Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.647
Filtrar
1.
Nat Commun ; 11(1): 4505, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908148

RESUMO

Evidence for transgenerational inheritance of epigenetic information in vertebrates is scarce. Aberrant patterns of DNA methylation in gametes may set the stage for transmission into future generations. Here, we describe a viable hypomorphic allele of dnmt1 in zebrafish that causes widespread demethylation of CpG dinucleotides in sperm and somatic tissues. We find that homozygous mutants are essentially normal, with the exception of drastically impaired lymphopoiesis, affecting both larval and adult phases of T cell development. The phenotype of impaired larval (but not adult) T cell development is transmitted to subsequent generations by genotypically wildtype fish. We further find that about 200 differentially methylated regions in sperm DNA of transmitting and non-transmitting males, including hypermethylated sites associated with runx3 and rptor genes, whose reduced activities are associated with impaired larval T cell development. Our results indicate a particular sensitivity of larval T cell development to transgenerationally inherited epimutations.


Assuntos
Diferenciação Celular/genética , Genes Recessivos , Larva/crescimento & desenvolvimento , Linfopoese/genética , Linfócitos T/fisiologia , Alelos , Animais , Animais Geneticamente Modificados , Subunidade alfa 3 de Fator de Ligação ao Core/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Epigênese Genética , Feminino , Genética , Larva/citologia , Masculino , Mutação , Proteína Regulatória Associada a mTOR/genética , Espermatozoides/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
PLoS One ; 15(8): e0231364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804943

RESUMO

Phosphoinositides (PIPs) and their regulatory enzymes are key players in many cellular processes and are required for aspects of vertebrate development. Dysregulated PIP metabolism has been implicated in several human diseases, including a subset of skeletal myopathies that feature structural defects in the triad. The role of PIPs in skeletal muscle formation, and particularly triad biogenesis, has yet to be determined. CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) catalyzes the formation of phosphatidylinositol, which is the base of all PIP species. Loss of CDIPT should, in theory, result in the failure to produce PIPs, and thus provide a strategy for establishing the requirement for PIPs during embryogenesis. In this study, we generated cdipt mutant zebrafish and determined the impact on skeletal myogenesis. Analysis of cdipt mutant muscle revealed no apparent global effect on early muscle development. However, small but significant defects were observed in triad size, with T-tubule area, inter terminal cisternae distance and gap width being smaller in cdipt mutants. This was associated with a decrease in motor performance. Overall, these data suggest that myogenesis in zebrafish does not require de novo PIP synthesis but does implicate a role for CDIPT in triad formation.


Assuntos
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/metabolismo , Animais , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/biossíntese , Fosfatos de Inositol/metabolismo , Lipogênese , Desenvolvimento Muscular/genética , Músculos/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
PLoS One ; 15(7): e0225351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735563

RESUMO

Endothelial cilia are found in a variety of tissues including the cranial vasculature of zebrafish embryos. Recently, endothelial cells in the developing mouse retina were reported to also possess primary cilia that are potentially involved in vascular remodeling. Fish carrying mutations in intraflagellar transport (ift) genes have disrupted cilia and have been reported to have an increased rate of spontaneous intracranial hemorrhage (ICH), potentially due to disruption of the sonic hedgehog (shh) signaling pathway. However, it remains unknown whether the endothelial cells forming the retinal microvasculature in zebrafish also possess cilia, and whether endothelial cilia are necessary for development and maintenance of the blood-retinal barrier (BRB). In the present study, we found that the endothelial cells lining the zebrafish hyaloid vasculature possess primary cilia during development. To determine whether endothelial cilia are necessary for BRB integrity, ift57, ift88, and ift172 mutants, which lack cilia, were crossed with the double-transgenic zebrafish strain Tg(l-fabp:DBP-EGFP;flk1:mCherry). This strain expresses a vitamin D-binding protein (DBP) fused to enhanced green fluorescent protein (EGFP) as a tracer in the blood plasma, while the endothelial cells forming the vasculature are tagged by mCherry. The Ift mutant fish develop a functional BRB, indicating that endothelial cilia are not necessary for early BRB integrity. Additionally, although treatment of zebrafish larvae with Shh inhibitor cyclopamine results in BRB breakdown, the Ift mutant fish were not sensitized to cyclopamine-induced BRB breakdown.


Assuntos
Barreira Hematorretiniana/metabolismo , Cílios/metabolismo , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/fisiologia , Células Endoteliais/citologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Larva/metabolismo , Mutagênese , Vasos Retinianos/citologia , Transdução de Sinais , Alcaloides de Veratrum/farmacologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Ecotoxicol Environ Saf ; 204: 111068, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32745784

RESUMO

Herein, eight common endocrine disrupting chemicals (EDCs) were exposed to zebrafish (Danio rerio) to investigate the relationship between different EDCs and their activated estrogen receptors. Under acute exposure, we identified five major malformation types whose incidence and deformity modes differed among EDCs. Luciferase analysis divided the EDC receptors into four categories: (i) triclosan (TCS), 17ß-estradiol (E2) and estriol (E3) mainly activated GPER expression; (ii) bisphenol A (BPA), p-(tert-octyl) phenol (POP), 17α-ethynylestradiol (EE2), E2 and E3 activated ERß expression; (iii) E2 and E3 acted on both GPER and ERß; and (iv) estrone (E1) and 9,9-bis(4-hydroxyphenyl)fluorene (BHPF) had little effect on the two receptors. In vivo immunofluorescence experiments on 96-hpf larvae provided evidence that TCS and POP acted on GPER and ERß, respectively, while E2 acted on the two receptors simultaneously. Luciferase activities in the promoter regions of gper (-986 to -488) and erß (-1998 to -1496) were higher than those in other regions, identifying these key regions as targets for transcription activity. TCS promoted GPER expression by acting on the JUND transcription factor, while POP promoted ERß expression by activating the Foxl1 transcription factor. In contrast, E2 mainly regulated transcription of GPER and ERß by Arid3a. These findings provide compelling evidence that different EDCs possess varying estrogen receptors, leading to differential regulatory pathways and abnormality symptoms. These results offer an experimental strategy and fundamental information to assess the molecular mechanisms of EDC-induced estrogen effects.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Receptor beta de Estrogênio/metabolismo , Fenóis/toxicidade , Receptores Acoplados a Proteínas-G/metabolismo , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Compostos Benzidrílicos/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Disruptores Endócrinos/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Fenóis/metabolismo , Poluentes Químicos da Água/metabolismo
5.
PLoS Biol ; 18(7): e3000561, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702011

RESUMO

Maternal ß-catenin activity is essential and critical for dorsal induction and its dorsal activation has been thoroughly studied. However, how the maternal ß-catenin activity is suppressed in the nondorsal cells remains poorly understood. Nanog is known to play a central role for maintenance of the pluripotency and maternal -zygotic transition (MZT). Here, we reveal a novel role of Nanog as a strong repressor of maternal ß-catenin signaling to safeguard the embryo against hyperactivation of maternal ß-catenin activity and hyperdorsalization. In zebrafish, knockdown of nanog at different levels led to either posteriorization or dorsalization, mimicking zygotic or maternal activation of Wnt/ß-catenin activities, and the maternal zygotic mutant of nanog (MZnanog) showed strong activation of maternal ß-catenin activity and hyperdorsalization. Although a constitutive activator-type Nanog (Vp16-Nanog, lacking the N terminal) perfectly rescued the MZT defects of MZnanog, it did not rescue the phenotypes resulting from ß-catenin signaling activation. Mechanistically, the N terminal of Nanog directly interacts with T-cell factor (TCF) and interferes with the binding of ß-catenin to TCF, thereby attenuating the transcriptional activity of ß-catenin. Therefore, our study establishes a novel role for Nanog in repressing maternal ß-catenin activity and demonstrates a transcriptional switch between ß-catenin/TCF and Nanog/TCF complexes, which safeguards the embryo from global activation of maternal ß-catenin activity.


Assuntos
Desenvolvimento Embrionário/genética , Proteína Homeobox Nanog/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , beta Catenina/metabolismo , Animais , Padronização Corporal/genética , Núcleo Celular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Masculino , Mutação/genética , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/genética , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/metabolismo , Transcrição Genética , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Zigoto/metabolismo
6.
Nat Commun ; 11(1): 3317, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620775

RESUMO

Oriented cell division is a fundamental mechanism to control asymmetric stem cell division, neural tube elongation and body axis extension, among other processes. During zebrafish gastrulation, when the body axis extends, dorsal epiblast cells display divisions that are robustly oriented along the animal-vegetal embryonic axis. Here, we use a combination of lipidomics, metabolic tracer analysis and quantitative image analysis to show that sphingolipids mediate spindle positioning during oriented division of epiblast cells. We identify the Wnt signaling as a regulator of sphingolipid synthesis that mediates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme in sphingolipid production. Sphingolipids determine the palmitoylation state of the Anthrax receptor, which then positions the mitotic spindle of dividing epiblast cells. Our data show how Wnt signaling mediates sphingolipid-dependent oriented division and how sphingolipids determine Anthrax receptor palmitoylation, which ultimately controls the activation of Diaphanous to mediate spindle rotation and oriented mitosis.


Assuntos
Embrião não Mamífero/metabolismo , Mitose , Receptores de Peptídeos/metabolismo , Esfingolipídeos/metabolismo , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Divisão Celular Assimétrica/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Lipoilação , Tubo Neural/citologia , Tubo Neural/embriologia , Tubo Neural/metabolismo , Receptores de Peptídeos/genética , Homologia de Sequência de Aminoácidos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Fuso Acromático/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Nat Commun ; 11(1): 3698, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703943

RESUMO

Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3' alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Retardo Mental Ligado ao Cromossomo X/genética , Mutação/genética , Proteínas de Ligação a RNA/genética , Spliceossomos/metabolismo , Proteínas de Peixe-Zebra/genética , Adulto , Animais , Núcleo Celular/metabolismo , Criança , Pré-Escolar , Família , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto/genética , Células NIH 3T3 , Linhagem , Fenótipo , Transporte Proteico , Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , Síndrome , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Nat Commun ; 11(1): 3752, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719334

RESUMO

Glycinergic synapses play a central role in motor control and pain processing in the central nervous system. Glycine receptors (GlyRs) are key players in mediating fast inhibitory neurotransmission at these synapses. While previous high-resolution structures have provided insights into the molecular architecture of GlyR, several mechanistic questions pertaining to channel function are still unanswered. Here, we present Cryo-EM structures of the full-length GlyR protein complex reconstituted into lipid nanodiscs that are captured in the unliganded (closed), glycine-bound (open and desensitized), and allosteric modulator-bound conformations. A comparison of these states reveals global conformational changes underlying GlyR channel gating and modulation. The functional state assignments were validated by molecular dynamics simulations, and the observed permeation events are in agreement with the anion selectivity and conductance of GlyR. These studies provide the structural basis for gating, ion selectivity, and single-channel conductance properties of GlyR in a lipid environment.


Assuntos
Ativação do Canal Iônico , Lipídeos/química , Nanopartículas/química , Receptores da Glicina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Glicina/metabolismo , Simulação de Dinâmica Molecular , Neurotransmissores/metabolismo , Conformação Proteica , Receptores da Glicina/ultraestrutura , Xenopus , Proteínas de Peixe-Zebra/ultraestrutura
9.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R329-R342, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697653

RESUMO

Peripheral chemosensitivity in fishes is thought to be mediated by serotonin-enriched neuroepithelial cells (NECs) that are localized to the gills of adults and the integument of larvae. In adult zebrafish (Danio rerio), branchial NECs are presumed to mediate the cardiorespiratory reflexes associated with hypoxia or hypercapnia, whereas in larvae, there is indirect evidence linking cutaneous NECs to hypoxic hyperventilation and hypercapnic tachycardia. No study yet has examined the ventilatory response of larval zebrafish to hypercapnia, and regardless of developmental stage, the signaling pathways involved in CO2 sensing remain unclear. In the mouse, a background potassium channel (TASK-2) contributes to the sensitivity of chemoreceptor cells to CO2. Zebrafish possess two TASK-2 channel paralogs, TASK-2 and TASK-2b, encoded by kcnk5a and kcnk5b, respectively. The present study aimed to determine whether TASK-2 channels are expressed in NECs of larval zebrafish and whether they are involved in CO2 sensing. Using immunohistochemical approaches, TASK-2 protein was observed on the surface of NECs in larvae. Exposure of larvae to hypercapnia caused cardiac and breathing frequencies to increase, and these responses were blunted in fish experiencing TASK-2 and/or TASK-2b knockdown. The results of these experiments suggest that TASK-2 channels are involved in CO2 sensing by NECs and contribute to the initiation of reflex cardiorespiratory responses during exposure of larvae to hypercapnia.


Assuntos
Dióxido de Carbono/metabolismo , Hipercapnia/metabolismo , Hipóxia/metabolismo , Células Neuroepiteliais/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Células Quimiorreceptoras/metabolismo , Brânquias/metabolismo , Hiperventilação/metabolismo , Células Neuroepiteliais/citologia , Oxigênio/metabolismo , Peixe-Zebra/fisiologia
10.
Toxicol Lett ; 331: 143-151, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32525014

RESUMO

Although organotin compounds are known to disturb thyroid signaling and antioxidant defense system, the sex-differences underlying these effects of triphenyltin chloride (TPT) in fish remain unclear. To understand these differences, adult zebrafish (Danio rerio) were exposed to different concentrations of TPT (0, 10, 100, or 1000 ng/L) for 28 days. Female zebrafish exposed to TPT showed significantly increased thyroxine (T4) content and decrease triiodothyronine (T3) content, possibly due to downregulation of deiodinase (dio2) and uridine diphosphate glucuronosyl transferase (ugt1ab). However, decreased T4 and T3 contents in male zebrafish accompanied with upregulation of dio1, dio2 and ugt1ab. TPT exposure can lead to sex-specific thyroid disruption in adult zebrafish via alterations the Hypothalamus-pituitary-thyroid-liver axis. In addition, the gene expression levels of metabolizing enzymes, such as cyp1b, cyp1c, gpx1a, or sult1st1 were also to vary in a sex-dependent manner in adult zebrafish liver. Downregulation of cyp19a and cyp19b and decreased 17ß-estradiol (E2) contents were detected in both female and male zebrafish. Therefore, a sex-specific of thyroid disruption response after TPT exposure was observed in adult zebrafish, possibly due to inherent in female or males detoxifying enzyme capacities.


Assuntos
Disruptores Endócrinos/toxicidade , Compostos Orgânicos de Estanho/toxicidade , Caracteres Sexuais , Glândula Tireoide/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra , Peixe-Zebra/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Glândula Tireoide/metabolismo , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Nat Commun ; 11(1): 2796, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493965

RESUMO

Cell fate decisions involved in vascular and hematopoietic embryonic development are still poorly understood. An ETS transcription factor Etv2 functions as an evolutionarily conserved master regulator of vasculogenesis. Here we report a single-cell transcriptomic analysis of hematovascular development in wild-type and etv2 mutant zebrafish embryos. Distinct transcriptional signatures of different types of hematopoietic and vascular progenitors are identified using an etv2ci32Gt gene trap line, in which the Gal4 transcriptional activator is integrated into the etv2 gene locus. We observe a cell population with a skeletal muscle signature in etv2-deficient embryos. We demonstrate that multiple etv2ci32Gt; UAS:GFP cells differentiate as skeletal muscle cells instead of contributing to vasculature in etv2-deficient embryos. Wnt and FGF signaling promote the differentiation of these putative multipotent etv2 progenitor cells into skeletal muscle cells. We conclude that etv2 actively represses muscle differentiation in vascular progenitors, thus restricting these cells to a vascular endothelial fate.


Assuntos
Vasos Sanguíneos/citologia , Perfilação da Expressão Gênica , Músculo Esquelético/citologia , Análise de Célula Única , Células-Tronco/metabolismo , Proteínas de Peixe-Zebra/deficiência , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Diferenciação Celular/genética , Movimento Celular , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico , Modelos Biológicos , Mutação/genética , Somitos/metabolismo , Transcrição Genética , Via de Sinalização Wnt , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Nat Commun ; 11(1): 2724, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483144

RESUMO

Proteolytical processing of the growth factor VEGFC through the concerted activity of CCBE1 and ADAMTS3 is required for lymphatic development to occur. How these factors act together in time and space, and which cell types produce these factors is not understood. Here we assess the function of Adamts3 and the related protease Adamts14 during zebrafish lymphangiogenesis and show both proteins to be able to process Vegfc. Only the simultaneous loss of both protein functions results in lymphatic defects identical to vegfc loss-of-function situations. Cell transplantation experiments demonstrate neuronal structures and/or fibroblasts to constitute cellular sources not only for both proteases but also for Ccbe1 and Vegfc. We further show that this locally restricted Vegfc maturation is needed to trigger normal lymphatic sprouting and directional migration. Our data provide a single-cell resolution model for establishing secretion and processing hubs for Vegfc during developmental lymphangiogenesis.


Assuntos
Fibroblastos/metabolismo , Linfangiogênese/genética , Neurônios/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Vasos Linfáticos/embriologia , Vasos Linfáticos/metabolismo , Microscopia Confocal , Pró-Colágeno N-Endopeptidase/genética , Pró-Colágeno N-Endopeptidase/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
13.
PLoS Genet ; 16(6): e1008774, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555736

RESUMO

Cranial neural crest (NC) contributes to the developing vertebrate eye. By multidimensional, quantitative imaging, we traced the origin of the ocular NC cells to two distinct NC populations that differ in the maintenance of sox10 expression, Wnt signalling, origin, route, mode and destination of migration. The first NC population migrates to the proximal and the second NC cell group populates the distal (anterior) part of the eye. By analysing zebrafish pax6a/b compound mutants presenting anterior segment dysgenesis, we demonstrate that Pax6a/b guide the two NC populations to distinct proximodistal locations. We further provide evidence that the lens whose formation is pax6a/b-dependent and lens-derived TGFß signals contribute to the building of the anterior segment. Taken together, our results reveal multiple roles of Pax6a/b in the control of NC cells during development of the anterior segment.


Assuntos
Segmento Anterior do Olho/metabolismo , Crista Neural/metabolismo , Neurogênese , Fator de Transcrição PAX6/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Segmento Anterior do Olho/citologia , Segmento Anterior do Olho/embriologia , Movimento Celular , Mutação , Crista Neural/citologia , Crista Neural/embriologia , Neurônios/citologia , Neurônios/metabolismo , Fator de Transcrição PAX6/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
14.
PLoS One ; 15(6): e0232308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530962

RESUMO

Zebrafish have the ability to regenerate damaged cells and tissues by activating quiescent stem and progenitor cells or reprogramming differentiated cells into regeneration-competent precursors. Proliferation among the cells that will functionally restore injured tissues is a fundamental biological process underlying regeneration. Midkine-a is a cytokine growth factor, whose expression is strongly induced by injury in a variety of tissues across a range of vertebrate classes. Using a zebrafish Midkine-a loss of function mutant, we evaluated regeneration of caudal fin, extraocular muscle and retinal neurons to investigate the function of Midkine-a during epimorphic regeneration. In wildtype zebrafish, injury among these tissues induces robust proliferation and rapid regeneration. In Midkine-a mutants, the initial proliferation in each of these tissues is significantly diminished or absent. Regeneration of the caudal fin and extraocular muscle is delayed; regeneration of the retina is nearly completely absent. These data demonstrate that Midkine-a is universally required in the signaling pathways that convert tissue injury into the initial burst of cell proliferation. Further, these data highlight differences in the molecular mechanisms that regulate epimorphic regeneration in zebrafish.


Assuntos
Midkina/metabolismo , Regeneração/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Nadadeiras de Animais/fisiologia , Animais , Animais Geneticamente Modificados/metabolismo , Diferenciação Celular , Proliferação de Células , Midkina/genética , Mutagênese , Neuroglia/citologia , Neuroglia/metabolismo , Músculos Oculomotores/fisiologia , Neurônios Retinianos/fisiologia , Proteínas de Peixe-Zebra/genética
15.
Nat Commun ; 11(1): 2984, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533114

RESUMO

ADNP (Activity Dependent Neuroprotective Protein) is a neuroprotective protein whose aberrant expression has been frequently linked to neural developmental disorders, including the Helsmoortel-Van der Aa syndrome (also called the ADNP syndrome). However, its role in neural development and pathology remains unclear. Here, we show that ADNP is required for neural induction and differentiation by enhancing Wnt signaling. Mechanistically, ADNP functions to stabilize ß-Catenin through binding to its armadillo domain which prevents its association with key components of the degradation complex: Axin and APC. Loss of ADNP promotes the formation of the degradation complex and ß-Catenin degradation via ubiquitin-proteasome pathway, resulting in down-regulation of key neuroectoderm developmental genes. In addition, adnp gene disruption in zebrafish leads to defective neurogenesis and reduced Wnt signaling. Our work provides important insights into the role of ADNP in neural development and the pathology of the Helsmoortel-Van der Aa syndrome caused by ADNP gene mutation.


Assuntos
Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Hibridização In Situ/métodos , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Ligação Proteica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo
16.
Nat Commun ; 11(1): 2797, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493999

RESUMO

Fat distribution is an independent cardiometabolic risk factor. However, its molecular and cellular underpinnings remain obscure. Here we demonstrate that two independent GWAS signals at RSPO3, which are associated with increased body mass index-adjusted waist-to-hip ratio, act to specifically increase RSPO3 expression in subcutaneous adipocytes. These variants are also associated with reduced lower-body fat, enlarged gluteal adipocytes and insulin resistance. Based on human cellular studies RSPO3 may limit gluteofemoral adipose tissue (AT) expansion by suppressing adipogenesis and increasing gluteal adipocyte susceptibility to apoptosis. RSPO3 may also promote upper-body fat distribution by stimulating abdominal adipose progenitor (AP) proliferation. The distinct biological responses elicited by RSPO3 in abdominal versus gluteal APs in vitro are associated with differential changes in WNT signalling. Zebrafish carrying a nonsense rspo3 mutation display altered fat distribution. Our study identifies RSPO3 as an important determinant of peripheral AT storage capacity.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Distribuição da Gordura Corporal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Trombospondinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adiposidade/genética , Adulto , Alelos , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Células-Tronco/metabolismo , Trombospondinas/genética , Relação Cintura-Quadril , Via de Sinalização Wnt/efeitos dos fármacos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
Aquat Toxicol ; 225: 105540, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32569997

RESUMO

The zebrafish (Danio rerio) embryo has increasingly been used as an alternative model in human and environmental toxicology. Since the cytochrome P450 (CYP) system is of fundamental importance for the understanding and correct interpretation of the outcome of toxicological studies, constitutive and xenobiotic-induced 7-methoxycoumarin-O-demethylase (MCOD), i.e. 'mammalian CYP2-like', activities were monitored in vivo in zebrafish embryos via confocal laser scanning microscopy. In order to elucidate molecular mechanisms underlying the MCOD induction, dose-dependent effects of the prototypical CYP inducers ß-naphthoflavone (aryl hydrocarbon receptor (AhR) agonist), rifampicin (pregnane X receptor (PXR) agonist), carbamazepine and phenobarbital (constitutive androstane receptor (CAR) agonists) were analyzed in zebrafish embryos of varying age. Starting from 36 h of age, all embryonic stages of zebrafish could be shown to have constitutive MCOD activity, albeit with spatial variation and at distinct levels. Whereas carbamazepine, phenobarbital and rifampicin had no effect on in vivo MCOD activity in 96 h old zebrafish embryos, the model aryl hydrocarbon receptor agonist ß-naphthoflavone significantly induced MCOD activity in 96 h old zebrafish embryos at 46-734 nM, however, without a clear concentration-effect relationship. Induction of MCOD activity by ß-naphthoflavone gradually decreased with progression of embryonic development. By in vivo characterization of constitutive and xenobiotic-induced MCOD activity patterns in 36, 60, 84 and 108 h old zebrafish embryos, this decrease could primarily be attributed to an age-related decline in the induction of MCOD activity in the cardiovascular system. Results of this study provide novel insights into the mechanism and extent, by which specific CYP activities in early life-stages of zebrafish can be influenced by exposure to xenobiotics. The study thus lends further support to the view that zebrafish embryos- at least from an age of 36 h - have an elaborate and inducible biotransformation system.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Embrião não Mamífero/efeitos dos fármacos , Oxirredutases O-Desmetilantes/biossíntese , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Biotransformação , Indutores das Enzimas do Citocromo P-450/toxicidade , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Xenobióticos/toxicidade , Proteínas de Peixe-Zebra/metabolismo , beta-Naftoflavona/toxicidade
18.
Proc Natl Acad Sci U S A ; 117(26): 15066-15074, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554492

RESUMO

Cancer incidence increases exponentially with age when human telomeres are shorter. Similarly, telomerase reverse transcriptase (tert) mutant zebrafish have premature short telomeres and anticipate cancer incidence to younger ages. However, because short telomeres constitute a road block to cell proliferation, telomere shortening is currently viewed as a tumor suppressor mechanism and should protect from cancer. This conundrum is not fully understood. In our current study, we report that telomere shortening promotes cancer in a noncell autonomous manner. Using zebrafish chimeras, we show increased incidence of invasive melanoma when wild-type (WT) tumors are generated in tert mutant zebrafish. Tissues adjacent to melanoma lesions (skin) and distant organs (intestine) in tert mutants exhibited higher levels of senescence and inflammation. In addition, we transferred second generation (G2) tert blastula cells into WT to produce embryo chimeras. Cells with very short telomeres induced increased tumor necrosis factor1-α (TNF1-α) expression and senescence in larval tissues in a noncell autonomous manner, creating an inflammatory environment. Considering that inflammation is protumorigenic, we transplanted melanoma-derived cells into G2 tert zebrafish embryos and observed that tissue environment with short telomeres leads to increased tumor development. To test if inflammation was necessary for this effect, we treated melanoma transplants with nonsteroid anti-inflammatory drugs and show that higher melanoma dissemination can be averted. Thus, apart from the cell autonomous role of short telomeres in contributing to genome instability, we propose that telomere shortening with age causes systemic chronic inflammation leading to increased tumor incidence.


Assuntos
Melanoma/metabolismo , Telômero/metabolismo , Peixe-Zebra/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Melanoma/genética , Melanoma/imunologia , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Encurtamento do Telômero , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(26): 15262-15269, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541022

RESUMO

Thyroid hormone (TH) signaling plays an important role in the regulation of long-wavelength vision in vertebrates. In the retina, thyroid hormone receptor ß (thrb) is required for expression of long-wavelength-sensitive opsin (lws) in red cone photoreceptors, while in retinal pigment epithelium (RPE), TH regulates expression of a cytochrome P450 enzyme, cyp27c1, that converts vitamin A1 into vitamin A2 to produce a red-shifted chromophore. To better understand how TH controls these processes, we analyzed the phenotype of zebrafish with mutations in the three known TH nuclear receptor transcription factors (thraa, thrab, and thrb). We found that no single TH nuclear receptor is required for TH-mediated induction of cyp27c1 but that deletion of all three (thraa -/- ;thrab -/- ;thrb -/- ) completely abrogates its induction and the resulting conversion of A1- to A2-based retinoids. In the retina, loss of thrb resulted in an absence of red cones at both larval and adult stages without disruption of the underlying cone mosaic. RNA-sequencing analysis revealed significant down-regulation of only five genes in adult thrb -/- retina, of which three (lws1, lws2, and miR-726) occur in a single syntenic cluster. In the thrb -/- retina, retinal progenitors destined to become red cones were transfated into ultraviolet (UV) cones and horizontal cells. Taken together, our findings demonstrate cooperative regulation of cyp27c1 by TH receptors and a requirement for thrb in red cone fate determination. Thus, TH signaling coordinately regulates both spectral sensitivity and sensory plasticity.


Assuntos
Visão de Cores/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Opsinas/metabolismo , Receptores dos Hormônios Tireóideos/fisiologia , Percepção Visual/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Visão de Cores/genética , Sistema Enzimático do Citocromo P-450/genética , Deleção de Genes , Regulação da Expressão Gênica , Opsinas/genética , Células Fotorreceptoras Retinianas Cones , Raios Ultravioleta , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
PLoS Genet ; 16(6): e1008830, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502192

RESUMO

Many post-transcriptional mechanisms operate via mRNA 3'UTRs to regulate protein expression, and such controls are crucial for development. We show that homozygous mutations in two zebrafish exon junction complex (EJC) core genes rbm8a and magoh leads to muscle disorganization, neural cell death, and motor neuron outgrowth defects, as well as dysregulation of mRNAs subjected to nonsense-mediated mRNA decay (NMD) due to translation termination ≥ 50 nts upstream of the last exon-exon junction. Intriguingly, we find that EJC-dependent NMD also regulates a subset of transcripts that contain 3'UTR introns (3'UI) < 50 nts downstream of a stop codon. Some transcripts containing such stop codon-proximal 3'UI are also NMD-sensitive in cultured human cells and mouse embryonic stem cells. We identify 167 genes that contain a conserved proximal 3'UI in zebrafish, mouse and humans. foxo3b is one such proximal 3'UI-containing gene that is upregulated in zebrafish EJC mutant embryos, at both mRNA and protein levels, and loss of foxo3b function in EJC mutant embryos significantly rescues motor axon growth defects. These data are consistent with EJC-dependent NMD regulating foxo3b mRNA to control protein expression during zebrafish development. Our work shows that the EJC is critical for normal zebrafish development and suggests that proximal 3'UIs may serve gene regulatory function in vertebrates.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Códon de Terminação , Conjuntos de Dados como Assunto , Embrião não Mamífero , Éxons/genética , Redes Reguladoras de Genes/genética , Homozigoto , Humanos , Íntrons/genética , Camundongos , Músculo Esquelético/inervação , Mutagênese , Mutação , Crescimento Neuronal/genética , Proteínas Nucleares/genética , Terminação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq , Alinhamento de Sequência , Regulação para Cima , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA