Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.614
Filtrar
1.
Gene ; 806: 145922, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34454032

RESUMO

Gastric cancer (GC)-derived cell lines were generally used in basic cancer research and drug screening. However, it is always concerned about the difference between cultured cells and primary tumor by oncologists. To address this question, we compared differentially expressed genes (DEGs) in primary cancers, healthy tissues, and cell lines both in vitro and in silico. Seven reported genes with decreased expression in GCs by DNA methylation were analyzed in our cohort studies and experimentally validation. Selected datasets from TCGA (The Cancer Genome Atlas), CCLE (The Broad Institute Cancer Cell Line Encyclopedia), and GTEx (The Genotype-Tissue Expression project) were used to represent GCs, GC-derived cell lines, and healthy tissues respectively in the in silico analysis. Thirty gastric tissues together with six cell lines were used for validations. Unexpectedly, we experimentally found that reported cancer-related downregulated genes were only found in cancer cell lines but not in biopsies. The unchanged gene expressions in primary GCs were generally consistent with our cohort study, using information from cancerous (TCGA) and healthy tissues (GETx). Substantial differences were also found between DEGs of cancer tissues (TGCA)/ healthy tissues (GTEx) pair and cell lines (CCLE)/ healthy tissues (GTEx) pair, which confirmed the significant differences between primary cancer and cancer cell lines. Moreover, elevated expression of YWHAQ (14-3-3 δ) and THBS1 were observed in the GC biopsies, which might be potential biomarkers for GC diagnosis, considering the increased YWHAQ and THBS1 associated with poor survival rates in gastric cancer patients. In sum, it is suggested that cautions should be taken when using GC cell lines to study genes that show great differences between cell lines and tissues.


Assuntos
Proteínas 14-3-3/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Neoplasias Gástricas/genética , Trombospondinas/genética , Proteínas 14-3-3/metabolismo , Idoso , Atlas como Assunto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Conjuntos de Dados como Assunto , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Cultura Primária de Células , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Trombospondinas/metabolismo , Células Tumorais Cultivadas
2.
Nat Commun ; 12(1): 5212, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471133

RESUMO

The autophagic degradation of misfolded and ubiquitinated proteins is important for cellular homeostasis. In this process, which is governed by cargo receptors, ubiquitinated proteins are condensed into larger structures and subsequently become targets for the autophagy machinery. Here we employ in vitro reconstitution and cell biology to define the roles of the human cargo receptors p62/SQSTM1, NBR1 and TAX1BP1 in the selective autophagy of ubiquitinated substrates. We show that p62 is the major driver of ubiquitin condensate formation. NBR1 promotes condensate formation by equipping the p62-NBR1 heterooligomeric complex with a high-affinity UBA domain. Additionally, NBR1 recruits TAX1BP1 to the ubiquitin condensates formed by p62. While all three receptors interact with FIP200, TAX1BP1 is the main driver of FIP200 recruitment and thus the autophagic degradation of p62-ubiquitin condensates. In summary, our study defines the roles of all three receptors in the selective autophagy of ubiquitin condensates.


Assuntos
Autofagia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Neoplasias/genética , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(9): 861-864, 2021 Sep 10.
Artigo em Chinês | MEDLINE | ID: mdl-34487531

RESUMO

OBJECTIVE: To explore the genotype-phenotype correlation in a child with Kabuki syndrome type 1 (KS1) caused by a mosaic frameshift variant of KMT2D gene. METHODS: Trio-based whole exome sequencing (WES) was carried for the patient and her parents. Candidate variant was verified by Sanger sequencing. RESULTS: The proband, a 3-year-and-2-month-old Chinese girl, presented with distinctive facial features, cognitive impairment, mild developmental delay, dermatoglyphic abnormalities, minor skeletal anomalies, ventricular septal defect, and autistic behavior. Trio-based WES revealed that the proband has carried a de novo mosaic frameshit variant of the KMT2D gene, namely NM_003482.3:c.13058delG (p.Pro4353Argfs*31) (GRCh37/hg19), for which the mosaicism rate was close to 21%. The variant was unreported previously and was confirmed by Sanger sequencing. Chromosomal microarray analysis (CMA) has revealed no pathogenic or likely pathogenic copy number variations. Compared with previously reported cases, our patient has presented obvious behavior anomalies including autism, anxiety and sleep problems, which were rarely reported. CONCLUSION: This study has expanded the spectrum of KMT2D gene variants, enriched the clinical phenotypes of KS1, and facilitated genetic counseling for the family.


Assuntos
Variações do Número de Cópias de DNA , Proteínas de Ligação a DNA , Anormalidades Múltiplas , China , Proteínas de Ligação a DNA/genética , Face/anormalidades , Feminino , Doenças Hematológicas , Humanos , Lactente , Proteínas de Neoplasias/genética , Fenótipo , Doenças Vestibulares
4.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445462

RESUMO

Liver cancer is the sixth most common cancer worldwide with high morbidity and mortality. Programmed death ligand 1 (PD-L1) is a major ligand of programmed death 1 receptor (PD1), and PD1/PD-L1 checkpoint acts as a negative regulator of the immune system. Cancers evade the host's immune defense via PD-L1 expression. This study aimed to investigate the effects of tumor-related cytokines, interferon gamma (IFNγ), and tumor necrosis factor alpha (TNFα) on PD-L1 expression in human hepatocellular carcinoma cells, HepG2. Furthermore, as atorvastatin, a cholesterol-lowering agent, is documented for its immunomodulatory properties, its effect on PD-L1 expression was investigated. In this study, through real-time RT-PCR, Western blot, and immunocytochemistry methods, PD-L1 expression in both mRNA and protein levels was found to be synergistically upregulated in HepG2 by a combination of IFNγ and TNFα, and STAT1 activation was mainly responsible for that synergistic effect. Next, atorvastatin can inhibit the induction of PD-L1 by either IFNγ alone or IFNγ/TNFα combination treatment in HepG2 cells. In conclusion, in HepG2 cells, expression of PD-L1 was augmented by cytokines in the tumor microenvironment, and the effect of atorvastatin on tumor immune response through inhibition of PD-L1 induction should be taken into consideration in cancer patients who have been prescribed atorvastatin.


Assuntos
Atorvastatina/farmacologia , Antígeno B7-H1/imunologia , Carcinoma Hepatocelular/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/imunologia , Proteínas de Neoplasias/imunologia , Antígeno B7-H1/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/genética
5.
Mol Biol (Mosk) ; 55(4): 676-682, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34432785

RESUMO

Hepatocellular Carcinoma (HCC) is the fourth leading cause of cancer-related death in the World. Epidermal Growth Factor Receptor (EGFR) pathway plays an important role in HCC tumorigenesis. In the tumor microenvironment of HCC, the expression of EGF is aberrant. Here we describe the EGF-dependent regulation of URGCP gene in Human Hepatoma cancer cells (Hep3B). The effect of EGF cytokine on Hep3B proliferation was shown using MTT method. EGF-mediated URGCP expression was determined at mRNA and protein level with qRT-PCR analyses and Western blotting method, respectively. Different lengths of URGCP promoter constructs were transient transfected in to Hep3B cells and the basal promoter activities were determined in the presence of EGF. In addition, some pathway analyses were performed to find out the mechanism of EGF mediated up-regulation of the URGCP gene. In the presence of EGF, URGCP expression increases in concentration and time dependent manner. EGF mediated URGCP up-regulation might depend on a cis-acting element located between -344 and -482 positions in its promoter.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Neoplasias , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Oncogenes , Microambiente Tumoral , Regulação para Cima
6.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445227

RESUMO

Osimertinib is the latest generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor used for patients with EGFR-mutated non-small cell lung cancer (NSCLC). We aimed to explore the novel mechanisms of osimertinib by particularly focusing on EGFR-independent effects, which have not been well characterized. We explored the EGFR-independent effects of osimertinib on cell proliferation using NSCLC cell lines, an antibody array analysis, and the association between the action of osimertinib and the ephrin receptor B4 (EphB4). We also studied the clinicopathological significance of EphB4 in 84 lung adenocarcinoma patients. Osimertinib exerted significant inhibitory effects on cell growth and cell cycle progression by promoting the phosphorylation of p53 and p21 and decreasing cyclin D1 expression independently of EGFR. EphB4 was significantly suppressed by osimertinib and promoted cell growth and sensitivity to osimertinib. The EphB4 status in carcinoma cells was positively correlated with tumor size, T factor, and Ki-67 labeling index in all patients and was associated with poor relapse-free survival in EGFR mutation-positive patients. EphB4 is associated with the EGFR-independent suppressive effects of osimertinib on cell cycle and with a poor clinical outcome. Osimertinib can exert significant growth inhibitory effects in EGFR-mutated NSCLC patients with a high EphB4 status.


Assuntos
Acrilamidas/farmacologia , Adenocarcinoma de Pulmão , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Receptor EphB4/metabolismo , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Ciclo Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Mutação , Proteínas de Neoplasias/genética , Receptor EphB4/genética
7.
Biomolecules ; 11(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34356598

RESUMO

S100A10, a member of the S100 family of Ca2+-binding proteins, is a widely distributed protein involved in many cellular and extracellular processes. The best recognized role of S100A10 is the regulation, via interaction with annexin A2, of plasminogen conversion to plasmin. Plasmin, together with other proteases, induces degradation of the extracellular matrix (ECM), which is an important step in tumor progression. Additionally, S100A10 interacts with 5-hydroxytryptamine 1B (5-HT1B) receptor, which influences neurotransmitter binding and, through that, depressive symptoms. Taking this into account, it is evident that S100A10 expression in the cell should be under strict control. In this work, we summarize available literature data concerning the physiological stimuli and transcription factors that influence S100A10 expression. We also present our original results showing for the first time regulation of S100A10 expression by grainyhead-like 2 transcription factor (GRHL2). By applying in silico analysis, we have found two highly conserved GRHL2 binding sites in the 1st intron of the gene encoding S100A10 protein. Using chromatin immunoprecipitation (ChIP) and luciferase assays, we have shown that GRHL2 directly binds to these sites and that this DNA region can affect transcription of S100A10.


Assuntos
Anexina A2 , Simulação por Computador , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Proteínas de Neoplasias , Neoplasias , Proteínas S100 , Fatores de Transcrição , Anexina A2/biossíntese , Anexina A2/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas S100/biossíntese , Proteínas S100/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Biomolecules ; 11(7)2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356634

RESUMO

Nitric oxide (NO), a free radical, plays a critical role in a wide range of physiological and pathological processes. Due to its pleiotropic function, it has been widely investigated in various types of cancers and is strongly associated with cancer development. Mounting pieces of evidence show that NO regulates various cancer-related events, which mainly depends on phosphorylating the key proteins in several signaling pathways. However, phosphorylation of proteins modulated by NO signaling pathway may lead to different effects in different types of cancer, which is complex and remains unclear. Therefore, in this review, we focus on the effect of protein phosphorylation modulated by NO signaling pathway in different types of cancers including breast cancer, lung cancer, prostate cancer, colon cancer, gastric cancer, pancreatic cancer, ovarian cancer, and neuroblastoma. Phosphorylation of key proteins, including p38 MAPK, ERK, PI3K, STAT3, and p53, modified by NO in various signaling pathways affects different cancer-related processes including cell apoptosis, proliferation, angiogenesis, metastasis, and several cancer therapies. Our review links the NO signaling pathway to protein phosphorylation in cancer development and provides new insight into potential targets and cancer therapy.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/terapia , Fosforilação
9.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360713

RESUMO

Rare central nervous system (CNS) tumours represent a unique challenge. Given the difficulty of conducting dedicated clinical trials, there is a lack of therapies for these tumours supported by high quality evidence, and knowledge regarding the impact of standard treatments (i.e., surgery, radiotherapy or chemotherapy) is commonly based on retrospective studies. Recently, new molecular techniques have led to the discovery of actionable molecular alterations. The aim of this article is to review recent progress in the molecular understanding of and therapeutic options for rare brain tumours, both in children and adults. We will discuss options such as targeting the mechanistic target of rapamycin (mTOR) pathway in subependymal giant cells astrocytomas (SEGAs) of tuberous sclerosis and BRAF V600E mutation in rare glial (pleomorphic xanthoastrocytomas) or glioneuronal (gangliogliomas) tumours, which are a model of how specific molecular treatments can also favourably impact neurological symptoms (such as seizures) and quality of life. Moreover, we will discuss initial experiences in targeting new molecular alterations in gliomas, such as isocitrate dehydrogenase (IDH) mutations and neurotrophic tyrosine receptor kinase (NTRK) fusions, and in medulloblastomas such as the sonic hedgehog (SHH) pathway.


Assuntos
Neoplasias Encefálicas , Terapia de Alvo Molecular , Mutação , Proteínas de Neoplasias , Doenças Raras , Transdução de Sinais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Doenças Raras/genética , Doenças Raras/metabolismo , Doenças Raras/terapia
10.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360783

RESUMO

Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Cálcio , Retículo Endoplasmático , Animais , Cálcio/química , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/química , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360793

RESUMO

Tumor-endothelial cell interactions represent an essential mechanism in spinal metastasis. Ephrin-B2-EphB4 communication induces tumor cell repulsion from the endothelium in metastatic melanoma, reducing spinal bone metastasis formation. To shed further light on the Ephrin-B2-EphB4 signaling mechanism, we researched the effects of pharmacological EphB4 receptor stimulation and inhibition in a ligand-dependent/independent context. We chose a preventative and a post-diagnostic therapeutic window. EphB4 stimulation during tumor cell seeding led to an increase in spinal metastatic loci and number of disseminated melanoma cells, as well as earlier locomotion deficits in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, reduction of metastatic loci with a later manifestation of locomotion deficits occurred. Thus, EphB4 receptor stimulation affects metastatic dissemination depending on the presence/absence of endothelial Ephrin-B2. After the manifestation of solid metastasis, EphB4 kinase inhibition resulted in significantly earlier manifestation of locomotion deficits in the presence of the ligand. No post-diagnostic treatment effect was found in the absence of endothelial Ephrin-B2. For solid metastasis treatment, EphB4 kinase inhibition induced prometastatic effects in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, both therapies showed no effect on the growth of solid metastasis.


Assuntos
Efrina-B2/metabolismo , Melanoma Experimental/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor EphB4/metabolismo , Transdução de Sinais , Neoplasias da Coluna Vertebral/metabolismo , Animais , Linhagem Celular Tumoral , Efrina-B2/genética , Ligantes , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Receptor EphB4/genética , Neoplasias da Coluna Vertebral/tratamento farmacológico , Neoplasias da Coluna Vertebral/genética , Neoplasias da Coluna Vertebral/secundário
12.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445249

RESUMO

The SKP1, CUL1, F-box protein (SCF) complex encompasses a group of 69 SCF E3 ubiquitin ligase complexes that primarily modify protein substrates with poly-ubiquitin chains to target them for proteasomal degradation. These SCF complexes are distinguishable by variable F-box proteins, which determine substrate specificity. Although the function(s) of each individual SCF complex remain largely unknown, those that have been characterized regulate a wide array of cellular processes, including gene transcription and the cell cycle. In this regard, the SCF complex regulates transcription factors that modulate cell signaling and ensures timely degradation of primary cell cycle regulators for accurate replication and segregation of genetic material. SCF complex members are aberrantly expressed in a myriad of cancer types, with altered expression or function of the invariable core SCF components expected to have a greater impact on cancer pathogenesis than that of the F-box proteins. Accordingly, this review describes the normal roles that various SCF complexes have in maintaining genome stability before discussing the impact that aberrant SCF complex expression and/or function have on cancer pathogenesis. Further characterization of the SCF complex functions is essential to identify and develop therapeutic approaches to exploit aberrant SCF complex expression and function.


Assuntos
Cromossomos Humanos , Instabilidade Genômica , Proteínas de Neoplasias , Neoplasias , Proteínas Ligases SKP Culina F-Box , Transcrição Genética , Animais , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo
13.
Bioengineered ; 12(1): 4054-4069, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34369278

RESUMO

During the pandemic of the coronavirus disease 2019, there exist quite a few studies on angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 infection, while little is known about ACE2 in hepatocellular carcinoma (HCC). The detailed mechanism among ACE2 and HCC still remains unclear, which needs to be further investigated. In the current study with a total of 6,926 samples, ACE2 expression was downregulated in HCC compared with non-HCC samples (standardized mean difference = -0.41). With the area under the curve of summary receiver operating characteristic = 0.82, ACE2 expression showed a better ability to differentiate HCC from non-HCC. The mRNA expression of ACE2 was related to the age, alpha-fetoprotein levels and cirrhosis of HCC patients, and it was identified as a protected factor for HCC patients via Kaplan-Meier survival, Cox regression analyses. The potential molecular mechanism of ACE2 may be relevant to catabolic and cell division. In all, decreasing ACE2 expression can be seen in HCC, and its protective role for HCC patients and underlying mechanisms were explored in the study.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Carcinoma Hepatocelular/genética , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Receptores Virais/genética , alfa-Fetoproteínas/genética , Fatores Etários , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , Área Sob a Curva , COVID-19/virologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/mortalidade , Cirrose Hepática/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/metabolismo , Fatores de Proteção , Mapeamento de Interação de Proteínas , Curva ROC , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Análise de Sobrevida , alfa-Fetoproteínas/metabolismo
14.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207660

RESUMO

Caseinolytic protease P (ClpP) is a mitochondrial serine protease. In mammalian cells, the heterodimerization of ClpP and its AAA+ ClpX chaperone results in a complex called ClpXP, which has a relevant role in protein homeostasis and in maintaining mitochondrial functionality through the degradation of mitochondrial misfolded or damaged proteins. Recent studies demonstrate that ClpP is upregulated in primary and metastatic human tumors, supports tumor cell proliferation, and its overexpression desensitizes cells to cisplatin. Interestingly, small modulators of ClpP activity, both activators and inhibitors, are able to impair oxidative phosphorylation in cancer cells and to induce apoptosis. This review provides an overview of the role of ClpP in regulating mitochondrial functionality, in supporting tumor cell proliferation and cisplatin resistance; finally, we discuss whether this protease could represent a new prognostic marker and therapeutic target for the treatment of cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Endopeptidase Clp/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Animais , Apoptose/genética , Biomarcadores Tumorais/genética , Proliferação de Células/genética , Endopeptidase Clp/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia
15.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209172

RESUMO

Vulvar squamous cell carcinoma (VSCC) is a rare malignancy with dual pathogenesis, Human papillomavirus (HPV)-associated and HPV-independent, with a poorly explored molecular landscape. We aimed to summarize the findings of the series analyzing molecular hallmarks of this neoplasm. In January 2021, we conducted a comprehensive literature search using Pubmed Medline and Scopus to identify publications focused on genomic profiling of VSCC. Observational studies, including both prospective and retrospective designs, evaluating molecular alterations in VSCC were deemed eligible. A total of 14 studies analyzing 749 VSCC were identified. The study series were heterogeneous in HPV testing and sequencing strategies, included small sets of tumors and cancer genes, and commonly lacked survival analysis. Only one extensive targeted next-generation sequencing-based study comprised a large cohort of 280 VSCC. The mutated genes, their number, and frequencies were highly variable between the series. Overall, TP53 and CDKN2A, followed by PIK3CA, HRAS, and PTEN, were the most frequently studied and mutated genes. Mutations involved in the PI3K/AKT/mTOR pathway, including TP53, HRAS, KRAS, and PIK3CA, have been consistently reported across the studies. However, the role of individual mutations or pathways in the development of VSCC remains unclear. In conclusion, heterogeneity and the small sample size of available molecular series contribute to a limited view of the molecular landscape of VSCC. Large-scale genome- or exome-wide studies with robust HPV testing are necessary to improve the molecular characterization of VSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Mutação , Proteínas de Neoplasias/genética , Neoplasias Vulvares/genética , Carcinoma de Células Escamosas/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias Vulvares/metabolismo
16.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209254

RESUMO

Glioblastoma multiforme (GBM) is a malignant primary brain tumor. The 5-year relative survival rate of patients with GBM remains <30% on average despite aggressive treatments, and secondary therapy fails in 90% of patients. In chemotherapeutic failure, detoxification proteins are crucial to the activity of chemotherapy drugs. Usually, glutathione S-transferase (GST) superfamily members act as detoxification enzymes by activating xenobiotic metabolites through conjugation with glutathione in healthy cells. However, some overexpressed GSTs not only increase GST activity but also trigger chemotherapy resistance and tumorigenesis-related signaling transductions. Whether GSTM3 is involved in GBM chemoresistance remains unclear. In the current study, we found that T98G, a GBM cell line with pre-existing temozolomide (TMZ) resistance, has high glycolysis and GSTM3 expression. GSTM3 knockdown in T98G decreased glycolysis ability through lactate dehydrogenase A activity reduction. Moreover, it increased TMZ toxicity and decreased invasion ability. Furthermore, we provide next-generation sequencing-based identification of significantly changed messenger RNAs of T98G cells with GSTM3 knockdown for further research. GSTM3 was downregulated in intrinsic TMZ-resistant T98G with a change in the expression levels of some essential glycolysis-related genes. Thus, GSTM3 was associated with glycolysis in chemotherapeutic resistance in T98G cells. Our findings provide new insight into the GSTM3 mechanism in recurring GBM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma/enzimologia , Glutationa Transferase/metabolismo , Glicólise , Proteínas de Neoplasias/metabolismo , Temozolomida , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/patologia , Glutationa Transferase/genética , Humanos , Proteínas de Neoplasias/genética
17.
Hum Genet ; 140(9): 1353-1365, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34268601

RESUMO

Endometriosis, polycystic ovary syndrome (PCOS) and uterine fibroids have been proposed as endometrial cancer risk factors; however, disentangling their relationships with endometrial cancer is complicated due to shared risk factors and comorbidities. Using genome-wide association study (GWAS) data, we explored the relationships between these non-cancerous gynecological diseases and endometrial cancer risk by assessing genetic correlation, causal relationships and shared risk loci. We found significant genetic correlation between endometrial cancer and PCOS, and uterine fibroids. Adjustment for genetically predicted body mass index (a risk factor for PCOS, uterine fibroids and endometrial cancer) substantially attenuated the genetic correlation between endometrial cancer and PCOS but did not affect the correlation with uterine fibroids. Mendelian randomization analyses suggested a causal relationship between only uterine fibroids and endometrial cancer. Gene-based analyses revealed risk regions shared between endometrial cancer and endometriosis, and uterine fibroids. Multi-trait GWAS analysis of endometrial cancer and the genetically correlated gynecological diseases identified a novel genome-wide significant endometrial cancer risk locus at 1p36.12, which replicated in an independent endometrial cancer dataset. Interrogation of functional genomic data at 1p36.12 revealed biologically relevant genes, including WNT4 which is necessary for the development of the female reproductive system. In summary, our study provides genetic evidence for a causal relationship between uterine fibroids and endometrial cancer. It further provides evidence that the comorbidity of endometrial cancer, PCOS and uterine fibroids may partly be due to shared genetic architecture. Notably, this shared architecture has revealed a novel genome-wide risk locus for endometrial cancer.


Assuntos
Neoplasias do Endométrio/genética , Loci Gênicos , Leiomioma/genética , Proteínas de Neoplasias/genética , Proteína Wnt4/genética , Endometriose/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Síndrome do Ovário Policístico/genética
18.
Life Sci ; 282: 119848, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34293398

RESUMO

AIMS: The crosstalk between cancer cells and nerves plays an important role in tumor biology. However, the correlation between the neurotrophin signaling (NS) and anti-tumor immunity and immunotherapy response in cancer remains unexplored. MATERIALS AND METHODS: We analyzed associations of NS with anti-tumor immune signatures, tumor immunity-related molecular and genomic features, and clinical features in 33 TCGA cancer types. We also explored the association between NS and the response to immune checkpoint inhibitors (ICIs) in four cancer cohorts. KEY FINDINGS: NS scores had significant positive correlations with the enrichment scores of anti-tumor immune signatures, including CD8+ T cells, interferon response, natural killer cells, Toll-like receptor and NOD-like receptor signaling pathways in most cancer types. NS scores were inversely correlated with the scores of DNA damage repair pathways, tumor mutation burden, copy number alterations, intra-tumor heterogeneity, and tumor stemness in diverse cancers. In contrast, NS scores were significantly and positively correlated with the apoptosis pathway's scores in 32 of the 33 cancer types. NS scores were significantly lower in early-stage versus late-stage and in primary versus metastatic tumors in diverse cancers. Higher NS scores were correlated with better survival in pan-cancer and in eight individual cancer types. Moreover, the response rate to ICIs was higher in higher-NS-score than in lower-NS-score tumors in four cancer cohorts. Elevated NS was correlated with increased drug sensitivity for numerous anti-tumor targeted drugs. SIGNIFICANCE: NS is a positive biomarker for anti-tumor immune response, prognosis, and the response to targeted and immunotherapeutic drugs in cancer.


Assuntos
Biomarcadores Tumorais , Bases de Dados Genéticas , Imunoterapia , Proteínas de Neoplasias , Neoplasias , Fatores de Crescimento Neural , Transdução de Sinais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
19.
Life Sci ; 283: 119840, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298040

RESUMO

AIMS: The high glycolysis state of tumor cells is closely related to radioresistance. Fructose-1,6-bisphosphatase (FBP1) can regulate aerobic glycolysis and exerts tumor suppressor effects in many cancers, but its role in nasopharyngeal carcinoma (NPC) remains to be investigated. MATERIALS AND METHODS: RT-qPCR was used to measure FBP1 mRNA level. Glucose consumption, lactic acid production and ATP level was determined to evaluate glycolysis. The sensitivity of NPC cells to radiation was analyzed by MTT assay. Apoptosis was performed using flow cytometry. Gain- and loss-of function assays were carried out to explore the specific role of FBP1 and FBXW7 (F-box and WD repeat domain-containing 7) in NPC cell functions. The interactions between FBXW7 and FBP1 or mTOR were validated with co-immunoprecipitation assay. The in vivo experiments with xenografts were used to evaluate the role of FBP1 in tumor growth. KEY FINDINGS: FBP1 expression was lower in NPC tissues and cells than in normal controls and nasopharyngeal epithelial cells. Human recombinant FBP1 (rh-FBP1) treatment suppressed glycolysis in NPC cells. Besides, silencing FBP1 weakened the radiosensitivity and alleviated radiation-induced apoptosis and DNA damage by promoting glycolysis. Mechanism exploration found that FBP1 promoted FBXW7 protein level through suppressing the autoubiquitination of FBXW7. Then, FBXW7 restrained mTOR level by facilitating mTOR ubiquitination, thereby suppressing glycolysis and promoting radiation-induced apoptosis and DNA damage. Furthermore, overexpressing FBP1 in vivo hindered tumor growth and enhanced the antitumor activity of radiation. SIGNIFICANCE: FBP1 promoted the radiosensitivity in NPC cells by inhibiting glycolysis through the FBXW7/mTOR axis.


Assuntos
Proteína 7 com Repetições F-Box-WD/metabolismo , Glicólise , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteínas de Neoplasias/metabolismo , Tolerância a Radiação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/radioterapia , Proteínas de Neoplasias/genética , Serina-Treonina Quinases TOR/genética
20.
Cell Death Dis ; 12(7): 661, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210956

RESUMO

Bladder cancer is one of the most common malignant tumors in the urinary system. The development and improvement of treatment efficiency require the deepening of the understanding of its molecular mechanism. This study investigated the role of ALPK2, which is rarely studied in malignant tumors, in the development of bladder cancer. Our results showed the upregulation of ALPK2 in bladder cancer, and data mining of TCGA database showed the association between ALPK2 and pathological parameters of patients with bladder cancer. In vitro and in vivo experiments demonstrated that knockdown of ALPK2 could inhibit bladder cancer development through regulating cell proliferation, cell apoptosis, and cell migration. Additionally, DEPDC1A is identified as a potential downstream of ALPK2 with direct interaction, whose overexpression/downregulation can inhibit/promote the malignant behavioral of bladder cancer cells. Moreover, the overexpression of DEPDC1A can rescue the inhibitory effects of ALPK2 knockdown on bladder cancer. In conclusion, ALPK2 exerts a cancer-promoting role in the development of bladder cancer by regulating DEPDC1A, which may become a promising target to improve the treatment strategy of bladder cancer.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Quinases/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Bases de Dados Genéticas , Proteínas Ativadoras de GTPase/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas Quinases/genética , Transdução de Sinais , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...