Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.337
Filtrar
1.
Food Chem ; 362: 130231, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237653

RESUMO

The silkworm (Bombyx mori) is an important economic insect that can be used as food in many countries in Asia. However, silkworms and their metabolites are an important source of allergens, which can induce severe allergic reactions. So far, there are no systematic studies on the potential allergens in silkworm and its metabolites. These studies have important guiding significance for the prevention, diagnosis, and treatment of silkworm allergy. The aim of this study was to identify the potential allergens from larva, pupa, moth, silk, slough and feces of silkworm and analyze the sequence homology of silkworm allergens with other allergens identified in the Allergenonline database. We have found 45 potential allergens in silkworm. The results of the homology comparison suggested that silkworm allergens likely cross-react with those of Dermatophagoides farinae, Aedes aegypti, Tyrophagus putrescentiae, Triticum aestivum and Malassezia furfur.


Assuntos
Alérgenos/análise , Bombyx/química , Proteínas de Insetos/química , Alérgenos/metabolismo , Animais , Ásia , Bombyx/crescimento & desenvolvimento , Reações Cruzadas , Fezes/química , Hipersensibilidade , Proteínas de Insetos/análise , Proteínas de Insetos/metabolismo , Larva/química , Mariposas/química , Pupa/química , Seda/química
2.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070691

RESUMO

The trachea of insects is a tubular epithelia tissue that transports oxygen and other gases. It serves as a useful model for the studying of the cellular and molecular events involved in epithelial tube formation. Almost all of the extracellular matrix can be degraded by Matrix metalloproteinases (MMPs), which is closely related to the processes of development and regeneration. The regulation of trachea by MMPs is roughly known in previous studies, but the detailed regulation mechanism and involved gene function are not fully explored. In this article, we found MMP1 expressed highly during tracheal remodeling, and knocked out it makes the tracheal branch number reduced in Bombyx mori. In trachea of transgenic BmMMP1-KO silkworm, the space expanding of taenidium and epidermal cells and the structure of apical membrane were abnormal. To explore the underlying mechanism, we detected that DE-cadherin and Integrin ß1 were accumulated in trachea of transgenic BmMMP1-KO silkworm by immunohistochemistry. Moreover, 5-Bromo-2'-Deoxyuridine (BrdU) labeling showed that knockout of BmMMP1 in silkworm inhibited tracheal cell proliferation, and BmMMP1 also regulated the proliferation and migration of BmNS cells. All of the results demonstrated that BmMMP1 regulates the development of the tracheal tissue by expanding the space of tracheal cuticles and increases the number of tracheal branches by degrading DE-cadherin and Integrin ß1.


Assuntos
Bombyx , Proteínas de Insetos , Metaloproteinase 1 da Matriz , Organogênese , Traqueia/enzimologia , Animais , Bombyx/enzimologia , Bombyx/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo
3.
Pestic Biochem Physiol ; 176: 104872, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119217

RESUMO

Efficiency is the basis for the application of RNA interference (RNAi) technology. Actually, RNAi efficiency varies greatly among insect species, tissues and genes. Previous efforts have revealed the mechanisms for variation among insect species and tissues. Here, we investigated the reason for variable efficiency among the target genes in the same insect. First, we tested the genes sampled randomly from Tribolium castaneum, Locusta migratoria and Drosophila S2 cells for both their expression levels and sensitivity to RNAi. The results indicated that the genes with higher expression levels were more sensitive to RNAi. Statistical analysis showed that the correlation coefficients between transcript levels and knockdown efficiencies were 0.8036 (n = 90), 0.7255 (n = 18) and 0.9505 (n = 13), respectively in T. castaneum, L. migratoria and Drosophila S2 cells. Subsequently, ten genes with varied expression level in different tissues (midgut and carcass without midgut) of T. castaneum were tested. The results indicated that the higher knockdown efficiency was always obtained in the tissue where the target gene expressed higher. In addition, three genes were tested in different developmental stages, larvae and pupae of T. castaneum. The results found that when the expression level increased after insect pupation, these genes became more sensitive to RNAi. Thus, all the proofs support unanimously that transcript level is a key factor affecting RNAi sensitivity. This finding allows for a better understanding of the RNAi efficiency variation and lead to effective or efficient use of RNAi technology.


Assuntos
Locusta migratoria , Tribolium , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Pupa/metabolismo , Interferência de RNA , Tribolium/genética , Tribolium/metabolismo
4.
Arch Insect Biochem Physiol ; 107(3): e21823, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34075635

RESUMO

The 30 K proteins are the major silkworm hemolymph proteins and are involved in a variety of physiological processes, such as nutrient and energy storage, embryogenesis, immune response, and inhibition of apoptosis. The Bm30K-15 protein is one of the 30 K proteins and is abundant in the hemolymph of fifth instar silkworm larva. We previously found that the Bm30K-15 protein can be acetylated. In the present study, we found that acetylation can improve the protein stability of Bm30K-15. Further exploration confirmed that the increase in protein stability by acetylation was caused by competition between acetylation and ubiquitination. In summary, these findings aim to provide insight into the effect of acetylation modification on the protein level and stability of the Bm30K-15 and the possible molecular mechanism of its existence in silkworm, Bombyx mori.


Assuntos
Apolipoproteínas/metabolismo , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Acetilação , Animais , Estabilidade Proteica , Ubiquitinação , Regulação para Cima
5.
J Proteomics ; 242: 104257, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33957312

RESUMO

Recent studies reported that JH-regulated phosphorylation status of the JH-receptor complex contributes to its transcription activity in Aedes aegypti. However, phosphorylation sites of these proteins have not yet been identified. In this study, we found that the fusion of an EGFP tag to Ae. aegypti Kr-h1 (AaKr-h1) and Met (AaMet) improved their stability in mosquito Aag-2 cells, which allowed their purification. The liquid chromatography and tandem mass spectrometry analysis of the purified AaKr-h1 showed that the phosphoserine residue at position 694, located in the evolutionarily conserved SVIQ motif, is dephosphorylated when the cells are exposed to JH. The AaKr-h1 dephosphorylation mutant (S694V) showed significantly higher activity in inducing the luciferase gene regulated by JH response elements. The phosphorylation profile of Met also changed after exposing Aag-2 cells to JH III. The Ser-77 and Ser-710 residues of Met were phosphorylated after JH III treatment. In contrast, the two phosphoserine residues at positions 73 and 747 were dephosphorylated after JH III treatment. JH exposure also induced transient and reversible phosphorylation of Thr-664 and Ser-723 residues. Overall, these data show that JH induces changes in post-translational modifications of AaMet and AaKr-h1. SIGNIFICANCE: Female Aedes aegypti mosquitoes are known to vector many disease agents, including Zika virus, dengue virus chikungunya virus, and Mayaro and yellow fever virus. In the present study, we developed an efficient method to prepare Ae. aegypti Met and Kr-h1, which are typically difficult to produce and purify, using a mosquito cell line expression system. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches were utilized to map the phosphorylation profiles of the isolated proteins. We then monitored the changes induced by JH activation in the phosphorylation profiles to check if the JH modulates post-translation modification of its key transcription factors. We found that the JH induced alterations in the phosphorylation profiles of the multiple residues of AaMet. In contrast, activation of the JH signaling pathway was accompanied by dephosphorylation of AaKr-h1 at phosphoserine-694, increasing its transcriptional activity. In addition, S694 of AaKr-h1 was located in the RMSSVIQYA motif highly conserved in orthologous proteins from other insect species. These results can help us further understand how JH modulates its key transcription factors and provide a basis for the development of novel insect control strategies.


Assuntos
Aedes , Febre Amarela , Infecção por Zika virus , Zika virus , Aedes/metabolismo , Animais , Cromatografia Líquida , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis , Metoprene , Mosquitos Vetores , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Zika virus/metabolismo
6.
Nat Commun ; 12(1): 2818, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990556

RESUMO

The sex pheromone system of ~160,000 moth species acts as a powerful form of assortative mating whereby females attract conspecific males with a species-specific blend of volatile compounds. Understanding how female pheromone production and male preference coevolve to produce this diversity requires knowledge of the genes underlying change in both traits. In the European corn borer moth, pheromone blend variation is controlled by two alleles of an autosomal fatty-acyl reductase gene expressed in the female pheromone gland (pgFAR). Here we show that asymmetric male preference is controlled by cis-acting variation in a sex-linked transcription factor expressed in the developing male antenna, bric à brac (bab). A genome-wide association study of preference using pheromone-trapped males implicates variation in the 293 kb bab intron 1, rather than the coding sequence. Linkage disequilibrium between bab intron 1 and pgFAR further validates bab as the preference locus, and demonstrates that the two genes interact to contribute to assortative mating. Thus, lack of physical linkage is not a constraint for coevolutionary divergence of female pheromone production and male behavioral response genes, in contrast to what is often predicted by evolutionary theory.


Assuntos
Genes de Insetos , Mariposas/genética , Mariposas/fisiologia , Atrativos Sexuais/genética , Atrativos Sexuais/fisiologia , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Alelos , Animais , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Endogamia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Desequilíbrio de Ligação , Masculino , Preferência de Acasalamento Animal/fisiologia , Polimorfismo Genético , Locos de Características Quantitativas , Recombinação Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Pestic Biochem Physiol ; 175: 104851, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33993969

RESUMO

The insect voltage-gated sodium channel is the primary target of pyrethroids and novel efficient insecticides such as indoxacarb and metaflumizone. In this study, we cloned and characterized two putative sodium channel genes, TcNav1 and TcNav2, in Tribolium castaneum. The composite TcNav1 and TcNav2 encode a protein of 2045 and 2037 amino acid residues, sharing 76.1% and 75.5% amino acid identity with Drosophila para, respectively. Comparative analysis of genomic organization showed that TcNav1 and TcNav2 contain 26 and 27 exons, respectively. Analysis of the expression patterns showed that the mRNA levels of TcNav1 and TcNav2 were predominantly expressed in the head. RNAi-mediated knockdown of both TcNav1 and TcNav2 adversely affected adult emergence and significantly decreased sensitivity to deltamethrin. Significantly reduced pupation rate and sensitivity to beta-cypermethrin were observed after injection of siRNA targeting TcNav1 but not TcNav2. Taken together, we provide evidence that sodium channel gene has undergone duplication in T. castaneum, resulting in diversified developmental and toxicological functions.


Assuntos
Besouros , Tribolium , Animais , Besouros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , RNA de Cadeia Dupla , RNA Interferente Pequeno , Tribolium/genética , Tribolium/metabolismo
8.
Nat Commun ; 12(1): 3213, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050141

RESUMO

Apart from bacterial formyl peptides or viral chemokine mimicry, a non-vertebrate or insect protein that directly attracts mammalian innate cells such as neutrophils has not been molecularly characterized. Here, we show that members of sand fly yellow salivary proteins induce in vitro chemotaxis of mouse, canine and human neutrophils in transwell migration or EZ-TAXIScan assays. We demonstrate murine neutrophil recruitment in vivo using flow cytometry and two-photon intravital microscopy in Lysozyme-M-eGFP transgenic mice. We establish that the structure of this ~ 45 kDa neutrophil chemotactic protein does not resemble that of known chemokines. This chemoattractant acts through a G-protein-coupled receptor and is dependent on calcium influx. Of significance, this chemoattractant protein enhances lesion pathology (P < 0.0001) and increases parasite burden (P < 0.001) in mice upon co-injection with Leishmania parasites, underlining the impact of the sand fly salivary yellow proteins on disease outcome. These findings show that some arthropod vector-derived factors, such as this chemotactic salivary protein, activate rather than inhibit the host innate immune response, and that pathogens take advantage of these inflammatory responses to establish in the host.


Assuntos
Fatores Quimiotáticos/metabolismo , Proteínas de Insetos/metabolismo , Leishmaniose Cutânea/imunologia , Neutrófilos/imunologia , Proteínas e Peptídeos Salivares/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Cães , Feminino , Voluntários Saudáveis , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/parasitologia , Leishmania major/imunologia , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/transmissão , Masculino , Camundongos , Pessoa de Meia-Idade , Infiltração de Neutrófilos/imunologia , Cultura Primária de Células , Psychodidae/imunologia , Psychodidae/metabolismo , Psychodidae/parasitologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/isolamento & purificação , Adulto Jovem
9.
Nat Commun ; 12(1): 3221, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050145

RESUMO

Lysine methylation on histone tails impacts genome regulation and cell fate determination in many developmental processes. Apicomplexa intracellular parasites cause major diseases and they have developed complex life cycles with fine-tuned differentiation events. Yet, apicomplexa genomes have few transcription factors and little is known about their epigenetic control systems. Tick-borne Theileria apicomplexa species have relatively small, compact genomes and a remarkable ability to transform leucocytes in their bovine hosts. Here we report enriched H3 lysine 18 monomethylation (H3K18me1) on the gene bodies of repressed genes in Theileria macroschizonts. Differentiation to merozoites (merogony) leads to decreased H3K18me1 in parasite nuclei. Pharmacological manipulation of H3K18 acetylation or methylation impacted parasite differentiation and expression of stage-specific genes. Finally, we identify a parasite SET-domain methyltransferase (TaSETup1) that can methylate H3K18 and represses gene expression. Thus, H3K18me1 emerges as an important epigenetic mark which controls gene expression and stage differentiation in Theileria parasites.


Assuntos
Repressão Epigenética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histonas/metabolismo , Estágios do Ciclo de Vida/genética , Theileria/crescimento & desenvolvimento , Acetilação/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Galinhas , Sequenciamento de Cromatina por Imunoprecipitação , Repressão Epigenética/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas de Insetos/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Lisina/metabolismo , Metilação/efeitos dos fármacos , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Metiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Theileria/genética , Theileriose/tratamento farmacológico , Theileriose/parasitologia , Tranilcipromina/farmacologia , Tranilcipromina/uso terapêutico
10.
Neuron ; 109(10): 1621-1635.e8, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33979634

RESUMO

Information is carried between brain regions through neurotransmitter release from axonal presynaptic terminals. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity. However, existing inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals, while chemogenetic tools are difficult to control in space and time. Here, we show that a targeting-enhanced mosquito homolog of the vertebrate encephalopsin (eOPN3) can effectively suppress synaptic transmission through the Gi/o signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. In freely moving mice, eOPN3-mediated suppression of dopaminergic nigrostriatal afferents induces a reversible ipsiversive rotational bias. We conclude that eOPN3 can be used to selectively suppress neurotransmitter release at presynaptic terminals with high spatiotemporal precision, opening new avenues for functional interrogation of long-range neuronal circuits in vivo.


Assuntos
Dopamina/metabolismo , Proteínas de Insetos/genética , Optogenética/métodos , Rodopsina/genética , Potenciais Sinápticos , Animais , Células Cultivadas , Culicidae , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Células HEK293 , Humanos , Proteínas de Insetos/metabolismo , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Rodopsina/metabolismo , Substância Negra/citologia , Substância Negra/fisiologia
11.
Arch Insect Biochem Physiol ; 107(3): e21794, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33948968

RESUMO

Bombyx mori as a representative in Lepidoptera is an important economic insect in agriculture production. Bacillus thuringiensis (Bt) is a bacterial pathogen in silkworm production. Understanding how silkworm respond to Bt-toxin can provide guidance to cultivate resistant silkworm strains. Cry1Ac is one type of Bt-toxin. In current research, Dazao, a susceptible B. mori strain to Bt-toxin, was treated by Cry1Ac toxin and compared its transcriptome with untreated samples. This analysis detected 1234 differentially expressed genes (DEGs). Gene Ontology, KEGG, and UniProt keyword enrichment analysis showed that DEGs include ATP-binding cassette (ABC) transporter, stress response, cuticle, and protein synthesis, and folding process. Five ABC genes were upregulated after Cry1Ac treatment including ABCA2, ABCA3, and ABCC4. They are also known as the transporters of Bt-toxin in lepidopteran insect. Expression of cuticle proteins was significantly increased at 6 h after Cry1Ac treatment. Sex-specific storage-proteins and heat shock protein were also upregulated in Cry1Ac treated samples. Our data provide an expression profile about the response of Cry1Ac toxin in susceptible B. mori strain.


Assuntos
Toxinas de Bacillus thuringiensis/farmacologia , Bombyx/efeitos dos fármacos , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Transcriptoma/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bombyx/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Insetos/metabolismo
12.
Arch Insect Biochem Physiol ; 107(3): e21795, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33973266

RESUMO

High-mobility group box 1 (HMGB1) is a nuclear protein highly conserved in eukaryotes and ubiquitously expressed to regulate transcription and chromatin remodeling. Dorsal switch protein 1 (DSP1) is its insect homolog. A lepidopteran DSP1 acts as a damage-associated molecular pattern (DAMP) in response to immune challenge. The objective of this study was to determine the role of DAMP in the mealworm beetle, Tenebrio molitor, a coleopteran insect. DSP1 of T. molitor (Tm-DSP1) encodes 536 amino acids and shares sequence similarities with Homo sapiens HMGB1 (56.3%) and Spodoptera exigua DSP1 (59.2%). An antisera raised against S. exigua DSP1 was cross-reactive to Tm-DSP1. Like other insect DSPs, Tm-DSP1 has a relatively long N-terminal extension in addition to two conserved HMG box domains. It was expressed in all developmental stages of T. molitor and different larval tissues. Upon immune challenge, its expression level was upregulated. Its RNA interference (RNAi) treatment resulted in a significant reduction in immune responses measured by hemocyte nodule formation against bacterial infection. In addition, the induction of some antimicrobial peptide genes to the immune challenge was suppressed by its RNAi treatment. Interestingly, phospholipase A2 associated with eicosanoid biosynthesis was significantly suppressed in its catalytic activity by the RNAi treatment specific to Tm-DSP1 expression. Without any pathogen infection, injection of a lepidopteran DSP1 induced both cellular and humoral immune responses. These results suggest that Tm-DSP1 in T. molitor can act as a DAMP molecule and mediate immune responses upon immune challenge.


Assuntos
Alarminas/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Insetos/metabolismo , Tenebrio/metabolismo , Animais , Imunidade Celular , Imunidade Humoral , Tenebrio/imunologia
13.
Toxins (Basel) ; 13(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810599

RESUMO

Bee venom is a complex mixture composed of peptides, proteins with enzymatic properties, and low-molecular-weight compounds. Although the carboxylesterase in bee venom has been identified as an allergen, the enzyme's role as a venom component has not been previously elucidated. Here, we show the lipolytic activity of a bumblebee (Bombus ignitus) venom carboxylesterase (BivCaE). The presence of BivCaE in the venom secreted by B. ignitus worker bees was confirmed using an anti-BivCaE antibody raised against a recombinant BivCaE protein produced in baculovirus-infected insect cells. The enzymatic activity of the recombinant BivCaE protein was optimal at 40 °C and pH 8.5. Recombinant BivCaE protein degrades triglycerides and exhibits high lipolytic activity toward long-chain triglycerides, defining the role of BivCaE as a lipolytic agent. Bee venom phospholipase A2 binds to mammalian cells and induces apoptosis, whereas BivCaE does not affect mammalian cells. Collectively, our data demonstrate that BivCaE functions as a lipolytic agent in bee venom, suggesting that BivCaE will be involved in distributing the venom via degradation of blood triglycerides.


Assuntos
Venenos de Abelha/enzimologia , Abelhas/enzimologia , Carboxilesterase/metabolismo , Proteínas de Insetos/metabolismo , Lipólise , Triglicerídeos/metabolismo , Animais , Venenos de Abelha/genética , Venenos de Abelha/toxicidade , Abelhas/genética , Carboxilesterase/genética , Carboxilesterase/toxicidade , Concentração de Íons de Hidrogênio , Proteínas de Insetos/toxicidade , Especificidade por Substrato , Temperatura
14.
Toxins (Basel) ; 13(4)2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916734

RESUMO

Tetraponera rufonigra (Arboreal Bicoloured Ant) venom induces pain, inflammation, and anaphylaxis in people and has an increased incident in Southeast Asia regions. The bioactive components and mechanism of action of the ant venom are still limited. The aim of this research was to identify the protein composition and inflammatory process of the ant venom by using RAW 264.7 macrophage cells. The major venom proteins are composed of 5' nucleotidase, prolyl endopeptidase-like, aminopeptidase N, trypsin-3, venom protein, and phospholipase A2 (PLA2). The venom showed PLA2 activity and represented 0.46 µg of PLA2 bee venom equivalent/µg crude venom protein. The venom induced cytotoxic in a dose- and time-dependent manner with IC20 approximately at 4.01 µg/mL. The increased levels of COX-2 and PGE2 were observed after 1 h of treatment correlating with an upregulation of COX-2 expression. Moreover, the level of mPGES-1 expression was obviously increased after 12 h of venom induction. Hence, our results suggested that the induction of COX-2/mPGEs-1 pathway could be a direct pathway for the ant venom-induced inflammation.


Assuntos
Venenos de Formiga/toxicidade , Formigas , Mediadores da Inflamação/metabolismo , Inflamação/induzido quimicamente , Proteínas de Insetos/toxicidade , Macrófagos/efeitos dos fármacos , Animais , Venenos de Formiga/enzimologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Proteínas de Insetos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Células RAW 264.7 , Fatores de Tempo , Regulação para Cima
15.
Int J Biol Macromol ; 182: 482-491, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838190

RESUMO

Maltase can catalyze the hydrolysis of α-1,4-glucosidic linkages and release α-d-glucoses that are used as a source of energy by insects. Maltase has been extensively studied in Lepidoptera and Diptera, while the characterization and evolutionary history of maltase are largely unknown in Hymenoptera. Here, we undertook a bioinformatics study and identified 105 maltase genes in 12 fig wasp species. Together with the maltase genes of Nasonia vitripennis and Apis mellifera, phylogenetic analysis showed that all the maltase genes were clustered into three clades. Clade I and III included maltase genes from all the fig wasp species, while clade II contained the maltase genes from non-pollinating fig wasps (NPFWs) only. Interestingly, the maltase genes located in clade II were intronless. Fig pollinators and NPFWs had lineage-specific gene expansion in clade I and II respectively, which were mainly derived from tandem duplications. The three clades displayed distinct gene structures. Furthermore, maltase showed significant functional divergence among the three clades and the critical amino acid sites were detected. These sites could be responsible for the ligand-binding preference and hydrolytic specificity. Overall, our results demonstrated that maltase might contribute to the discrepancy of life histories and feeding regimes between fig pollinators and NPFWs.


Assuntos
Evolução Molecular , Duplicação Gênica , Proteínas de Insetos/genética , alfa-Glucosidases/genética , Animais , Sítios de Ligação , Proteínas de Insetos/metabolismo , Traços de História de Vida , Domínios Proteicos , Vespas/classificação , Vespas/enzimologia , Vespas/genética , alfa-Glucosidases/metabolismo
16.
J Insect Sci ; 21(2)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33834209

RESUMO

The aim of this review is to compile up-to-date information on the superworm, Zophobas morio (F.), regarding its biology and ecology, but also its further potential for use as a nutrient source for food and feed. We illustrate certain basic characteristics of the morphology and bio-ecology of this species, which is marginally considered as a 'pest' in durable amylaceous commodities. More recent data show that Z. morio can be a valuable nutrient and antimicrobial source that could be utilized further in insect-based feed and food production. The inclusion of this species in aquafeed has provided promising results in a wide range of feeding trials, both in terms of fish development and health. Additional data illustrate its potential for use in poultry, indicating that this species provides comparable results with those of other insect species that are used in feed. Moreover, Z. morio can be a viable waste management agent. This review aims to summarize the available data and underline data gaps for future research, toward the potential of the utilization of Z. morio for human food and animal feed. Based on the data presented, Z. morio appears to be a well-promising insect-based protein source, which potential still remains to be unfold.


Assuntos
Ração Animal , Tenebrio , Agricultura , Animais , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Nutrientes/metabolismo , Tenebrio/crescimento & desenvolvimento , Tenebrio/metabolismo
17.
Arch Insect Biochem Physiol ; 107(2): e21790, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860953

RESUMO

The sugar beet moth, Scrobipalpa ocellatella (Boyd), one of the most severe sugar beet pests, causes quantitative and qualitative yield losses late in the autumn. Previously, it was shown that low temperature and short-day photoperiod together cause diapause induction in pupae. Here, the interaction of the critical elements of the diapause induction, including the period (PER), timeless (TIM), prothoracicotropic hormone (PTTH), and ecdysteroid titer, were investigated. Immunohistochemistry results showed that the number of period immunoreactivity (PER-ir) and TIM-ir cells in nondiapause pupae (NDP) was lower than in the brain of the diapause pupae (DP). Moreover, the number of PER-ir and TIM-ir cells in the protocerebrum and optic lobe (OL) of NDP was lower than DP. Moreover, lower PTTH content in the brain and hemolymph of DP was confirmed by competitive enzyme-linked immunosorbent assay. Enzyme immunoassay showed a lower 20-hydroxyecdysone (20E) titer in the hemolymph of the DP compared with the NDP. Within a short-day condition, PER and TIM titers increased in the brain leading to decreasing PTTH titers in the brain and hemolymph that caused decreasing 20E titer in the hemolymph, leading to the induction of diapause. This study suggests that PER and TIM could be one of the brain factors that play an essential role in regulating diapause in S. ocellatella.


Assuntos
Proteínas CLOCK , Diapausa de Inseto/fisiologia , Ecdisteroides/metabolismo , Hormônios de Inseto/metabolismo , Mariposas/metabolismo , Animais , Encéfalo/metabolismo , Proteínas CLOCK/análise , Proteínas CLOCK/metabolismo , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Pupa/metabolismo
18.
Arch Insect Biochem Physiol ; 107(2): e21791, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860954

RESUMO

In the last decade, unexpected high temperatures have been frequent in spring and early summer. Numerous studies have shown that such thermal stress has substantial effects on life-history traits that influence fitness of insects, but few have examined expression dynamics of heat shock proteins (Hsps) across developmental stages, especially as regards potential carry-over effects at the transcriptional level across metamorphosis. We exposed pupae of the oriental fruit moth ("OFM," Grapholita molesta Busck) to mild heat stress (38°C, 6 h) and then quantified expression patterns of six Hsps (Hsp90, 70, 60, 40, 21, and 11) from pupal through adult stages. Almost all Hsps showed a higher expression immediately after pupae were heat-stressed, but later dropped to normal levels after metamorphosis. Although upregulation of Hsps is transient and the effects carry over longer to early adult stage, upregulation will nonetheless have positive effects on adult fitness. The fitness of some insects may benefit from higher expression of chaperon genes after mild stress, in the form of higher fecundity and longer lifespan, as a carry-over effect. These results suggest that mild thermal stress can change genetic expression that later boosts adult fitness through a cascade effect.


Assuntos
Proteínas de Choque Térmico/metabolismo , Metamorfose Biológica/fisiologia , Mariposas/metabolismo , Animais , Fertilidade/fisiologia , Regulação da Expressão Gênica/fisiologia , Resposta ao Choque Térmico/fisiologia , Proteínas de Insetos/metabolismo , Longevidade/fisiologia , Pupa/metabolismo
19.
Arch Insect Biochem Physiol ; 107(2): e21789, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860960

RESUMO

Exorista civilis Rondani (Diptera:Tachinidae) is an excellent dominant parasitic enemy all over the world. But there has been a lack of research on the molecular regulation of diapause in E. civilis. To investigate the important diapause-associated genes and metabolic pathways in E. civilis, we can provide a theoretical basis for clarifying the molecular mechanism of diapause at the transcriptome level. The Illumina HiSeq. 2000 platform was used to perform transcriptome sequencing and bioinformatics analysis of the non-diapause and diapause pupae of E. civilis. 58,050 unigenes were successfully assembled, in which 4355 upregulated and 3158 downregulated unigenes were differentially expressed. Moreover, by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments, 896 kinds of the differentially expressed genes were specifically analyzed and showed that diapause-associated genes were related to be involved in the pathways of cold resistance, amino acid metabolism, and energy metabolism. Furthermore, these upregulated five genes showed the same trends of expression patterns between quantitative real-time polymerase chain reaction and RNA-Seq. This study provides a theoretical basis for the further study of the diapausing molecular mechanisms of E. civilis.


Assuntos
Diapausa de Inseto/genética , Dípteros , Regulação da Expressão Gênica no Desenvolvimento , Aminoácidos/metabolismo , Animais , Resposta ao Choque Frio/genética , Diapausa de Inseto/fisiologia , Dípteros/genética , Dípteros/metabolismo , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Gluconeogênese/genética , Gluconeogênese/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Pupa/genética , Pupa/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/genética
20.
Mol Ecol ; 30(11): 2573-2590, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33856058

RESUMO

The chemosensory system has experienced relevant changes in subterranean animals, facilitating the perception of specific chemical signals critical to survival in their particular environment. However, the genomic basis of chemoreception in cave-dwelling fauna has been largely unexplored. We generated de novo transcriptomes for antennae and body samples of the troglobitic beetle Speonomus longicornis (whose characters suggest an extreme adaptation to a deep subterranean environment) in order to investigate the evolutionary origin and diversification of the chemosensory gene repertoire across coleopterans through a phylogenomic approach. Our results suggested a diminished diversity of odourant and gustatory gene repertoires compared to polyphagous beetles that inhabit surface habitats. Moreover, S. longicornis showed a large diversity of odourant-binding proteins, suggesting an important role of these proteins in capturing airborne chemical cues. We identified a gene duplication of the ionotropic coreceptor IR25a, a highly conserved single-copy gene in protostomes involved in thermal and humidity sensing. In addition, no homologous genes to sugar receptors or the ionotropic receptor IR41a were detected. Our findings suggest that the chemosensory gene repertoire of this cave beetle may result from adaptation to the highly specific ecological niche it occupies, and that gene duplication and loss may have played an important role in the evolution of gene families involved in chemoreception. Altogether, our results shed light on the genomic basis of chemoreception in a cave-dwelling invertebrate and pave the road towards understanding the genomic underpinnings of adaptation to the subterranean lifestyle at a deeper level.


Assuntos
Besouros , Receptores Odorantes , Animais , Cavernas , Besouros/genética , Perfilação da Expressão Gênica , Genômica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Receptores Odorantes/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...