Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.920
Filtrar
1.
Plant Sci ; 289: 110280, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31623773

RESUMO

MADS-box genes encode transcription factors involved in the control of many important developmental processes, especially the flower development of angiosperms. Analysis on gene regulatory relationship between MADS-box genes is useful for understanding the molecular mechanism of flower development. In this study, we focused on the regulatory relationship between MADS-box transcription factors APETALA1 (AP1) and PISTILLATA(PI)/DEFICIENS (DEF) in birch. We found that BpPI was an authentic target gene of BpAP1, and BpAP1 activated the expression of BpPI via directly binding to the CArG box motif. Functional analysis of BpPI showed that overexpression of BpPI may delay flowering via restricting flowering activators, in which BpAP1 was significantly down-regulated. We further investigated the regulatory of BpAP1 by BpPI, and found that BpPI could directly bind to the promoter of BpAP1 to restrict BpAP1 expression. In addition, we also found that BpPI could interact with its hypothetical partner BpDEF to co-regulate BpAP1 in birch. Our results suggested that overexpression of BpPI may delay flowering via restricting flowering activators, and there is a negative feedback loop between BpAP1 and BpPI/BpDEF heterodimer in birch. Our results will bring new evidences for further analysis of the molecular mechanism of flower formation in plants that produced unisexual flowers.


Assuntos
Betula/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Betula/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Hibridização Genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514282

RESUMO

The development of floral organs plays a vital role in plant reproduction. In our research, the APETALA3 (AP3) promoter-transgenic lines showed abnormal developmental phenotypes in stamens and petals. The aim of this study is to understand the molecular mechanisms of the morphological defects in transgenic plants. By performing transgenic analysis, it was found that the AP3-promoted genes and the vector had no relation to the morphological defects. Then, we performed the expression analysis of the class A, B, and C genes. A dramatic reduction of transcript levels of class B genes (AP3 and PISTILLATA) was observed. Additionally, we also analyzed the methylation of the promoters of class B genes and found that the promoter of AP3 was hypermethylated. Furthermore, combining mutations in rdr2-2, drm1/2, and nrpd1b-11 with the AP3-silencing lines rescued the abnormal development of stamens and petals. The expression of AP3 was reactivated and the methylation level of AP3 promoter was also reduced in RdDM-defective AP3-silencing lines. Our results showed that the RdDM pathway contributed to the transcriptional silencing in the transgenic AP3-silencing lines. Moreover, the results revealed that fact that the exogenous fragment of a promoter could trigger the methylation of homologous endogenous sequences, which may be ubiquitous in transgenic plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilação de DNA/genética , Inativação Gênica , Proteínas de Domínio MADS/genética , Regiões Promotoras Genéticas , RNA de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Domínio MADS/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , RNA de Plantas/genética
3.
Gene ; 717: 144045, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31425741

RESUMO

The MADS-box gene family encodes transcription factors and plays an important role in plant growth and the development of flower and fruit. A perennial dioecious plant, the red bayberry genome has been published recently, providing the opportunity to analyze the MADS-box gene family and its role in fruit development and ripening. Here, we identified 54 MADS-box genes in the red bayberry genome, and classified them into two types based on phylogenetic analysis. Thirteen Type I MADS-box genes were subdivided into three subfamilies and 41 Type II MADS-box genes into 13 subfamilies. A total of 46 MADS-box genes were distributed across eight red bayberry chromosomes, and the other eight genes were located on the unmapped scaffolds. Transcriptome analysis suggested that the expression of most Type II genes was higher than Type I in five female tissues. Moreover, 26 MADS-box genes were expressed during red bayberry fruit development and ten of them showed high expression. qRT-PCR showed that the expression of MrMADS01 (SEP, MIKCC), with differences between the pale pink and red varieties, increased significantly at the final ripening stage, suggesting it may participate in ripening as positive regulator and related to anthocyanin biosynthesis. These results provide some clues for future study of MADS-box genes in red bayberry, especially in ripening process.


Assuntos
Frutas/fisiologia , Proteínas de Domínio MADS/genética , Myricaceae/genética , Proteínas de Plantas/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia
4.
BMC Genomics ; 20(1): 658, 2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31419932

RESUMO

BACKGROUND: Inflorescence architecture is denoted by the spatial arrangement of various lateral branches and florets formed on them, which is shaped by a complex of regulators. Unveiling of the regulatory mechanisms underlying inflorescence architecture is pivotal for improving crop yield potential. Quinoa (Chenopodium quinoa Willd), a pseudo cereal originated from Andean region of South America, has been widely recognized as a functional super food due to its excellent nutritional elements. Increasing worldwide consumption of this crop urgently calls for its yield improvement. However, dissection of the regulatory networks underlying quinoa inflorescence patterning is lacking. RESULTS: In this study, we performed RNA-seq analysis on quinoa inflorescence samples collected from six developmental stages, yielding a total of 138.8 GB data. We screened 21,610 differentially expressed genes (DEGs) among all the stages through comparative analysis. Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to categorize the DEGs into ten different modules. Subsequently, we placed emphasis on investigating the modules associated with none branched and branched inflorescence samples. We manually refined the coexpression networks with stringent edge weight cutoffs, and generated core networks using transcription factors and key inflorescence architecture related genes as seed nodes. The core networks were visualized and analyzed by Cytoscape to obtain hub genes in each network. Our finding indicates that the specific occurrence of B3, TALE, WOX, LSH, LFY, GRAS, bHLH, EIL, DOF, G2-like and YABBY family members in early reproductive stage modules, and of TFL, ERF, bZIP, HD-ZIP, C2H2, LBD, NAC, C3H, Nin-like and FAR1 family members in late reproductive stage modules, as well as the several different MADS subfamily members identified in both stages may account for shaping quinoa inflorescence architecture. CONCLUSION: In this study we carried out comparative transcriptome analysis of six different stages quinoa inflorescences, and using WGCNA we obtained the most highly potential central hubs for shaping inflorescence. The data obtained from this study will enhance our understanding of the gene network regulating quinoa inflorescence architecture, as well will supply with valuable genetic resources for high-yield elite breeding in the future.


Assuntos
Chenopodium quinoa/genética , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Chenopodium quinoa/anatomia & histologia , Chenopodium quinoa/metabolismo , Grão Comestível/genética , Redes Reguladoras de Genes/fisiologia , Inflorescência/anatomia & histologia , Inflorescência/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , América do Sul , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Gene ; 713: 143974, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301484

RESUMO

An orthologous gene of SEPALLATA1, designated as IiSEP1, was isolated from Isatis indigotica. The genomic DNA of IiSEP1 is 3.1 Kb in length. The full-length cDNA of IiSEP1 is 1481 bp and contains a 756 bp ORF encoding a 251-amino-acid protein. Sequence comparison revealed that IiSEP1 belonged to the MADS-box gene family. IiSEP1 contains 7 exons and 6 introns, showing similar exon-intron structure with Arabidopsis SEP1. Phylogenetic analysis suggested that IiSEP1 belonged to AGL2/SEP subfamily and was likely to be an I. indigotica ortholog of Arabidopsis SEP1. Quantitative real-time PCR showed that IiSEP1 was predominantly expressed in the reproductive organs. Ectopic expression of IiSEP1 in Arabidopsis resulted in early flowering, accompanied with the reduction of inflorescence number and the production of terminal flower on the top of the main stems. Moreover, IiSEP1 overexpressing flowers generated numerous variations in phenotype. The sepals were changed into petal-sepal mosaic structures or displayed carpelloid features, and transparent ovules were formed in internal surface of these sepals. In addition, some flowers were constituted by sepals and pistil, but lacked petals and stamens. Taken together, IiSEP1 might play important roles in reproductive growth of I. indigotica and could affect the morphogenesis of flowers and fruits.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Fatores de Transcrição Forkhead/genética , Isatis/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Sequência de Aminoácidos , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Isatis/genética , Proteínas de Domínio MADS/genética , Fenótipo , Plantas Geneticamente Modificadas/genética , Homologia de Sequência
6.
Genetica ; 147(3-4): 303-313, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31292836

RESUMO

Dendrobium officinale, a herb with highly medicinal and ornamental value, is widely distributed in China. MADS-box genes encode transcription factors that regulate various growth and developmental processes in plants, particular in flowering. However, the MADS-box genes in D. officinale are largely unknown. In our study, expression profiling analyses of selected MADS-box genes in D. officinale were performed. In total, 16 DnMADS-box genes with full-length ORF were identified and named according to their phylogenetic relationships with model plants. The transient expression of eight selected MADS-box genes in the epidermal cells of tobacco leaves showed that these DnMADS-box proteins localized to the nucleus. Tissue-specific expression analysis pointed out eight flower-specific expressed MADS-box genes in D. officinale. Furthermore, expression patterns of DnMADS-box genes were investigated during the floral transition process. DnMADS3, DnMADS8 and DnMADS22 were significantly up-regulated in the reproductive phase compared with the vegetative phase, suggesting putative roles of these DnMADS-box genes in flowering. Our data showed that the expressions of MADS-box genes in D. officinale were controlled by diverse exogenous phytohormones. Together, these findings will facilitate further studies of MADS-box genes in Orchids and broaden our understanding of the genetics of flowering.


Assuntos
Dendrobium/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , China , Dendrobium/metabolismo , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/metabolismo
7.
Nucleic Acids Res ; 47(15): 7857-7869, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31184697

RESUMO

Autopolyploidy is widespread in higher plants and important for agricultural yield and quality. However, the effects of genome duplication on the chromatin organization and transcriptional regulation are largely unknown in plants. Using High-throughput Chromosome Conformation Capture (Hi-C), we showed that autotetraploid Arabidopsis presented more inter-chromosomal interactions and fewer short-range chromatin interactions compared with its diploid progenitor. In addition, genome duplication contributed to the switching of some loose and compact structure domains with altered H3K4me3 and H3K27me3 histone modification status. 539 genes were identified with altered transcriptions and chromatin interactions in autotetraploid Arabidopsis. Especially, we found that genome duplication changed chromatin looping and H3K27me3 histone modification in Flowering Locus C. We propose that genome doubling modulates the transcription genome-wide by changed chromatin interactions and at the specific locus by altered chromatin loops and histone modifications.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromatina/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Transcrição Genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Duplicação Gênica , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Histonas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Poliploidia
8.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174253

RESUMO

MADS-box transcription factors FLOWERING LOCUS C (FLC) and APETALA1 (AP1)/CAULIFLOWER (CAL) have an opposite effect in vernalization-regulated flowering in Arabidopsis. In woody plants, a functional FLC-like gene has not been verified through reverse genetics. To reveal chilling-regulated flowering mechanisms in woody fruit crops, we conducted phylogenetic analysis of the annotated FLC-like proteins of apple and found that these proteins are grouped more closely to Arabidopsis AP1 than the FLC group. An FLC3-like MADS-box gene from columnar apple trees (Malus domestica) (MdFLC3-like) was cloned for functional analysis through a constitutive transgenic expression. The MdFLC3-like shows 88% identity to pear's FLC-like genes and 82% identity to blueberry's CAL1 gene (VcCAL1). When constitutively expressed in a highbush blueberry (Vaccinium corymbosum L.) cultivar 'Legacy', the MdFLC3-like induced expressions of orthologues of three MADS-box genes, including APETALA1, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, and CAL1. As a consequence, in contrast to the anticipated late flowering associated with an overexpressed FLC-like, the MdFLC3-like promoted flowering of transgenic blueberry plants under nonchilling conditions where nontransgenic 'Legacy' plants could not flower. Thus, the constitutively expressed MdFLC3-like in transgenic blueberries functioned likely as a blueberry's VcCAL1. The results are anticipated to facilitate future studies for revealing chilling-mediated flowering mechanisms in woody plants.


Assuntos
Mirtilos Azuis (Planta)/genética , Flores/genética , Proteínas de Domínio MADS/genética , Malus/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas
9.
Sheng Wu Gong Cheng Xue Bao ; 35(6): 1059-1070, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31232002

RESUMO

The autolysis of brewer's yeast seriously affects the quality of beer and the quality of yeast is considered as one of the key factors in beer brewing. Previous studies on brewer's yeast autolysis showed that RLM1 gene, an important transcription factor in cell integrity pathway, is closely related to the autolysis of yeast. In this study, RLM1 was knocked out and overexpressed in a haploid brewer's yeast. RLM1 disruption resulted in poor anti-autolysis performance of yeast, whereas overexpression of RLM1 contributed to the anti-autolytic ability of yeast. In addition, RLM1 gene knockout affected the osmotic stress resistance, cell wall damage resistance, nitrogen starvation resistance and temperature tolerance of yeast strain. The transcriptional level of GAS1 involved in cell wall assembly and DNA damage response was regulated along with the expression of RLM1, whereas other genes in CWI pathway did not show apparent regularity. RLM1 might mainly affect the expression of GAS1 so as to improve the stress resistance of lager yeast in harsh environment. The result from this study help further understand the mechanism of yeast autolysis and lay a foundation for breeding brewer's yeast strain with better anti-autolytic ability.


Assuntos
Autólise , Saccharomyces cerevisiae , Cerveja , Parede Celular , Humanos , Proteínas de Domínio MADS , Proteínas de Saccharomyces cerevisiae
10.
Plant Cell Physiol ; 60(9): 2040-2050, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241165

RESUMO

The timing of floral initiation is a tightly controlled process in plants. The circadian clock regulated glycine-rich RNA-binding protein (RBP) AtGRP7, a known regulator of splicing, was previously shown to regulate flowering time mainly by affecting the MADS-box repressor FLOWERING LOCUS C (FLC). Loss of AtGRP7 leads to elevated FLC expression and late flowering in the atgrp7-1 mutant. Here, we analyze genetic interactions of AtGRP7 with key regulators of the autonomous and the thermosensory pathway of floral induction. RNA interference- mediated reduction of the level of the paralogous AtGRP8 in atgrp7-1 further delays floral transition compared of with atgrp7-1. AtGRP7 acts in parallel to FCA, FPA and FLK in the branch of the autonomous pathway (AP) comprised of RBPs. It acts in the same branch as FLOWERING LOCUS D, and AtGRP7 loss-of-function mutants show elevated levels of dimethylated lysine 4 of histone H3, a mark for active transcription. In addition to its role in the AP, AtGRP7 acts in the thermosensory pathway of flowering time control by regulating alternative splicing of the floral repressor FLOWERING LOCUS M (FLM). Overexpression of AtGRP7 selectively favors the formation of the repressive isoform FLM-ß. Our results suggest that the RBPs AtGRP7 and AtGRP8 influence MADS-Box transcription factors in at least two different pathways of flowering time control. This highlights the importance of RBPs to fine-tune the integration of varying cues into flowering time control and further strengthens the view that the different pathways, although genetically separable, constitute a tightly interwoven network to ensure plant reproductive success under changing environmental conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relógios Circadianos/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação , Isoformas de Proteínas , Proteínas de Ligação a RNA/genética , Fatores de Tempo
11.
Int J Mol Sci ; 20(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216621

RESUMO

MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mß, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon-intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.


Assuntos
Genoma de Planta , Genômica , Lycopersicon esculentum/genética , Proteínas de Domínio MADS/genética , Família Multigênica , Fatores de Transcrição/genética , Motivos de Aminoácidos , Mapeamento Cromossômico , Sequência Conservada , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Genômica/métodos , Lycopersicon esculentum/metabolismo , Proteínas de Domínio MADS/metabolismo , Especificidade de Órgãos , Filogenia , Desenvolvimento Vegetal/genética , Fatores de Transcrição/metabolismo
12.
BMC Plant Biol ; 19(1): 223, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138149

RESUMO

BACKGROUND: MADS-box genes play crucial roles in plant floral organ formation and plant reproductive development. However, there is still no information on genome-wide identification and classification of MADS-box genes in some representative plant species. A comprehensive investigation of MIKC-type genes in the orchid Dendrobium officinale is still lacking. RESULTS: Here we conducted a genome-wide analysis of MADS-box proteins from 29 species. In total, 1689 MADS-box proteins were identified. Two types of MADS-box genes, termed type I and II, were found in land plants, but not in liverwort. The SQUA, DEF/GLO, AG and SEP subfamilies existed in all the tested flowering plants, while SQUA was absent in the gymnosperm Ginkgo biloba, and no genes of the four subfamilies were found in a charophyte, liverwort, mosses, or lycophyte. This strongly corroborates the notion that clades of floral organ identity genes led to the evolution of flower development in flowering plants. Nine subfamilies of MIKCC genes were present in two orchids, D. officinale and Phalaenopsis equestris, while the TM8, FLC, AGL15 and AGL12 subfamilies may be lost. In addition, the four clades of floral organ identity genes in both orchids displayed a conservative and divergent expression pattern. Only three MIKC-type genes were induced by cold stress in D. officinale while 15 MIKC-type genes showed different levels of expression during seed germination. CONCLUSIONS: MIKC-type genes were identified from streptophyte lineages, revealing new insights into their evolution and development relationships. Our results show a novel role of MIKC-type genes in seed germination and provide a useful clue for future research on seed germination in orchids.


Assuntos
Proteínas de Domínio MADS/análise , Proteínas de Plantas/análise , Estreptófitas/genética , Dendrobium/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Proteínas de Domínio MADS/classificação , Família Multigênica , Orchidaceae/genética , Proteínas de Plantas/classificação
13.
Plant Sci ; 284: 30-36, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31084876

RESUMO

Nitrate Transporter 1.1 (NRT1.1) is a nitrate transporter and sensor that modulates plant metabolism and growth. It has previously been shown that NRT1.1 is involved in the regulation of flowering time in Arabidopsis thaliana. In this study, we mainly used genetic and molecular methods to reveal the key flowering pathway that NRT1.1 may be involved in. Mutant alleles of CO and FLC, two crucial components in the flowering pathway, were introduced into the NRT1.1 defective mutant background by crossing. When the CO mutation was introduced into chl1-5 plants, the double mutant had delayed flowering time, and the CO transcription levels did not change in the chl1-5 plants. These results indicate that the CO-dependent photoperiod may be not associated with the delayed flowering shown by chl1-5. However, FLC loss of function could rescue the late flowering phenotype of the chl1-5 mutant, and FLC expression levels significantly increased in the NRT1.1 defective mutant plants. The FT expression levels in the chl1-5flc-3 double mutant plants recovered when the FLC mutation was introduced into chl1-5 plants and the up-regulation of FLC transcripts in the chl1-5 mutant plants was not related to nitrate availability. Our findings suggest that NRT1.1 affects flowering time via interaction with the FLC-dependent flowering pathway to influence its target gene FT, and that NRT1.1 may be included in an additional signaling pathway that represses the expression of FLC in a nitrate-independent manner.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/fisiologia , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/fisiologia , Fotoperíodo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Nature ; 569(7755): 265-269, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043738

RESUMO

An important component of cellular biochemistry is the concentration of proteins and nucleic acids in non-membranous compartments1,2. These biomolecular condensates are formed from processes that include liquid-liquid phase separation. The multivalent interactions necessary for liquid-liquid phase separation have been extensively studied in vitro1,3. However, the regulation of this process in vivo is poorly understood. Here we identify an in vivo regulator of liquid-liquid phase separation through a genetic screen targeting factors required for Arabidopsis RNA-binding protein FCA function. FCA contains prion-like domains that phase-separate in vitro, and exhibits behaviour in vivo that is consistent with phase separation. The mutant screen identified a functional requirement for FLL2, a coiled-coil protein, in the formation of FCA nuclear bodies. FCA reduces transcriptional read-through by promoting proximal polyadenylation at many sites in the Arabidopsis genome3,4. FLL2 was required to promote this proximal polyadenylation, but not the binding of FCA to target RNA. Ectopic expression of FLL2 increased the size and number of FCA nuclear bodies. Crosslinking with formaldehyde captured in vivo interactions between FLL2, FCA and the polymerase and nuclease modules of the RNA 3'-end processing machinery. These 3' RNA-processing components colocalized with FCA in the nuclear bodies in vivo, which indicates that FCA nuclear bodies compartmentalize 3'-end processing factors to enhance polyadenylation at specific sites. Our findings show that coiled-coil proteins can promote liquid-liquid phase separation, which expands our understanding of the principles that govern the in vivo dynamics of liquid-like bodies.


Assuntos
Arabidopsis/química , Arabidopsis/metabolismo , Poliadenilação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fluoresceína , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Ligação a RNA/metabolismo
15.
Comput Biol Chem ; 80: 341-350, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31082717

RESUMO

MADS-box genes comprise a family of transcription factors that function in the growth and development of plants. To obtain insights into their evolution in watermelon (Citrullus lanatus), we carried out a genome-wide analysis and identified 39 MADS-box genes. These genes were classified into MIKCc (25), MIKC*(3), Mα (5), Mß (3), and Mγ (3) clades according to their phylogenetic relationship with Arabidopsis thaliana and Cucumis sativus; moreover, these 25 genes in the MIKC clade could be classified into 13 subfamilies, and the Flowering Locus C (FLC) subfamily is absent in watermelon. Analysis of the conserved gene motifs showed similar motifs among clades. Continuing chromosomal localizations analysis indicated that MADS-box genes were distributed across 11 chromosomes in watermelon, and these genes were conditioned to be differentially expressed during plant growth and development. This research provides information that will aid further investigations into the evolution of the MADS-box gene family in plants.


Assuntos
Citrullus/genética , Genes de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Cucumis sativus/genética , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Domínio MADS/classificação , Filogenia , Proteínas de Plantas/classificação , Transcriptoma
16.
Int J Mol Sci ; 20(8)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010109

RESUMO

Whole-genome duplications (WGDs) are widespread in plants and frequently coincide with global climatic change events, such as the Cretaceous-Tertiary (KT) extinction event approximately 65 million years ago (mya). Ferns have larger genomes and higher chromosome numbers than seed plants, which likely resulted from multiple rounds of polyploidy. Here, we use diploid and triploid material from a model fern species, Ceratopteris thalictroides, for the detection of WGDs. High-quality RNA-seq data was used to infer the number of synonymous substitutions per synonymous site (Ks) between paralogs; Ks age distribution and absolute dating approach were used to determine the age of WGD events. Evidence of an ancient WGD event with a Ks peak value of approximately 1.2 was obtained for both samples; however, the Ks frequency distributions varied significantly. Importantly, we dated the WGD event at 51-53 mya, which coincides with the Paleocene-Eocene Thermal Maximum (PETM), when the Earth became warmer and wetter than any other period during the Cenozoic. Duplicate genes were preferentially retained for specific functions, such as environment response, further support that the duplicates may have promoted quick adaption to environmental changes and potentially resulted in evolutionary success, especially for pantropical species, such as C. thalictroides, which exhibits higher temperature tolerance.


Assuntos
Adaptação Fisiológica/genética , Gleiquênias/genética , Duplicação Gênica , Genes Duplicados , Genoma de Planta , Cromossomos de Plantas/genética , Diploide , Genes de Plantas , Proteínas de Domínio MADS/genética , Modelos Genéticos , Família Multigênica , Filogenia , Poliploidia
17.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022949

RESUMO

Fagopyrum esculentum (Polygonaceae: Caryophyllales) exhibits an undifferentiated perianth comprising five showy tepals, which does not completely correspond to the perianth differentiated into typical sepals and petals in most core eudicots. In Arabidopsis, the APETALA1 (AP1) gene is involved in specifying sepals and petals development. Here we isolated AP1 ortholog, FaesAP1, and a 2.2kb FaesAP1 promoter (pFaesAP1) from F. esculentum. FaesAP1 expression is mainly detectable in all floral organs and maintains at a high level when tepals elongate rapidly both in pin and thrum flowers. Moreover, the GUS reporter gene driven by pFaesAP1 was activated in flowers where the sepals were intense, but the petals very weak or absent. Additionally, FaesAP1 ectopic expression in Arabidopsis ap1-10 mutant rescues sepal development fully, obviously prompting early flowering, but failing to complement petal development. In this study, evidence was provided that the showy tepals in the F. esculentum are homologs to core eudicots sepals. Furthermore, these findings show a different perianth identity program in Caryophyllales, suggesting that AP1 orthologs involved in petal development may evolve independently across different clades of core eudicots. Our results also suggest that FaesAP1 holds potential for biotechnical engineering to develop early flowering varieties of F. esculentum.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Expressão Ectópica do Gene , Fagopyrum/genética , Flores/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Fagopyrum/química , Fagopyrum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Domínio MADS/química , Mutação , Filogenia , Proteínas de Plantas/química , Regiões Promotoras Genéticas , Alinhamento de Sequência
18.
Biol Res ; 52(1): 25, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31018872

RESUMO

BACKGROUND: The morphological diversity of flower organs is closely related to functional divergence within the MADS-box gene family. Bryophytes and seedless vascular plants have MADS-box genes but do not have ABCDE or AGAMOUS-LIKE6 (AGL6) genes. ABCDE and AGL6 genes belong to the subgroup of MADS-box genes. Previous works suggest that the B gene was the first ABCDE and AGL6 genes to emerge in plant but there are no mentions about the probable origin time of ACDE and AGL6 genes. Here, we collected ABCDE and AGL6 gene 381 protein sequences and 361 coding sequences from gymnosperms and angiosperms and reconstructed a complete Bayesian phylogeny of these genes. In this study, we want to clarify the probable origin time of ABCDE and AGL6 genes is a great help for understanding the role of the formation of the flower, which can decipher the forming order of MADS-box genes in the future. RESULTS: These genes appeared to have been under purifying selection and their evolutionary rates are not significantly different from each other. Using the Bayesian evolutionary analysis by sampling trees (BEAST) tool, we estimated that: the mutation rate of the ABCDE and AGL6 genes was 2.617 × 10-3 substitutions/site/million years, and that B genes originated 339 million years ago (MYA), CD genes originated 322 MYA, and A genes shared the most recent common ancestor with E/AGL6 296 MYA, respectively. CONCLUSIONS: The phylogeny of ABCDE and AGL6 genes subfamilies differed. The APETALA1 (AP1 or A gene) subfamily clustered into one group. The APETALA3/PISTILLATA (AP3/PI or B genes) subfamily clustered into two groups: the AP3 and PI clades. The AGAMOUS/SHATTERPROOF/SEEDSTICK (AG/SHP/STK or CD genes) subfamily clustered into a single group. The SEPALLATA (SEP or E gene) subfamily in angiosperms clustered into two groups: the SEP1/2/4 and SEP3 clades. The AGL6 subfamily clustered into a single group. Moreover, ABCDE and AGL6 genes appeared in the following order: AP3/PI → AG/SHP/STK → AGL6/SEP/AP1. In this study, we collected candidate sequences from gymnosperms and angiosperms. This study highlights important events in the evolutionary history of the ABCDE and AGL6 gene families and clarifies their evolutionary path.


Assuntos
Proteínas de Arabidopsis/genética , Cycadopsida/genética , Proteínas de Domínio MADS/genética , Magnoliopsida/genética , Proteínas Circadianas Period/genética , Filogenia , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta
19.
Theor Appl Genet ; 132(7): 2125-2135, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31020387

RESUMO

KEY MESSAGE: Tomato male sterile-1526 locus was fine-mapped to an interval of 44.6 kb, and a B-class MADS-box gene TM6 was identified as the candidate gene. Male sterile lines have been widely used for hybrid seed production in many crop plants. The tomato male sterile-1526 (ms-1526) mutant displays abnormal stamens and exerted stigmas and is suitable for practical use. In this study, the ms-1526 locus was fine-mapped to a 44.6 kb interval that contained four putative genes. Thereinto, Solyc02g084630 encodes tomato B-class MADS-box gene TM6 (syn. TDR6), which plays an important role in stamen development. Sequencing revealed that there was a 12.7 kb deletion in the ms-1526 region, where the promoter and first four exons of the TM6 gene were absent. ms-1547, an allele of ms-1526, also contained the same deletion in the TM6 gene. And the other allele ms-15 mutant contained a single-nucleotide polymorphism (SNP, C to A) in the coding region of the TM6 gene, which led to a missense mutation (G to W). The codominant insertion/deletion (InDel) marker MS26D and codominant derived cleaved amplified polymorphic sequence (dCAPS) marker MS15C were developed based on the deletion and SNP, respectively. A real-time quantitative reverse-transcription PCR showed that expression of the TM6 gene was barely detectable in the flowers of the ms-1526 and ms-1547 mutants. In addition, other floral organ identity genes, pollen development marker genes, and pistil marker genes were differentially expressed between wild type and mutant flowers. These findings may facilitate functional analysis of the TM6 gene and help in the marker-assisted selection of ms-15 and its alleles in tomato breeding.


Assuntos
Flores/fisiologia , Lycopersicon esculentum/genética , Proteínas de Domínio MADS/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Alelos , Mapeamento Cromossômico , Flores/genética , Marcadores Genéticos , Genótipo , Mutação INDEL , Lycopersicon esculentum/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA