accident at the Fukushima Daiichi Nuclear Power Plant in 2011. Although many studies have demonstrated the harmful effects of Sr on plant growth and development at the physiological level, knowledge regarding how plants sense and respond to Sr stress at the molecular level is limited. Recent studies have suggested that microRNAs (miRNAs) function as key regulators of plant growth and development as well as in the responses of plants to environmental stresses, including salinity, drought, cold, nutrient starvation, and heavy metals. In this study, we examined the global expression profile of miRNAs under Sr stress using small RNA sequencing analysis in Arabidopsis to better understand the molecular basis of plant responses to Sr stress. To identify specific Sr-responsive miRNAs, we performed comparative miRNA expression profiling analysis using control, CaCl2-, and SrCl2-treated seedlings. Compared to the control treatment, the expressions of most miRNAs were considerably decreased in the Sr-treated seedlings. However, under Sr stress, the expressions of primary miRNAs (pri-miRNAs) and their target genes were significantly increased; the protein levels of HYPONASTIC LEAVES 1 (HYL1), one of the core components of the microprocessor complex, were strongly reduced despite the increased HYL1 mRNA expression. In addition, hyl1-2 mutant plants were shown to be more sensitive to Sr stress than wild-type plants. Collectively, our results strongly suggested that Sr stress may be associated with the disruption of miRNA biogenesis by reducing the protein level of HYL1, which is required to maintain proper growth and development for plants. Our findings further indicated that some miRNAs may play important roles in plant responses to Sr stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , MicroRNAs/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Poluentes do Solo/toxicidade , Estrôncio/toxicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Estresse Oxidativo/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Processamento Pós-Transcricional do RNA
20.
Ecotoxicol Environ Saf ; 205: 111131, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827964

RESUMO

Arsenic (As) is one of the most toxic contaminants to food crops, and as such, decreasing crops uptake and accumulation of As cannot be overemphasized. Here, we characterized a functional wheat NIP2;1 homolog of the As transporter, TaNIP2;1. TaNIP2;1 expression was suppressed by arsenite (As(III)) in wheat. Ectopic expression of TaNIP2;1 in the Δfps1 yeast mutant enhanced yeast sensitivity towards As(III). Conversely, the elevated expression of TaNIP2;1 in Δacr3 mutants decreased yeast sensitivity to arsenate (As(V)), demonstrating that TaNIP2;1 showed both influx and efflux transport activities for As(III) in yeasts. This is further supported by increased As concentration in the yeast cells that overproduce TaNIP2;1 in Δfps1, while As concentration decreased in Δacr3. Furthermore, ectopic expression of TaNIP2;1 in Arabidopsis confirmed that TaNIP2;1 can transport As into plants, as supported by increased sensitivity to and uptake of As(III). No change in plant sensitivity was found to Cu(II), Cd(II), Zn(II) or Ni(II), indicating that transport activity of TaNIP2;1 is specific for As(III). Taken together, our data show that TaNIP2;1 may be involved in As(III) transportation in plants. This finding reveals a functional gene that can be manipulated to reduce As content in wheat.


Assuntos
Aquagliceroporinas/genética , Arabidopsis/efeitos dos fármacos , Arsenitos/toxicidade , Expressão Ectópica do Gene/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Aquagliceroporinas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arsenitos/metabolismo , Bioacumulação , Transporte Biológico , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Poluentes do Solo/metabolismo , Triticum/genética , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA