Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73.199
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(9): 861-864, 2021 Sep 10.
Artigo em Chinês | MEDLINE | ID: mdl-34487531

RESUMO

OBJECTIVE: To explore the genotype-phenotype correlation in a child with Kabuki syndrome type 1 (KS1) caused by a mosaic frameshift variant of KMT2D gene. METHODS: Trio-based whole exome sequencing (WES) was carried for the patient and her parents. Candidate variant was verified by Sanger sequencing. RESULTS: The proband, a 3-year-and-2-month-old Chinese girl, presented with distinctive facial features, cognitive impairment, mild developmental delay, dermatoglyphic abnormalities, minor skeletal anomalies, ventricular septal defect, and autistic behavior. Trio-based WES revealed that the proband has carried a de novo mosaic frameshit variant of the KMT2D gene, namely NM_003482.3:c.13058delG (p.Pro4353Argfs*31) (GRCh37/hg19), for which the mosaicism rate was close to 21%. The variant was unreported previously and was confirmed by Sanger sequencing. Chromosomal microarray analysis (CMA) has revealed no pathogenic or likely pathogenic copy number variations. Compared with previously reported cases, our patient has presented obvious behavior anomalies including autism, anxiety and sleep problems, which were rarely reported. CONCLUSION: This study has expanded the spectrum of KMT2D gene variants, enriched the clinical phenotypes of KS1, and facilitated genetic counseling for the family.


Assuntos
Variações do Número de Cópias de DNA , Proteínas de Ligação a DNA , Anormalidades Múltiplas , China , Proteínas de Ligação a DNA/genética , Face/anormalidades , Feminino , Doenças Hematológicas , Humanos , Lactente , Proteínas de Neoplasias/genética , Fenótipo , Doenças Vestibulares
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(9): 912-916, 2021 Sep 10.
Artigo em Chinês | MEDLINE | ID: mdl-34487543

RESUMO

MAMLD1 gene has been implicated in 46,XY disorders of sex development (DSD) in recent years. Patients carrying MAMLD1 gene variants showed a "continuous spectrum" of simple micropenis, mild, moderate and severe hypospadias with micropenis, cryptorchidism, split scrotum and even complete gonadal dysplasia. The function of MAMLD1 gene in sexual development has not been fully elucidated, and its role in DSD has remained controversial. This article has reviewed recent findings on the role of the MAMLD1 gene in DSD, including the MAMLD1 gene, its encoded protein, genetic variants, clinical phenotype and possible pathogenic mechanism in DSD.


Assuntos
Proteínas de Ligação a DNA , Transtornos do Desenvolvimento Sexual , Proteínas de Ligação a DNA/genética , Transtornos do Desenvolvimento Sexual/genética , Humanos , Masculino , Mutação , Proteínas Nucleares/genética , Fenótipo , Desenvolvimento Sexual , Fatores de Transcrição/genética
3.
Nat Commun ; 12(1): 5091, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429415

RESUMO

Ten-eleven translocation (TET) proteins, the dioxygenase for DNA hydroxymethylation, are important players in nervous system development and diseases. However, their role in myelination and remyelination after injury remains elusive. Here, we identify a genome-wide and locus-specific DNA hydroxymethylation landscape shift during differentiation of oligodendrocyte-progenitor cells (OPC). Ablation of Tet1 results in stage-dependent defects in oligodendrocyte (OL) development and myelination in the mouse brain. The mice lacking Tet1 in the oligodendrocyte lineage develop behavioral deficiency. We also show that TET1 is required for remyelination in adulthood. Transcriptomic, genomic occupancy, and 5-hydroxymethylcytosine (5hmC) profiling reveal a critical TET1-regulated epigenetic program for oligodendrocyte differentiation that includes genes associated with myelination, cell division, and calcium transport. Tet1-deficient OPCs exhibit reduced calcium activity, increasing calcium activity rescues the differentiation defects in vitro. Deletion of a TET1-5hmC target gene, Itpr2, impairs the onset of OPC differentiation. Together, our results suggest that stage-specific TET1-mediated epigenetic programming and intracellular signaling are important for proper myelination and remyelination in mice.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Camundongos Mutantes Neurológicos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Remielinização/fisiologia , 5-Metilcitosina/análogos & derivados , Animais , Ciclo Celular , Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA/genética , Genoma , Camundongos , Camundongos Knockout , Oligodendroglia/metabolismo , Organogênese , Proteínas Proto-Oncogênicas/genética
4.
Nat Commun ; 12(1): 5015, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408139

RESUMO

Proximity biotinylation workflows typically require CRISPR-based genetic manipulation of target cells. To overcome this bottleneck, we fused the TurboID proximity biotinylation enzyme to Protein A. Upon target cell permeabilization, the ProtA-Turbo enzyme can be targeted to proteins or post-translational modifications of interest using bait-specific antibodies. Addition of biotin then triggers bait-proximal protein biotinylation. Biotinylated proteins can subsequently be enriched from crude lysates and identified by mass spectrometry. We demonstrate this workflow by targeting Emerin, H3K9me3 and BRG1. Amongst the main findings, our experiments reveal that the essential protein FLYWCH1 interacts with a subset of H3K9me3-marked (peri)centromeres in human cells. The ProtA-Turbo enzyme represents an off-the-shelf proximity biotinylation enzyme that facilitates proximity biotinylation experiments in primary cells and can be used to understand how proteins cooperate in vivo and how this contributes to cellular homeostasis and disease.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Biotina/metabolismo , Biotinilação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Espectrometria de Massas , Ligação Proteica , Proteínas/química , Proteômica
5.
BMJ Case Rep ; 14(8)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446510

RESUMO

A 55-year-old woman presented with a 3-month history of right groin swelling, discomfort and impaired mobility. On examination, a palpable mass was noted both to the right of midline in the lower abdomen and in the right groin. MRI of the pelvis showed two masses involving the anterior abdominal wall and right groin, as well as lymph node involvement. CT imaging revealed multiple bilateral pulmonary metastases. Pathology demonstrated a myxohayline stroma morphology. Tumour was also notable for NR4A3 gene region rearrangement and mutation in KIT exon 11 at position c.1669 T>G. Based on these findings, she was diagnosed with extraskeletal myxoid chondrosarcoma (EMC). The patient has been on imatinib, a tyrosine kinase inhibitor with activity against KIT, for 3 years with stable disease. Metastatic EMC is generally treated with surgical resection and perioperative radiation therapy with adjuvant chemotherapy and is associated with poor prognosis.


Assuntos
Condrossarcoma , Receptores de Esteroides , Condrossarcoma/diagnóstico por imagem , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Mesilato de Imatinib/uso terapêutico , Pessoa de Meia-Idade , Mutação , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética
6.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360855

RESUMO

The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in one-third of patients with de novo acute myeloid leukemia (AML). Mutated FLT3 variants are constitutively active kinases signaling via AKT kinase, MAP kinases, and STAT5. FLT3 inhibitors have been approved for the treatment of FLT3-mutated AML. However, treatment response to FLT3 inhibitors may be short-lived, and resistance may emerge. Compounds targeting STAT5 may enhance and prolong effects of FLT3 inhibitors in this subset of patients with FLT3-mutated AML. Here STAT5-inhibitor AC-4-130, FLT3 inhibitor midostaurin (PKC412), BMI-1 inhibitor PTC596, MEK-inhibitor trametinib, MCL1-inhibitor S63845, and BCL-2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Synergistic effects on cell viability were detected in both FLT3-mutated and FLT3-wild-type AML cells treated with AC-4-130 in combination with the MCL1 inhibitor S63845. AML patient samples with a strong response to AC-4-130 and S63845 combination treatment were characterized by mutated FLT3 or mutated TET2 genes. Susceptibility of AML cells to AC-4-130, PTC596, trametinib, PKC412, and venetoclax was altered in the presence of HS-5 stroma. Only the MCL1 inhibitor S63845 induced cell death with equal efficacy in the absence or presence of bone marrow stroma. The combination of the STAT5-inhibitor AC-4-130 and the MCL1 inhibitor S63845 may be an effective treatment targeting FLT3-mutated or TET2-mutated AML.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Pirimidinas/uso terapêutico , Fator de Transcrição STAT5/antagonistas & inibidores , Tiofenos/uso terapêutico , Proteínas Supressoras de Tumor/antagonistas & inibidores , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Proto-Oncogênicas/genética , Tirosina Quinase 3 Semelhante a fms/genética
7.
Zool Res ; 42(5): 562-573, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34355875

RESUMO

Inositol requiring mutant 80 (INO80) is a chromatin remodeler that regulates pluripotency maintenance of embryonic stem cells and reprogramming of somatic cells into pluripotent stem cells. However, the roles and mechanisms of INO80 in porcine pre-implantation embryonic development remain largely unknown. Here, we show that INO80 modulates trophectoderm epithelium permeability to promote porcine blastocyst development. The INO80 protein is highly expressed in the nuclei during morula-to-blastocyst transition. Functional studies revealed that RNA interference (RNAi)-mediated knockdown of INO80 severely blocks blastocyst formation and disrupts lineage allocation between the inner cell mass and trophectoderm. Mechanistically, single-embryo RNA sequencing revealed that INO80 regulates multiple genes, which are important for lineage specification, tight junction assembly, and fluid accumulation. Consistent with the altered expression of key genes required for tight junction assembly, a permeability assay showed that paracellular sealing is defective in the trophectoderm epithelium of INO80 knockdown blastocysts. Importantly, aggregation of 8-cell embryos from the control and INO80 knockdown groups restores blastocyst development and lineage allocation via direct complementation of the defective trophectoderm epithelium. Taken together, these results demonstrate that INO80 promotes blastocyst development by regulating the expression of key genes required for lineage specification, tight junction assembly, and fluid accumulation.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Blastocisto/fisiologia , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mórula/fisiologia , Suínos , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Proteínas de Ligação a DNA/genética , Técnicas de Cultura Embrionária/veterinária , Fertilização In Vitro , Regulação da Expressão Gênica/fisiologia , Oócitos/fisiologia , Permeabilidade
8.
Nat Commun ; 12(1): 4877, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385434

RESUMO

Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10-6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Malha Trabecular/fisiopatologia , Fatores de Transcrição/metabolismo , Animais , Humor Aquoso/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Glaucoma/genética , Glaucoma/metabolismo , Células HEK293 , Humanos , Pressão Intraocular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq/métodos , Malha Trabecular/metabolismo , Fatores de Transcrição/genética
9.
Medicine (Baltimore) ; 100(33): e26850, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414935

RESUMO

BACKGROUND: Gastric cancer (GC) is a strong cause of global cancer mortality. Nucleotide excision repair (NER) can modulate platinum-based chemotherapeutic efficacy by removing drug-produced DNA damage. Some studies have found a link between excision repair cross complementation group 1 (ERCC1) rs2298881, one gene in NER pathway, and response to chemotherapy. However, the results have been disputed. METHODS: We conducted a meta-analysis to reevaluate the association between polymorphisms of NER gene (ERCC1 rs2298881) and the clinical outcomes in gastric cancer patients receiving platinum-based chemotherapy. Searching PubMed, Web of Science, EMBASE, Google Scholar, and China National Knowledge Infrastructure, 2 independent searchers found all pertinent literatures up to May 1, 2021. We enrolled studies according to consistent selection criteria, extracted and vitrified data. Crude odds ratios (ORs) and hazard ratios (HRs) with 95% confidence interval (CI) were applied to evaluate the effect of ERCC1 rs2298881 on patients treated by platinum-based chemotherapy. RESULTS: By the data gathered from 6 independent studies, 1940 cases diagnosed with gastric cancer and treated with chemotherapy were included, containing 1208 Good-Responders and 732 Poor-Responders. With a comprehensive meta-analysis, we found that the patients with ERCC1 rs2298881A allele had a worse response to chemotherapy than those who with rs2298881C allele under allelic model (A vs C), with the pooled OR of 0.780 (95% CI: 0.611-0.996, P = .046). And our analysis indicated that AA genotype was associated with unfavorable overall survival (HR = 1.540, 95% CI = 1.106-2.144, P = .011) compared with CC genotype. CONCLUSIONS: ERCC1 rs2298881 is suggested as a marker of clinical outcome in gastric cancer patients treated by platinum-based chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Oxaliplatina/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Humanos , Polimorfismo de Nucleotídeo Único , Prognóstico , Neoplasias Gástricas/mortalidade
10.
Nat Commun ; 12(1): 4843, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376693

RESUMO

Small tandem duplications of DNA occur frequently in the human genome and are implicated in the aetiology of certain human cancers. Recent studies have suggested that DNA double-strand breaks are causal to this mutational class, but the underlying mechanism remains elusive. Here, we identify a crucial role for DNA polymerase α (Pol α)-primase in tandem duplication formation at breaks having complementary 3' ssDNA protrusions. By including so-called primase deserts in CRISPR/Cas9-induced DNA break configurations, we reveal that fill-in synthesis preferentially starts at the 3' tip, and find this activity to be dependent on 53BP1, and the CTC1-STN1-TEN1 (CST) and Shieldin complexes. This axis generates near-blunt ends specifically at DNA breaks with 3' overhangs, which are subsequently repaired by non-homologous end-joining. Our study provides a mechanistic explanation for a mutational signature abundantly observed in the genomes of species and cancer cells.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Repetições de Microssatélites/genética , Proteínas de Ligação a Telômeros/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Células Cultivadas , Reparo do DNA por Junção de Extremidades , DNA Polimerase I/genética , DNA Primase/genética , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
11.
Nat Commun ; 12(1): 4813, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376664

RESUMO

Differences in immune responses to viruses and autoimmune diseases such as systemic lupus erythematosus (SLE) can show sexual dimorphism. Age-associated B cells (ABC) are a population of CD11c+T-bet+ B cells critical for antiviral responses and autoimmune disorders. Absence of DEF6 and SWAP-70, two homologous guanine exchange factors, in double-knock-out (DKO) mice leads to a lupus-like syndrome in females marked by accumulation of ABCs. Here we demonstrate that DKO ABCs show sex-specific differences in cell number, upregulation of an ISG signature, and further differentiation. DKO ABCs undergo oligoclonal expansion and differentiate into both CD11c+ and CD11c- effector B cell populations with pathogenic and pro-inflammatory function as demonstrated by BCR sequencing and fate-mapping experiments. Tlr7 duplication in DKO males overrides the sex-bias and further augments the dissemination and pathogenicity of ABCs, resulting in severe pulmonary inflammation and early mortality. Thus, sexual dimorphism shapes the expansion, function and differentiation of ABCs that accompanies TLR7-driven immunopathogenesis.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fatores Etários , Envelhecimento/genética , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Antígeno CD11c/imunologia , Antígeno CD11c/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Estimativa de Kaplan-Meier , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Fatores Sexuais , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo
12.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34352203

RESUMO

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Assuntos
DNA Ligase Dependente de ATP/ultraestrutura , Enzimas Reparadoras do DNA/ultraestrutura , Proteína Quinase Ativada por DNA/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Apoptose/genética , Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestrutura , Complexos Multiproteicos/genética , Fosforilação/genética
13.
Science ; 373(6557): 882-889, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34413232

RESUMO

Eukaryotic genomes contain domesticated genes from integrating viruses and mobile genetic elements. Among these are homologs of the capsid protein (known as Gag) of long terminal repeat (LTR) retrotransposons and retroviruses. We identified several mammalian Gag homologs that form virus-like particles and one LTR retrotransposon homolog, PEG10, that preferentially binds and facilitates vesicular secretion of its own messenger RNA (mRNA). We showed that the mRNA cargo of PEG10 can be reprogrammed by flanking genes of interest with Peg10's untranslated regions. Taking advantage of this reprogrammability, we developed selective endogenous encapsidation for cellular delivery (SEND) by engineering both mouse and human PEG10 to package, secrete, and deliver specific RNAs. Together, these results demonstrate that SEND is a modular platform suited for development as an efficient therapeutic delivery modality.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Capsídeo/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Vesículas Extracelulares/metabolismo , Edição de Genes , Vetores Genéticos , Humanos , Camundongos , Neurônios/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Retroelementos , Transfecção , Regiões não Traduzidas , Regulação para Cima
14.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445464

RESUMO

The GLABROUS1 enhancer-binding protein (GeBP) gene family encodes a typical transcription factor containing a noncanonical Leucine (Leu-)-zipper motif that plays an essential role in regulating plant growth and development, as well as responding to various stresses. However, limited information on the GeBP gene family is available in the case of the Gramineae crops. Here, 125 GeBP genes from nine Gramineae crops species were phylogenetically classified into four clades using bioinformatics analysis. Evolutionary analyses showed that whole genome duplication (WGD) and segmental duplication play important roles in the expansion of the GeBP gene family. The various gene structures and protein motifs revealed that the GeBP genes play diverse functions in plants. In addition, the expression profile analysis of the GeBP genes showed that 13 genes expressed in all tested organs and stages of development in rice, with especially high levels of expression in the leaf, palea, and lemma. Furthermore, the hormone- and metal-induced expression patterns showed that the expression levels of most genes were affected by various biotic stresses, implying that the GeBP genes had an important function in response to various biotic stresses. Furthermore, we confirmed that OsGeBP11 and OsGeBP12 were localized to the nucleus through transient expression in the rice protoplast, indicating that GeBPs function as transcription factors to regulate the expression of downstream genes. This study provides a comprehensive understanding of the origin and evolutionary history of the GeBP genes family in Gramineae, and will be helpful in a further functional characterization of the GeBP genes.


Assuntos
Produtos Agrícolas , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Poaceae , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/metabolismo
15.
FASEB J ; 35(9): e21827, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383980

RESUMO

Neuron-derived orphan receptor 1, NR4A3 (Nor1)/NR4A3 is an orphan nuclear receptor involved in the transcriptional control of developmental and neurological functions. Oxidative stress-induced conditions are primarily associated with neurological defects in humans, yet the impact on Nor1-mediated transcription of neuronal genes remains with unknown mechanism. Here, we demonstrate that Nor1 is a non-conventional target of SUMO2/3 conjugation at Lys-137 contained in an atypic ψKxSP motif referred to as the pSuM. Nor1 pSuM SUMOylation differs from the canonical process with the obligate phosphorylation of Ser-139 by Ras signaling to create the required negatively charged interface for SUMOylation. Additional phosphorylation at sites flanking the pSuM is also mediated by the coordinated action of protein kinase casein kinase 2 to function as a small ubiquitin-like modifier enhancer, regulating Nor1-mediated transcription and proteasomal degradation. Nor1 responsive genes involved in cell proliferation and metabolism, such as activating transcription factor 3, cyclin D1, CASP8 and FADD-like apoptosis regulator, and enolase 3 were upregulated in response to pSuM disruption in mouse HT-22 hippocampal neuronal cells and human neuroblastoma SH-SY5Y cells. We also identified critical antioxidant genes, such as catalase, superoxide dismutase 1, and microsomal glutathione S-transferase 2, as responsive targets of Nor1 under pSuM regulation. Nor1 SUMOylation impaired gene transcription through less effective Nor1 chromatin binding and reduced enrichment of histone H3K27ac marks to gene promoters. These effects resulted in decreased neuronal cell growth, increased apoptosis, and reduced survival to oxidative stress damage, underlying the role of pSuM-modified Nor1 in redox homeostasis. Our findings uncover a hierarchical post-translational mechanism that dictates Nor1 non-canonical SUMOylation, disrupting Nor1 transcriptional competence, and neuroprotective redox sensitivity.


Assuntos
Sobrevivência Celular/genética , Proteínas de Ligação a DNA/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Sumoilação/genética , Animais , Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase do Ponto de Checagem 2/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Hipocampo/metabolismo , Homeostase/genética , Humanos , Camundongos , Neuroblastoma/genética , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo/genética , Fosforilação/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/genética , Transcrição Genética/genética , Ativação Transcricional/genética , Regulação para Cima/genética
16.
Gene ; 803: 145898, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34391864

RESUMO

Chronic inflammation is a key factor in symptomology and comorbidities of post-traumatic stress disorder (PTSD). Levels of a proinflammatory marker, C-reactive protein (CRP) are increased in individuals with PTSD but it is not clear if this is due to trauma exposure or PTSD. Our study aimed to assess the relationship between serum CRP levels, CRP SNPs, methylation, mRNA expression and PTSD in a homogenous trauma exposed Australian Vietnam veteran cohort. We hypothesized that decreased DNA methylation would be associated with increased gene expression and increased peripheral CRP levels in PTSD patients and that this would be independent of trauma. Participants were 299 Vietnam veterans who had all been exposed to trauma and approximately half were diagnosed with PTSD. We observed higher levels of serum CRP in the PTSD group compared to the non-PTSD group but after controlling for BMI and triglycerides the association did not remain significant. No association was found between CRP SNPs and PTSD or CRP levels. Absent in Melanoma 2 (AIM2) which is a mediator of inflammatory response and a determinant of CRP levels was analysed for DNA methylation and mRNA expression. We observed a trend level association between PTSD and AIM2 methylation after controlling for age, smoking, triglycerides, BMI and cell types. There was no significant interaction between PTSD and CRP levels on AIM2 methylation after controlling for covariates. We observed that as AIM2 methylation levels decreased, AIM2 mRNA expression increased. Elevated CRP levels were associated with AIM2 mRNA in the trauma exposed cohort but there was no significant interaction effect with PTSD. Our results could not confirm that CRP is a marker of PTSD independent of trauma in this group of older veterans. CRP may be a broad marker of disease risk, or a marker of PTSD in younger cohorts than those in this study.


Assuntos
Proteína C-Reativa/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/sangue , Proteínas do Tecido Nervoso/genética , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Veteranos/psicologia , Idoso , Austrália , Estudos de Casos e Controles , Epigênese Genética , Estudos de Associação Genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Transtornos de Estresse Pós-Traumáticos/sangue , Transtornos de Estresse Pós-Traumáticos/genética , Regulação para Cima , Guerra do Vietnã
17.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360978

RESUMO

Transactive response DNA-binding protein 43 (TDP-43) is a nucleic acid-binding protein that is involved in transcription and translation regulation, non-coding RNA processing, and stress granule assembly. Aside from its multiple functions, it is also known as the signature protein in the hallmark inclusions of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) patients. TDP-43 is built of four domains, but its low-complexity domain (LCD) has become an intense research focus that brings to light its possible role in TDP-43 functions and involvement in the pathogenesis of these neurodegenerative diseases. Recent endeavors have further uncovered the distinct biophysical properties of TDP-43 under various circumstances. In this review, we summarize the multiple structural and biochemical properties of LCD in either promoting the liquid droplets or inducing fibrillar aggregates. We also revisit the roles of the LCD in paraspeckles, stress granules, and cytoplasmic inclusions to date.


Assuntos
Amiloide/metabolismo , Proteínas de Ligação a DNA/química , Gotículas Lipídicas/metabolismo , Proteinopatias TDP-43/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Domínios Proteicos
18.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445562

RESUMO

Synaptonemal complex protein 3 (SCP3), a member of the Cor1 family, has been implicated in cancer progression, and therapeutic resistance, as well as cancer stem cell (CSC)-like properties. Previously, we demonstrated that SCP3 promotes these aggressive phenotypes via hyperactivation of the AKT signaling pathway; however, the underlying mechanisms responsible for SCP3-induced AKT activation remain to be elucidated. In this study, we demonstrated that the EGF-EGFR axis is the primary route through which SCP3 acts to activate AKT signaling. SCP3 triggers the EGFR-AKT pathway through transcriptional activation of EGF. Notably, neutralization of secreted EGF by its specific monoclonal antibody reversed SCP3-mediated aggressive phenotypes with a concomitant reversal of EGFR-AKT activation. In an effort to elucidate the molecular mechanisms underlying SCP3-induced transcriptional activation of EGF, we identified Jun activation domain-binding protein 1 (JAB1) as a binding partner of SCP3 using a yeast two-hybrid (Y2H) assay system, and we demonstrated that SCP3 induces EGF transcription through physical interaction with JAB1. Thus, our findings establish a firm molecular link among SCP3, EGFR, and AKT by identifying the novel roles of SCP3 in transcriptional regulation. We believe that these findings hold important implications for controlling SCP3high therapeutic-refractory cancer.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fator de Crescimento Epidérmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Complexo do Signalossomo COP9/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeo Hidrolases/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
19.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445565

RESUMO

Jasmonate ZIM-domain (JAZ) proteins are the crucial transcriptional repressors in the jasmonic acid (JA) signaling process, and they play pervasive roles in plant development, defense, and plant specialized metabolism. Although numerous JAZ gene families have been discovered across several plants, our knowledge about the JAZ gene family remains limited in the economically and medicinally important Chinese herb Mentha canadensis L. Here, seven non-redundant JAZ genes named McJAZ1-McJAZ7 were identified from our reported M. canadensis transcriptome data. Structural, amino acid composition, and phylogenetic analysis showed that seven McJAZ proteins contained the typical zinc-finger inflorescence meristem (ZIM) domain and JA-associated (Jas) domain as conserved as those in other plants, and they were clustered into four groups (A-D) and distributed into five subgroups (A1, A2, B1, B2, and D). Quantitative real-time PCR (qRT-PCR) analysis showed that seven McJAZ genes displayed differential expression patterns in M. canadensis tissues, and preferentially expressed in flowers. Furthermore, the McJAZ genes expression was differentially induced after Methyl jasmonate (MeJA) treatment, and their transcripts were variable and up- or down-regulated under abscisic acid (ABA), drought, and salt treatments. Subcellular localization analysis revealed that McJAZ proteins are localized in the nucleus or cytoplasm. Yeast two-hybrid (Y2H) assays demonstrated that McJAZ1-5 interacted with McCOI1a, a homolog of Arabidopsis JA receptor AtCOI1, in a coronatine-dependent manner, and most of McJAZ proteins could also form homo- or heterodimers. This present study provides valuable basis for functional analysis and exploitation of the potential candidate McJAZ genes for developing efficient strategies for genetic improvement of M. canadensis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mentha/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Transcriptoma , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Mentha/genética , Mentha/crescimento & desenvolvimento , Família Multigênica , Proteínas de Plantas/genética , Homologia de Sequência
20.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360715

RESUMO

Protein arginine methyltransferase 1 (PRMT1) is a major enzyme responsible for the formation of methylarginine in mammalian cells; however, its function in vivo is not well understood due to its early embryonic lethality in null mice exhibiting spontaneous DNA damage, cell cycle delays, and defects in check point activation. Here, we generated germ cell-specific Prmt1 knock-out (KO) mice to evaluate the function of PRMT1 in spermatogenesis. Our findings demonstrate that PRMT1 is vital for male fertility in mice. Spermatogenesis in Prmt1 KO mice was arrested at the zygotene-like stage of the first meiotic division due to an elevated number of DNA double-strand breaks (DSBs). There was a loss of methylation in meiotic recombination 11 (MRE11), the key endonuclease in MRE11/RAD50/NBS 1 (MRN) complex, resulting in the accumulation of SPO11 protein in DSBs. The ATM-mediated negative feedback control over SPO11 was lost and, consequently, the repair pathway of DSBs was highly affected in PRMT1 deficient male germ cells. Our findings provide a novel insight into the role of PRMT1-mediated asymmetric demethylation in mouse spermatogenesis.


Assuntos
Células Germinativas/enzimologia , Meiose , Proteína-Arginina N-Metiltransferases/metabolismo , Espermatogênese , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Feminino , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína-Arginina N-Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...