Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Nat Neurosci ; 23(6): 730-740, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393896

RESUMO

Descending command neurons instruct spinal networks to execute basic locomotor functions, such as gait and speed. The command functions for gait and speed are symmetric, implying that a separate unknown system directs asymmetric movements, including the ability to move left or right. In the present study, we report that Chx10-lineage reticulospinal neurons act to control the direction of locomotor movements in mammals. Chx10 neurons exhibit mainly ipsilateral projection, and their selective unilateral activation causes ipsilateral turning movements in freely moving mice. Unilateral inhibition of Chx10 neurons causes contralateral turning movements. Paired left-right motor recordings identified distinct mechanisms for directional movements mediated via limb and axial spinal circuits. Finally, we identify sensorimotor brain regions that project on to Chx10 reticulospinal neurons, and demonstrate that their unilateral activation can impart left-right directional commands. Together these data identify the descending motor system that commands left-right locomotor asymmetries in mammals.


Assuntos
Tronco Encefálico/fisiologia , Vias Eferentes/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Proteínas de Homeodomínio/imunologia , Camundongos , Técnicas de Rastreamento Neuroanatômico , Neurônios/efeitos dos fármacos , Toxina Tetânica/farmacologia , Fatores de Transcrição/imunologia
2.
Immunity ; 52(5): 825-841.e8, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32396847

RESUMO

CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epigênese Genética/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Transcrição Genética/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Epigênese Genética/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/terapia , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcrição Genética/genética
3.
J Clin Invest ; 130(3): 1199-1216, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015230

RESUMO

Mutations in APC promote colorectal cancer (CRC) progression through uncontrolled WNT signaling. Patients with desmoplastic CRC have a significantly worse prognosis and do not benefit from chemotherapy, but the mechanisms underlying the differential responses of APC-mutant CRCs to chemotherapy are not well understood. We report that expression of the transcription factor prospero homeobox 1 (PROX1) was reduced in desmoplastic APC-mutant human CRCs. In genetic Apc-mutant mouse models, loss of Prox1 promoted the growth of desmoplastic, angiogenic, and immunologically silent tumors through derepression of Mmp14. Although chemotherapy inhibited Prox1-proficient tumors, it promoted further stromal activation, angiogenesis, and invasion in Prox1-deficient tumors. Blockade of vascular endothelial growth factor A (VEGFA) and angiopoietin-2 (ANGPT2) combined with CD40 agonistic antibodies promoted antiangiogenic and immunostimulatory reprogramming of Prox1-deficient tumors, destroyed tumor fibrosis, and unleashed T cell-mediated killing of cancer cells. These results pinpoint the mechanistic basis of chemotherapy-induced hyperprogression and illustrate a therapeutic strategy for chemoresistant and desmoplastic CRCs.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imunoterapia , Neovascularização Patológica , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/imunologia , Angiopoietina-2/genética , Angiopoietina-2/imunologia , Animais , Linhagem Celular , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/imunologia , Camundongos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/terapia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
4.
Infect Immun ; 88(5)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32071068

RESUMO

Brucella spp. are facultative intracellular bacteria notorious for their ability to induce a chronic, and often lifelong, infection known as brucellosis. To date, no licensed vaccine exists for prevention of human disease, and mechanisms underlying chronic illness and immune evasion remain elusive. We and others have observed that B cell-deficient mice challenged with Brucella display reduced bacterial burden following infection, but the underlying mechanism has not been clearly defined. Here, we show that at 1 month postinfection, B cell deficiency alone enhanced resistance to splenic infection ∼100-fold; however, combined B and T cell deficiency did not impact bacterial burden, indicating that B cells only enhance susceptibility to infection when T cells are present. Therefore, we investigated whether B cells inhibit T cell-mediated protection against Brucella Using B and T cell-deficient Rag1-/- animals as recipients, we demonstrate that adoptive transfer of CD4+ T cells alone confers marked protection against Brucella melitensis that is abrogated by cotransfer of B cells. Interestingly, depletion of CD4+ T cells from B cell-deficient, but not wild-type, mice enhanced susceptibility to infection, further confirming that CD4+ T cell-mediated immunity against Brucella is inhibited by B cells. In addition, we found that the ability of B cells to suppress CD4+ T cell-mediated immunity and modulate CD4+ T cell effector responses during infection was major histocompatibility complex class II (MHCII)-dependent. Collectively, these findings indicate that B cells modulate CD4+ T cell function through an MHCII-dependent mechanism which enhances susceptibility to Brucella infection.


Assuntos
Linfócitos B/imunologia , Brucella melitensis/imunologia , Brucelose/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Transferência Adotiva/métodos , Animais , Vacina contra Brucelose/imunologia , Proteínas de Homeodomínio/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia
5.
Blood ; 135(9): 610-619, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31942628

RESUMO

Traditionally, primary immune deficiencies have been defined based on increased susceptibility to recurrent and/or severe infections. However, immune dysregulation, manifesting with autoimmunity or hyperinflammatory disease, has emerged as a common feature. This is especially true in patients affected by combined immune deficiency (CID), a group of disorders caused by genetic defects that impair, but do not completely abolish, T-cell function. Hypomorphic mutations in the recombination activating genes RAG1 and RAG2 represent the prototype of the broad spectrum of clinical and immunological phenotypes associated with CID. The study of patients with RAG deficiency and with other forms of CID has revealed distinct abnormalities in central and peripheral T- and B-cell tolerance as the key mechanisms involved in immune dysregulation. Understanding the pathophysiology of autoimmunity and hyperinflammation in these disorders may also permit more targeted therapeutic interventions.


Assuntos
Imunodeficiência Combinada Severa/imunologia , Autoimunidade/genética , Autoimunidade/imunologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Proteínas Nucleares/deficiência , Proteínas Nucleares/imunologia , Imunodeficiência Combinada Severa/genética
6.
Transplantation ; 104(4): 715-723, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31764762

RESUMO

BACKGROUND: Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. METHODS: We generated immunodeficient Rat Rag-/- Gamma chain-/- human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. RESULTS: RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. CONCLUSIONS: hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.


Assuntos
Antígenos de Diferenciação/imunologia , Proteínas de Homeodomínio/imunologia , Hospedeiro Imunocomprometido , Cadeias gama de Imunoglobulina/imunologia , Síndromes de Imunodeficiência/imunologia , Leucócitos Mononucleares/transplante , Receptores Imunológicos/imunologia , Animais , Antígenos de Diferenciação/genética , Soro Antilinfocitário/farmacologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Cadeias gama de Imunoglobulina/genética , Síndromes de Imunodeficiência/genética , Leucócitos Mononucleares/imunologia , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores Imunológicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Immunol ; 204(1): 49-57, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740487

RESUMO

The control of cytoskeletal dynamics by dedicator of cytokinesis 2 (DOCK2), a hematopoietic cell-specific actin effector protein, has been implicated in TCR signaling and T cell migration. Biallelic mutations in Dock2 have been identified in patients with a recessive form of combined immunodeficiency with defects in T, B, and NK cell activation. Surprisingly, we show in this study that certain immune functions of CD8+ T cells are enhanced in the absence of DOCK2. Dock2-deficient mice have a pronounced expansion of their memory T cell compartment. Bone marrow chimera and adoptive transfer studies indicate that these memory T cells develop in a cell-intrinsic manner following thymic egress. Transcriptional profiling, TCR repertoire analyses, and cell surface marker expression indicate that Dock2-deficient naive CD8+ T cells directly convert into virtual memory cells without clonal effector T cell expansion. This direct conversion to memory is associated with a selective increase in TCR sensitivity to self-peptide MHC in vivo and an enhanced response to weak agonist peptides ex vivo. In contrast, the response to strong agonist peptides remains unaltered in Dock2-deficient T cells. Collectively, these findings suggest that the regulation of the actin dynamics by DOCK2 enhances the threshold for entry into the virtual memory compartment by negatively regulating tonic TCR triggering in response to weak agonists.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas Ativadoras de GTPase/imunologia , Fatores de Troca do Nucleotídeo Guanina/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Proteínas de Homeodomínio/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
8.
Blood ; 135(8): 568-581, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31880771

RESUMO

Gastrointestinal (GI) tract involvement is the major cause of morbidity and mortality in acute graft-versus-host disease (GVHD), and pathological damage is largely attributable to inflammatory cytokine production. Recently, granulocyte-macrophage colony stimulating factor (GM-CSF) has been identified as a cytokine that mediates inflammation in the GI tract, but the transcriptional program that governs GM-CSF production and the mechanism by which GM-CSF links adaptive to innate immunity within this tissue site have not been defined. In the current study, we identified Bhlhe40 as a key transcriptional regulator that governs GM-CSF production by CD4+ T cells and mediates pathological damage in the GI tract during GVHD. In addition, we observed that GM-CSF was not regulated by either interleukin 6 (IL-6) or IL-23, which are both potent inducers of GVHD-induced colonic pathology, indicating that GM-CSF constitutes a nonredundant inflammatory pathway in the GI tract. Mechanistically, GM-CSF had no adverse effect on regulatory T-cell reconstitution, but linked adaptive to innate immunity by enhancing the activation of donor-derived dendritic cells in the colon and subsequent accumulation of these cells in the mLNs. In addition, GM-CSF promoted indirect alloantigen presentation, resulting in the accumulation of donor-derived T cells with a proinflammatory cytokine phenotype in the colon. Thus, Bhlhe40+ GM-CSF+ CD4+ T cells constitute a colitogenic T-cell population that promotes indirect alloantigen presentation and pathological damage within the GI tract, positioning GM-CSF as a key regulator of GVHD in the colon and a potential therapeutic target for amelioration of this disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/patologia , Doença Enxerto-Hospedeiro/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Proteínas de Homeodomínio/imunologia , Isoantígenos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Colo/imunologia , Colo/patologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/patologia , Doença Enxerto-Hospedeiro/imunologia , Camundongos Endogâmicos C57BL
9.
Cell Rep ; 29(13): 4471-4481.e6, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875554

RESUMO

During V(D)J recombination, RAG proteins introduce DNA double-strand breaks (DSBs) at recombination signal sequences (RSSs) that contain either 12- or 23-nt spacer regions. Coordinated 12/23 cleavage predicts that DSBs at variable (V) gene segments should equal the level of breakage at joining (J) segments. Contrary to this, here we report abundant RAG-dependent DSBs at multiple Vκ gene segments independent of V-J rearrangement. We find that a large fraction of Vκ gene segments are flanked not only by a bone-fide 12 spacer but also an overlapping, 23-spacer flipped RSS. These compatible pairs of RSSs mediate recombination and deletion inside the Vκ cluster even in the complete absence of Jκ gene segments and support a V(D)J recombination center (RC) independent of the conventional Jκ-centered RC. We propose an improved model of Vκ-Jκ repertoire formation by incorporating these surprisingly frequent, evolutionarily conserved intra-Vκ cluster recombination events.


Assuntos
Linfócitos B/metabolismo , DNA/genética , Região Variável de Imunoglobulina/genética , Recombinação V(D)J/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Sistemas CRISPR-Cas , Células Clonais , DNA/imunologia , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP/deficiência , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/imunologia , Endonucleases/deficiência , Endonucleases/genética , Endonucleases/imunologia , Feminino , Edição de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Família Multigênica , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Baço/citologia , Baço/imunologia
10.
Sci Immunol ; 4(41)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704735

RESUMO

Although immune checkpoint blockade therapies have demonstrated clinical efficacy in cancer treatment, harnessing this strategy is largely encumbered by resistance in multiple cancer settings. Here, we show that tumor-infiltrating T cells are severely exhausted in the microsatellite stable (MSS) colorectal cancer (CRC), a representative example of PD-1 blockade-resistant tumors. In MSS CRC, we found wound healing signature to be up-regulated and that T cell exhaustion is driven by vascular endothelial growth factor-A (VEGF-A). We report that VEGF-A induces the expression of transcription factor TOX in T cells to drive exhaustion-specific transcription program in T cells. Using a combination of in vitro, ex vivo, and in vivo mouse studies, we demonstrate that combined blockade of PD-1 and VEGF-A restores the antitumor functions of T cells, resulting in better control of MSS CRC tumors.


Assuntos
Neoplasias Colorretais/imunologia , Proteínas de Grupo de Alta Mobilidade/imunologia , Proteínas de Homeodomínio/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Células CACO-2 , Neoplasias Colorretais/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Repetições de Microssatélites/imunologia
11.
Proc Natl Acad Sci U S A ; 116(49): 24760-24769, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740609

RESUMO

Intestinal innate lymphoid cells (ILCs) contribute to the protective immunity and homeostasis of the gut, and the microbiota are critically involved in shaping ILC function. However, the role of the gut microbiota in regulating ILC development and maintenance still remains elusive. Here, we identified opposing effects on ILCs by two Helicobacter species, Helicobacter apodemus and Helicobacter typhlonius, isolated from immunocompromised mice. We demonstrated that the introduction of both Helicobacter species activated ILCs and induced gut inflammation; however, these Helicobacter species negatively regulated RORγt+ group 3 ILCs (ILC3s), especially T-bet+ ILC3s, and diminished their proliferative capacity. Thus, these findings underscore a previously unknown dichotomous regulation of ILC3s by Helicobacter species, and may serve as a model for further investigations to elucidate the host-microbe interactions that critically sustain the maintenance of intestinal ILC3s.


Assuntos
Colite/imunologia , Infecções por Enterobacteriaceae/imunologia , Microbioma Gastrointestinal/imunologia , Helicobacter/imunologia , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Animais , Citrobacter rodentium/imunologia , Citrobacter rodentium/patogenicidade , Colite/induzido quimicamente , Colite/microbiologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/microbiologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Tolerância Imunológica , Imunidade Inata , Imunidade nas Mucosas , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Linfócitos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo
12.
Immunity ; 51(3): 491-507.e7, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533057

RESUMO

Tissue-resident memory CD8+ T (Trm) cells share core residency gene programs with tumor-infiltrating lymphocytes (TILs). However, the transcriptional, metabolic, and epigenetic regulation of Trm cell and TIL development and function is largely undefined. Here, we found that the transcription factor Bhlhe40 was specifically required for Trm cell and TIL development and polyfunctionality. Local PD-1 signaling inhibited TIL Bhlhe40 expression, and Bhlhe40 was critical for TIL reinvigoration following anti-PD-L1 blockade. Mechanistically, Bhlhe40 sustained Trm cell and TIL mitochondrial fitness and a functional epigenetic state. Building on these findings, we identified an epigenetic and metabolic regimen that promoted Trm cell and TIL gene signatures associated with tissue residency and polyfunctionality. This regimen empowered the anti-tumor activity of CD8+ T cells and possessed therapeutic potential even at an advanced tumor stage in mouse models. Our results provide mechanistic insights into the local regulation of Trm cell and TIL function.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Homeodomínio/imunologia , Mitocôndrias/imunologia , Animais , Epigênese Genética/imunologia , Regulação da Expressão Gênica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia
13.
Mol Med Rep ; 20(4): 3388-3394, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432140

RESUMO

Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease. MicroRNAs (miRNAs) are a group of endogenous small non­coding RNAs that regulate target genes, and play a critical role in many biological processes. However, the underlying mechanism of specific miRNA, miR­130a­3p, in AS remains largely unknown. Therefore, the present study aimed to explore the underlying mechanism of miR­130a­3p in the development of AS. In the present study, it was revealed that miR­130a­3p was downregulated in T cells from HLA­B27­positive AS patients compared with the HLA­B27­negative healthy controls. Next, bioinformatics software TargetScan 7.2 was used to predict the target genes of miR­130a­3p, and a luciferase reporter assay indicated that HOXB1 was the direct target gene of miR­130a­3p. Furthermore, it was determined that HOXB1 expression was upregulated in T cells from HLA­B27­positive AS patients. In addition, the results of the present study indicated that miR­130a­3p inhibitor significantly inhibited cell proliferation ability and induced cell apoptosis of Jurkat T cells, while the miR­130a­3p mimic promoted proliferation ability and inhibited cell apoptosis of Jurkat T cells. Notably, all the effects of the miR­130a­3p mimic on Jurkat T cells were reversed by HOXB1­plasmid. Collectively, our data indicated that miR­130a­3p was decreased in T cells from AS patients and it could regulate T­cell survival by targeting HOXB1.


Assuntos
Apoptose/imunologia , Regulação para Baixo/imunologia , MicroRNAs/imunologia , Espondilite Anquilosante/imunologia , Linfócitos T/imunologia , Adulto , Sobrevivência Celular/imunologia , Feminino , Antígeno HLA-B27/imunologia , Proteínas de Homeodomínio/imunologia , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Espondilite Anquilosante/patologia , Linfócitos T/patologia
14.
Aging Cell ; 18(5): e13020, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31348603

RESUMO

In mammals, recombination activating gene 1 (RAG1) plays a crucial role in adaptive immunity, generating a vast range of immunoglobulins. Rag1-/- zebrafish (Danio rerio) are viable and reach adulthood without obvious signs of infectious disease in standard nonsterile conditions, suggesting that innate immunity could be enhanced to compensate for the lack of adaptive immunity. By using microarray analysis, we confirmed that the expression of immunity- and apoptosis-related genes was increased in the rag1-/- fish. This tool also allows us to notice alterations of the DNA repair and cell cycle mechanisms in rag1-/- zebrafish. Several senescence and aging markers were analyzed. In addition to the lower lifespan of rag1-/- zebrafish compared to their wild-type (wt) siblings, rag1-/- showed a higher incidence of cell cycle arrest and apoptosis, a greater amount of phosphorylated histone H2AX, oxidative stress and decline of the antioxidant mechanisms, an upregulated expression and activity of senescence-related genes and senescence-associated ß-galactosidase, respectively, diminished telomere length, and abnormal self-renewal and repair capacities in the retina and liver. Metabolomic analysis also demonstrated clear differences between wt and rag1-/- fish, as was the deficiency of the antioxidant metabolite l-acetylcarnitine (ALCAR) in rag1-/- fish. Therefore, Rag1 activity does not seem to be limited to V(D)J recombination but is also involved in senescence and aging. Furthermore, we confirmed the senolytic effect of ABT-263, a known senolytic compound and, for the first time, the potential in vivo senolytic activity of the antioxidant agent ALCAR, suggesting that this metabolite is essential to avoid premature aging.


Assuntos
Envelhecimento/imunologia , Senescência Celular/imunologia , Proteínas de Homeodomínio/imunologia , Inflamação/imunologia , Estresse Oxidativo/imunologia , Peixe-Zebra/imunologia , Animais , Doença Crônica
15.
Fish Shellfish Immunol ; 92: 680-689, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271837

RESUMO

The Notch signaling pathway is known to regulate innate immunity by influencing macrophage function and interacting with the Toll-like receptor (TLR) signaling pathway. However, the comprehensive role of the Notch signaling pathway in the innate immune response remains unknown. To assess the function of Notch1a in immunity, we examined the innate immune responses to Vibrio parahaemolyticus strain Vp13 of wild-type (WT) and notch1a-/- zebrafish larvae generated using the clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system. The median lethal dose (LD50) of V. parahaemolyticus was significantly lower in notch1a-/- larvae than in WT larvae 3 days post fertilization (dpf). Transcriptome data analysis revealed 359 significantly differentially expressed genes (DEGs), including 246 significantly down-regulated genes and 113 significantly up-regulated genes, in WT infected groups compared with WT control groups. In contrast, 986 significantly DEGs were found in notch1a-/- infected groups compared with notch1a-/- control groups, of which 82 genes were significantly down-regulated and 904 genes were significantly up-regulated. These DEGs belonged to the tumor necrosis factor (TNF), complement, nuclear factor kappa B (NF-κB), cathepsin, interleukin (IL), chemokine, serpin peptidase inhibitor, matrix metallopeptidase, innate immune cells, pattern recognition receptor (PRR), and other cytokine families. Our results indicate that Notch1a plays roles in inhibiting many immunity-related genes and could comprehensively mediate the innate immune response by regulating TLRs, nucleotide-binding-oligomerization-domain-like receptors (NLRs), lectins, complement, ILs, chemokines, TNF, cathepsin, and serpin. Further studies are required to understand the specific mechanism of Notch1a in innate immunity.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Imunidade Inata/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Receptor Notch1/genética , Receptor Notch1/imunologia , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Animais , Doenças dos Peixes/imunologia , Vibrioses/imunologia , Vibrioses/veterinária , Vibrio parahaemolyticus/fisiologia
16.
Brain Behav Immun ; 81: 161-171, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175998

RESUMO

A hallmark feature of schizophrenia is altered high frequency neural oscillations, including reduced auditory-evoked gamma oscillatory power, which is underpinned by parvalbumin (PV) interneuron dysfunction. Maternal immune activation (MIA) in rodents models an environmental risk factor for schizophrenia and recapitulates these PV interneuron changes. This study sought to link reduced PV expression in the MIA model with alterations to auditory-evoked gamma oscillations and transcript expression. We further aligned transcriptional findings from the animal model with human genome sequencing data. We show that MIA, induced by the viral mimetic, poly-I:C in C57Bl/6 mice, caused in adult offspring reduced auditory-evoked gamma and theta oscillatory power paralleled by reduced PV protein levels. We then showed the Arx gene, critical to healthy neurodevelopment of PV interneurons, is reduced in the forebrain of MIA exposed mice. Finally, in a whole-genome sequenced patient cohort, we identified a novel missense mutation of ARX in a patient with schizophrenia and in the Psychiatric Genomics Consortium 2 cohort, a nominal association of proximal ARX SNPs with the disorder. This suggests MIA, as a risk factor for schizophrenia, may be influencing Arx expression to induce the GABAergic dysfunction seen in schizophrenia and that the ARX gene may play a role in the prenatal origins of schizophrenia pathophysiology.


Assuntos
Proteínas de Homeodomínio/genética , Imunidade Materno-Adquirida/imunologia , Esquizofrenia/genética , Esquizofrenia/imunologia , Fatores de Transcrição/genética , Ácido gama-Aminobutírico/imunologia , Adulto , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , GABAérgicos/metabolismo , Ritmo Gama/efeitos dos fármacos , Hipocampo/metabolismo , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Parvalbuminas/metabolismo , Poli I-C/farmacologia , Córtex Pré-Frontal/metabolismo , Gravidez , Esquizofrenia/patologia , Ritmo Teta/efeitos dos fármacos , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo
17.
J Leukoc Biol ; 106(5): 1101-1115, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31216372

RESUMO

Neutrophils play a central role in immunity and inflammation via their intrinsic ability to migrate into inflamed tissue, to phagocytose pathogens, and to kill bacterial and fungi by releasing large quantities of superoxide anions and lytic enzymes. The molecular pathways controlling neutrophil microbicidal functions are still unclear, because neutrophils have a short half-life and are resistant to genetic manipulation. Neutrophil-like cells (NLC) can be generated from myeloid progenitors conditionally immortalized with the ER-HoxB8 oncoprotein, but whether these cells can replace neutrophils in high-throughput functional assays is unclear. Here, we assess the ability of NLC derived from ER-HoxB8 progenitors to produce ROS and to perform chemotaxis and phagocytosis. We compare the Ca2+ responses and effector functions of NLC to primary murine neutrophils and document the molecular basis of their functional differences by mRNA profiling. Pro-inflammatory cytokines enhanced the expression by NLC of neutrophil surface markers and transcription factors. Ca2+ elevations evoked in NLC by agonists, adhesion receptors, and store depletion resembled the physiological responses recorded in primary neutrophils, but NLC expressed reduced amounts of Ca2+ signaling proteins and of chemotactic receptors. Unlike their myeloid progenitors, NLC produced H2 O2 when adhered to fibronectin, migrated toward chemotactic peptides, phagocytosed opsonized particles, and generated intracellular ROS. NLC phagocytosed as efficiently as primary neutrophils but produced 50 times less ROS and migrated less efficiently toward chemoattractant. Our data indicate that NLC can replace neutrophils to study Ca2+ signaling and phagocytosis, but that their incomplete granulocytic differentiation limits their use for chemotaxis and ROS production assays.


Assuntos
Células da Medula Óssea/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas de Homeodomínio/imunologia , Neutrófilos/imunologia , Proteínas Oncogênicas/imunologia , Transdução de Sinais/imunologia , Animais , Células da Medula Óssea/citologia , Sinalização do Cálcio/genética , Sinalização do Cálcio/imunologia , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/citologia , Proteínas Oncogênicas/genética , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/genética
18.
Elife ; 82019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31204998

RESUMO

Macrophages play critical roles in immunity, development, tissue repair, and cancer, but studies of their function have been hampered by poorly-differentiated tumor cell lines and genetically-intractable primary cells. Here we report a facile system for genome editing in non-transformed macrophages by differentiating ER-Hoxb8 myeloid progenitors from Cas9-expressing transgenic mice. These conditionally immortalized macrophages (CIMs) retain characteristics of primary macrophages derived from the bone marrow yet allow for easy genetic manipulation and a virtually unlimited supply of cells. We demonstrate the utility of this system for dissection of host genetics during intracellular bacterial infection using two important human pathogens: Listeria monocytogenes and Mycobacterium tuberculosis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Listeria monocytogenes/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Linhagem Celular , Células Cultivadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Listeria monocytogenes/fisiologia , Macrófagos/microbiologia , Camundongos Transgênicos , Mycobacterium tuberculosis/fisiologia , Células-Tronco/imunologia , Células-Tronco/metabolismo
19.
Mol Immunol ; 111: 162-171, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31063937

RESUMO

B cells have been reported to have a suppressive function in autoimmune diseases, which appears to require an increase of CD11b expression on B cells. However, little is known how CD11b is induced in B cells to play the function. In this study, we found that the high expression of CD11b in B cells occurred not only in the mucosal immune organs, but also in systemically immune organs such as the spleen during dextran sulfate sodium (DSS)-induced colitis. Since the inflammatory lesions in mouse models of inflammatory bowel disease (IBD) were revealed to be significantly hypoxic or even anoxic, the B cells from colitic mice Peyer's patches (PP) were investigated to express higher levels of hypoxia-inducible factor-1α (HIF-1α) than naïve B cells from wildtype (WT) mice. HIF-1α siRNA transfection or HIF-1α protein inhibition led to decreased CD11b expression at both the mRNA and protein levels in vitro. B cells with HIF-1α specific knockdown were then adoptively transferred to Rag-1-/- mice. The result displayed that CD11b expression was decreased in B cells and an exacerbated colitis occurred. The bio-informatics promoter analysis and ChIP assay showed that HIF-1α was the critical transcription factor for CD11b and cooperatively formed a complex with the p-STAT3 homodimers to bind onto hypoxia-responsive element (HRE) regions, which was guaranteed by MEK/ERK pathway activation and IL-10 secretion. In conclusion, our study demonstrated the key function of the hypoxia-associated transcription factor HIF-1α together with p-STAT3 in driving CD11b transcription in B cells and controlling B cell's protective activity in experimental inflammatory bowel disease (IBD).


Assuntos
Linfócitos B/imunologia , Antígeno CD11b/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Doenças Inflamatórias Intestinais/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Animais , Colite/imunologia , Colo/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas de Homeodomínio/imunologia , Imunossupressão/métodos , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/imunologia , RNA Mensageiro/imunologia , Baço/imunologia , Fatores de Transcrição/imunologia
20.
Front Immunol ; 10: 610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001250

RESUMO

Currently, inflammatory bowel disease (IBD) is a serious public health problem on the rise worldwide. In this work, we utilized the zebrafish to introduce a new model of intestinal inflammation triggered by food intake. Taking advantage of the translucency of the larvae and the availability of transgenic zebrafish lines with fluorescently labeled macrophages, neutrophils, or lymphocytes, we studied the behavior of these cell types in vivo during the course of inflammation. We established two feeding strategies, the first using fish that were not previously exposed to food (naïve strategy) and the second in which fish were initially exposed to normal food (developed strategy). In both strategies, we analyzed the effect of subsequent intake of a control or a soybean meal diet. Our results showed increased numbers of innate immune cells in the gut in both the naïve or developed protocols. Likewise, macrophages underwent drastic morphological changes after feeding, switching from a small and rounded contour to a larger and dendritic shape. Lymphocytes colonized the intestine as early as 5 days post fertilization and increased in numbers during the inflammatory process. Gene expression analysis indicated that lymphocytes present in the intestine correspond to T helper cells. Interestingly, control diet only induced a regulatory T cell profile in the developed model. On the contrary, soybean meal diet induced a Th17 response both in naïve and developed model. In addition, when feeding was performed in rag1-deficient fish, intestinal inflammation was not induced indicating that inflammation induced by soybean meal is T cell-dependent.


Assuntos
Ração Animal/efeitos adversos , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Soja/efeitos adversos , Células Th17/imunologia , Peixe-Zebra/imunologia , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Células Th17/patologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...