Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.851
Filtrar
1.
Food Chem ; 303: 125367, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442901

RESUMO

Fish muscle firmness is an important quality trait for consumer acceptance. Phosphorylation is known to change chemical and physical properties of proteins and is thus expected to affect muscle firmness, but only few such phosphoproteins have been identified. To explore phosphoproteins that affect fish muscle firmness, firm muscle (crisp grass carp) and soft muscle (ordinary grass carp) were analyzed by quantitative phosphoproteomics. We identified 27 up-regulated and 22 down-regulated phosphopeptides in crisp grass carp (ratio ≥1.5 or ≤0.667, and P-value < 0.05) and their potential upstream kinases. Protein-protein interaction analysis clustered these phosphoproteins into four groups, many of which have been suggested to impact muscle firmness and its postmortem changes: muscle fiber, connective tissue, carbohydrate metabolism and signal regulation. These results provide novel insights into the role of protein phosphorylation in fish muscle firmness and will contribute to the quality improvement of fish products.


Assuntos
Carpas/metabolismo , Proteínas de Peixes/metabolismo , Músculos/metabolismo , Fosfoproteínas/metabolismo , Proteômica , Animais , Fenômenos Biomecânicos , Alimentos Marinhos
2.
Phys Chem Chem Phys ; 21(35): 19298-19310, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31451813

RESUMO

The ice/water interface recognition mechanism of antifreeze proteins (AFPs) is highly contentious. Conventionally, protein adsorption on a solid surface is primarily driven by the polar interactions between the hydrophilic residues of the protein and interfacial water of the solid surface. Ice surface recognition by a type III AFP is surprising in this context where the ice binding surface (IBS) is hydrophobic. The present study provides molecular insight into the unusual interface recognition phenomenon of a type III AFP (QAE isoform) from Macrozoarces americanus. Potential of mean force calculations show that the type III AFP adsorbs on the ice surface mediated through a layer of ordered water. Molecular dynamics simulations at lower than ambient temperature reveal that the flat hydrophobic IBS induces ordering of water. The excellent geometrical synergy between the hydration water structure around the IBS and water arrangements on the pyramidal surface favours adsorption on the pyramidal plane. Mutations that interrupt the hydration shell water ordering essentially lead to less efficient adsorption, which greatly reduces the anti-freezing activity of the AFP. Binding free energy calculations of the wild-type and several mutant AFPs reveal that the binding affinity is linearly correlated with the experimentally observed thermal hysteresis activity. Therefore, binding to a specific ice plane with considerable affinity is the dictating factor of the anti-freeze activity for a type III AFP. Mechanistic insights into the ice binding process of the wild-type and different mutant AFPs obtained from this study pave the way for rational design of type III variants with much improved activity, which possesses ample industrial applicability, particularly in cryo-preservation.


Assuntos
Proteínas Anticongelantes/química , Proteínas de Peixes/química , Gelo , Perciformes , Água/química , Animais , Proteínas Anticongelantes/genética , Temperatura Baixa , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica
3.
J Microbiol Biotechnol ; 29(8): 1324-1334, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370117

RESUMO

Fish mycobacteriosis is a common bacterial disease in many species of freshwater and marine fish and has caused severe loss of fish production. Mycobacterium marinum has been the most prevalent pathogen observed in several outbreaks of mycobacteriosis of farmed sturgeons in China. However, the immune responses and pathology of sturgeons in mycobacterial infection are rarely studied. Therefore, we used the Illumina RNA-seq method to analyze the transcriptome profile of Acipenser schrenckii challenged with Mycobacterium marinum. To begin, 168,220 non-redundant contigs were acquired from the infection and control groups, and among these, 33,225 contigs have acquired annotations. A total of 4,043 differently expressed (DE) contigs between the two groups were identified, and among these, 2479 were upregulated and 1564 were down-regulated in the infected fish. A total of 1,340 DE contigs with acquired annotations in KEGG were enriched for 124 pathways including the TNF signaling pathway, and the Toll-like receptor signaling pathway. The roles of DE genes involved in significant pathways and other processes were discussed. The 2,209 DE contigs that have yet to acquire proper annotation may represent candidate genes associated with infection in sturgeons and are expected to serve as immunogenetic resources for further study. To our best knowledge, this is the first transcriptome study on sturgeons under bacterial infection.


Assuntos
Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Peixes/genética , Infecções por Micobactéria não Tuberculosa/genética , Infecções por Micobactéria não Tuberculosa/imunologia , Infecções por Micobactéria não Tuberculosa/veterinária , Transcriptoma , Animais , China , Regulação para Baixo , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Imunidade , Anotação de Sequência Molecular , Mycobacterium marinum/patogenicidade , Regulação para Cima
4.
Artigo em Inglês | MEDLINE | ID: mdl-31461684

RESUMO

Insulin-like growth factors (Igf1 and Igf2) play a key role in growth and development of vertebrates. In mammals, the expression of IGFs is regulated by estradiol-17ß (E2) via estrogen receptors (ESRs). The expression of igfs can also be regulated by E2 in fish, while comparative study of this is still lacking. The present study examined tissue distribution of igfs and hepatic expression of igfs and esrs during gonad development in Scatophagus argus by real-time PCR. Serum E2 concentration was measured by enzyme-linked immunosorbent assay (ELISA). The hepatic expression of igfs and esrs at gonadal phase III, incubated with either E2 (0.1, 1 or 10 µM) alone or in combination with estrogen receptor antagonists-fulvestrant, MPP or PHTPP, was measured. igf1 and igf2 expressed highest in liver of both sexes. Igf1, esr1 and esr2b expressions and serum E2 concentration increased, while igf2 and esr2a expressions decreased, during ovary development. Igfs and esrs expressions increased while serum E2 concentration maintained low during testis development. In females, E2 incubation enhanced the expressions of igf1 and esr1 but inhibited that of igf2 and esr2a. Both fulvestrant and MPP inhibited up-regulation effect of E2 on igf1 and esr1. Fulvestrant enhanced down-regulation effect of E2 on igf2 and esr2a, but MPP conversely. In males, E2 incubation enhanced the expressions of igfs, esr1 and esr2a. Fulvestrant and MPP inhibited up-regulation effect of E2 on igfs and esr1. PHTPP inhibited igf1 and esr2 expressions in both sexes. Our results indicated that the expression of igfs is regulated by E2 via Esrs in S. argus.


Assuntos
Estradiol/metabolismo , Peixes/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptores de Estradiol/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas de Peixes/metabolismo , Peixes/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
5.
Gene ; 718: 143989, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326551

RESUMO

Our comparative studies seek to understand the structure and function of ion channels in cartilaginous fish that can detect very low voltage gradients in seawater. The principal channels of the electroreceptor include a calcium activated K channel whose α subunit is Kcnma1, and a voltage-dependent calcium channel, Cacna1d. It has also been suggested based on physiological and pharmacological evidence that a voltage-gated K channel is present in the basal membranes of the receptor cells which modulates synaptic transmitter release. Large conductance calcium-activated K channels (BK) are comprised of four α subunits, encoded by Kcnma1 and modulatory ß subunits of the Kcnmb class. We recently cloned and published the skate Kcnma1 gene and most of Kcnmb4 using purified mRNA of homogenized electroreceptors. Bellono et al. have recently performed RNA sequencing (RNA-seq) on purified mRNA from skate electroreceptors and found several ion channels including Kcnma1. We searched the Bellono et al. RNA-seq repository for additional channels and subunits. Our most significant findings are the presence of two Shaker type voltage dependent K channel sequences which are grouped together as isoforms in the data repository. The larger of these is a skate ortholog of the voltage dependent fast potassium channel Kv1.1, which is expressed at appreciable levels. The second ortholog is similar to Kv1.5 but has fewer N-terminal amino acids than other species. The sequence for Kv1.5 in the skate is very strongly aligned with the recently reported sequence for potassium channels in the electroreceptors of the cat shark, S. retifer, which also modulate synaptic transmission. The latter channel was designated as Kv1.3 in the initial report, but we suggest that these channels are actually orthologs of each other, and that Kv1.5 is the prevailing designation. We also found a beta subunit sequence (Kcnab2) which may co-assemble with one or both of the voltage gated channels. The new channels and subunits were verified by RT-PCR and the Kv1.1 sequence was confirmed by cloning. We also searched the RNA-seq repository for accessory subunits of Kcnma1, and found a computer-generated assembly that contained a complete sequence of its ß subunit, Kcnmb2. Skate Kcnmb2 has a total of 279 amino acids, with 51 novel amino acids at the N-terminus which may play a specific physiological role. This sequence was confirmed by PCR and cloning. However, skate Kcnmb2 is expressed at low levels in the electroreceptor compared to Kcnma1 and skate Kcnmb1 is absent. The evolutionary origin of the newly described K channels and their subunits was studied by alignments with mammalian sequences, including human, and also those in related fish: the whale shark (R. typus), the ghost shark (C.milii), and (S. retifer). There are also orthologous K channels of the lamprey, which has electroreceptors. Tree building and bootstrap programs were used to confirm phylogenetic inferences. Further research should focus on the subcellular locations of these channels, their gating behavior, and the effects of accessory subunits on gating.


Assuntos
Clonagem Molecular , Proteínas de Peixes/genética , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.5/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Filogenia , Raias/genética , Animais , Proteínas de Peixes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.5/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Raias/metabolismo , Especificidade da Espécie
6.
Gene ; 712: 143945, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31279712

RESUMO

Reactive oxygen species, generated in all the aerobic organisms, can cause oxidative stress. Excessive ROS may become a source of carcinogen due to DNA damage, lipid peroxidation, cell injury, and cell death. In order to prevent these adverse effects of ROS, antioxidant enzymes have evolved in aerobic organisms. Catalase is a major antioxidant enzyme that breaks down excessive H2O2 and inhibits apoptotic cell death. Here we molecularly characterized catalase from red-lip mullet. The cDNA sequence of LhCAT consists of an ORF of 1545 bp, which encodes a 527 amino acid peptide (~60 kDa). Based on bioinformatics analysis, LhCAT possesses a domain architecture characteristic of catalases, including a catalase proximal active site signature and a catalase proximal heme-ligand signature. It also has heme and NADPH binding sites homologous to previously described catalases. Pairwise alignment with its homologs revealed that LhCAT shares 95.1% identity with Oplegnathus fasciatus catalase and 97.4% similarity with Sparus aurata catalase. An uprooted phylogenetic tree demonstrated that LhCAT resides in a clade with catalases from other teleosts and exhibits a close relationship with Oplegnathus fasciatus catalase. Among twelve tissue types, we observed the highest LhCAT mRNA expression in the liver, followed by blood. Immune challenge by Lactococcus garvieae, or Poly I:C in the blood or spleen resulted in up-regulation at 24 h post injection. We also tested the antioxidant activity of recombinant LhCAT against hydrogen peroxide and found its optimal concentration to be 12.5 µg/mL. Collectively, these data suggested that LhCAT play an important role in antioxidant defense and immune response of red-lip mullet.


Assuntos
Catalase/metabolismo , Proteínas de Peixes/metabolismo , Smegmamorpha , Adjuvantes Imunológicos , Animais , Antioxidantes/metabolismo , Catalase/genética , DNA Complementar/genética , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Heme/química , Peróxido de Hidrogênio/química , Sistema Imunitário , Ligantes , Fígado/enzimologia , Estresse Oxidativo , Filogenia , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima
7.
Artigo em Inglês | MEDLINE | ID: mdl-31279671

RESUMO

Seasonal variations in water temperature are a natural stressor of temperate fish that affect growth performance and metabolism globally. Gilthead sea bream is one of the most economically interesting species in the Mediterranean; but its liver metabolism is affected by the cold season. However, the effects of cold on protein turnover mechanisms have hardly been studied. Here, we study the relationship between liver oxidative status and protein homeostasis pathways during a 50-day low temperature period at 14 °C, and subsequent recovery at two times: 7 days (early recovery) and 30 days (late recovery). Liver redox status was determined by measuring oxidised lipids and proteins, the glutathione redox cycle and major antioxidant enzymes activities. Protein turnover was analysed via liver protein expression of HSP70 and HSP90; proteasome 26S subunits and polyubiquitination, as markers of the ubiquitin-proteasome system (UPS); and cathepsin D, as a lysosomal protease. Low temperature exposure depressed antioxidant enzyme activities, affecting the glutathione redox cycle and reducing total glutathione levels. Both the UPS and lysosomal pathways were also depressed and consequently, oxidised protein accumulated in liver. Interestingly, both protein oxidation and polyubiquitination tagging depended on protein molecular weight. Despite all these alterations, temperature recovery reverted most consequences of the cold at different rates: with delayed recovery of total glutathione levels and oxidised protein degradation with respect to enzyme activities recovery. All these findings demonstrate that protein liver homeostasis is compromised after chronic cold exposure and could be the cause of liver affectations reported in aquaculture of temperate fish.


Assuntos
Proteínas de Peixes/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Proteostase , Dourada/metabolismo , Temperatura Ambiente , Animais , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Oxirredução
8.
J Sci Food Agric ; 99(13): 6042-6048, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31226220

RESUMO

BACKGROUND: Rigor mortis occurs when muscle extension vanishes through the irresistible coupling of actin and myosin by the consumption of adenosine triphosphate as energy. To clarify the cause of the differences in the progression of rigor mortis, seven fish species were used as samples. The superprecipitation reaction and Mg2+ -ATPase activity of actomyosin in dorsal ordinary muscle were measured, and the slope of the regression line between these two variables was calculated for each fish specimen. The fiber types of the dorsal ordinary muscle in each sample fish were discriminated by the stability of actomyosin ATPase at acid and alkaline preincubations. RESULT: Positive correlations were found between Mg2+ -ATPase activity and the superprecipitation reaction of actomyosin in all 27 fish specimens. The slopes of the regression lines were different not only between fish species but also in fish specimens within the same species. The area ratios of pink muscle fibers and the IIa and/or IIb subtypes of white muscle fibers in the dorsal ordinary muscle were also different between fish species, as well as in specimens within the same fish species. A positive correlation was found between the area ratios of pink muscle fibers in dorsal ordinary muscle and the slopes of the regression line. CONCLUSION: It was suggested that the differences in characteristics of rigor-mortis-related actomyosin of fish might have been caused by the differences in the interposition ratio of muscle fiber types, especially of the pink muscle fiber type, in the dorsal ordinary muscle. © 2019 Society of Chemical Industry.


Assuntos
Actomiosina/metabolismo , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Rigor Mortis/metabolismo , Actomiosina/química , Animais , Proteínas de Peixes/química , Peixes/classificação , Fibras Musculares Esqueléticas/química
9.
J Agric Food Chem ; 67(25): 7197-7203, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31240934

RESUMO

Nutritional profiles and consumer preferences differ between wild and farmed fish, and identification of fish sources can be difficult. We analyzed the metabolite molecules of wild and farmed red sea bream ( Pagrus major) to identify specific metabolic differences. The total lipid content and molecular composition of wild and farmed red sea bream muscles were analyzed using thin-layer chromatography and mass spectrometry imaging. Triacylglycerol levels were significantly higher in farmed fish. Wild fish contained saturated-fatty-acid-containing triacylglycerols as a major molecular species, while docosahexaenoic-acid-containing triacylglycerol levels were significantly higher in farmed fish than in wild fish. The localization of each muscle-fiber-type-specific marker demonstrated that wild fish exhibit myosin heavy chain (MHC)-type-IIb-specific phospholipids, while farmed fish exhibit MHC-type-IIa-specific phospholipids in their white muscle. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses separated the identified myosins and revealed that farmed fish possess additional myosin isoforms when compared to wild fish. In addition, we found a farmed-fish-specific distribution of anserine in their white muscle. These molecules can be used as new molecular markers for determining the geographic origins of wild versus farmed red sea bream.


Assuntos
Dourada/metabolismo , Alimentos Marinhos/análise , Animais , Animais Selvagens/metabolismo , Cromatografia em Camada Delgada , Análise Discriminante , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Pesqueiros , Espectrometria de Massas/métodos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Triglicerídeos/química , Triglicerídeos/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-31176866

RESUMO

Cysteine oxygenase (CDO) is a mononuclear nonhemoglobin enzyme that catalyzes the production of taurine through the cysteine (Cys) pathway and plays a key role in the biosynthesis of taurine in mammals. However, the function of CDOs in bony fish remains poorly understood. In this study, we cloned CDO genes (CaCDO1 and CaCDO2) from Carassius auratus. The cDNA sequences of both CaCDO1 and CaCDO2 encoded putative proteins with 201 amino acids, which included structural features typical of the CDO protein family. Multiple sequence alignment and phylogenetic analysis showed that CaCDO1 and CaCDO2 shared high sequence identities and similarities with C. carpio homologs. Quantitative real-time polymerase chain reaction (qRT-PCR) results revealed that CaCDO1 and CaCDO2 were both broadly expressed in all selected tissues and developmental stages in C. auratus but had differing mRNA levels. In addition, compared to those of the taurine-free group, the in vivo mRNA expression levels of both CaCDO1 and CaCDO2 significantly decreased with increasing dietary taurine levels from 1.0 to 9.0 g/kg. Furthermore, in vitro taurine treatments showed similar inhibitory effects on the expression of CaCDO1 and CaCDO2 in the intestines of C. auratus. Our results also showed that the mRNA expression of CaCDO2 in the intestines was higher than that of CaCDO1 in response to in vivo and in vitro taurine supplementation. Overall, these data may provide new insights into the regulation of fish CDO expression and provide valuable knowledge for improving dietary formulas in aquaculture.


Assuntos
Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Carpa Dourada/genética , Carpa Dourada/metabolismo , Taurina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Carpa Dourada/crescimento & desenvolvimento , Isoenzimas/genética , Isoenzimas/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Taurina/farmacologia , Distribuição Tecidual
11.
Artigo em Inglês | MEDLINE | ID: mdl-31176867

RESUMO

In rice field eel (Monopterus albus), germ cell development in the developing gonad has been revealed in detail. However, it is unclear how primordial germ cells (PGCs) migrate to the somatic part of the gonad (genital ridge). This study visualized PGC migration by injecting a chimeric mRNA containing a fluorescent protein fused to the 3' untranslated region (3'UTR) of three different genes, nanos3 of zebrafish (Danio rerio) and dead end (dnd) and vasa of rice field eel. The mRNAs were injected either alone or in pairs into embryos at the one-cell stage. The results showed that mRNAs containing nanos3 and dnd 3'UTRs labeled PGCs over a wider time frame than those containing vasa 3'UTR, suggesting that nanos3 and dnd 3'UTRs are suitable for visualizing PGCs in rice field eel. Using this direct visualization method, the normal migration route of PGCs was observed from the 50%-epiboly stage to hatching stage for the first time, and the ectopic PGCs were also visualized during this period in rice field eel. These findings extend our knowledge of germ cell development, and lay a foundation for further research on the relationship between PGCs and sex differentiation, and on incubation conditions for embryos in rice field eel.


Assuntos
Células Germinativas/metabolismo , Smegmamorpha/embriologia , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Células Germinativas/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Smegmamorpha/genética , Smegmamorpha/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Ecotoxicol Environ Saf ; 181: 130-137, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176247

RESUMO

The pikeperch Sander lucioperca is an economically important freshwater species that is currently threatened by higher summer temperatures caused by global warming. To clarify the physiological state of pikeperch reared under relatively high temperatures and to acquire valuable biomarkers to monitor heat stress in this species, 100 fish were subjected to five different temperature treatments, ranging from 23 °C (control) to 36 °C. The physiological and biochemical indexes of liver and blood were determined, and heat-shock cognate 70 kDa protein (Hsc70) mRNA expression profiles were analyzed. The results showed that the activities of superoxide dismutase, catalase, and glutathione peroxidase in heat-stressed pikeperch first increased and then decreased, exhibiting peaks at 34 °C, 28 °C, and 28 °C, respectively. The level of thiobarbituric acid-reactive substances (TBARS) in all experimental groups was significantly higher than that of the control. The numbers of red blood cells, the packed-cell volume, and the contents of hemoglobin were significantly higher in the 34 °C and 36 °C treatment groups. Under heat stress, the albumin, cholesterol, and triglycerides contents decreased with increasing temperatures. Real-time fluorescence-based quantitative RT-PCR showed that Hsc70 mRNA levels increased in all eight of the tested tissues under heat stress. Expression reached maximum levels at 34 °C in the muscle, heart and gill tissues, and at 36 °C in the other five tissues. These results demonstrate that several physiological and biochemical phenotypes, such as oxidative stress, antioxidant enzymes and molecular chaperones, could be important biomarkers of heat stress in pikeperch, and are potentially valuable to uncover the mechanisms of heat-stress responses in fish.


Assuntos
Proteínas de Peixes/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Resposta ao Choque Térmico , Percas/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Contagem de Eritrócitos , Proteínas de Peixes/genética , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico HSC70/genética , Resposta ao Choque Térmico/genética , Hemoglobinas/análise , Fígado/enzimologia , Fígado/metabolismo , Estresse Oxidativo , Percas/genética , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
13.
Fish Shellfish Immunol ; 90: 215-222, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31039438

RESUMO

The zebrafish has unique advantages for understanding the evolution of vertebrate immunity and to model human diseases. In this review, we will firstly give an overview of the current knowledge on vertebrate innate immune receptors with special emphasis on the inflammasome and then summarize the main contribution of the zebrafish model to this field, including to the identification of novel inflammasome components and to the mechanisms involved in its activation, assembly and clearance of intracellular bacteria.


Assuntos
Evolução Biológica , Proteínas de Peixes/genética , Imunidade Inata , Receptores Imunológicos/genética , Peixe-Zebra/imunologia , Animais , Modelos Animais de Doenças , Evolução Molecular , Proteínas de Peixes/metabolismo , Imunidade Inata/genética , Modelos Animais , Receptores Imunológicos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Fish Shellfish Immunol ; 90: 308-316, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059812

RESUMO

Japanese pufferfish (Takifugu rubripes) is one of the main marine aquatic fish species cultured in Asia due to its high nutritional value. In recent years, disease caused by Vibrio harveyi infections have led to serious mortality in Japanese pufferfish industry. To understand the complex molecular mechanisms between V. harveyi and Japanese pufferfish, we performed a transcriptome analysis of liver and spleen samples from Japanese pufferfish at 1 and 2 day post-infection. Between-group comparisons revealed 922 genes that were significantly differentially expressed. The altered genes emphasized the function in several immune related pathways including MAPK signaling pathway, JAK-STAT signaling pathway, toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and lysosomal pathway. The data generated in this study provided insight into the responses of Japanese pufferfish against V. harveyi at the transcriptome level, promoting our comprehensive understanding of immune responses for aquatic animal against V. harveyi.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Takifugu/genética , Takifugu/imunologia , Transcriptoma/imunologia , Vibrio/fisiologia , Animais , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/veterinária , Fígado/imunologia , Fígado/metabolismo , Distribuição Aleatória , Baço/imunologia , Baço/metabolismo , Takifugu/metabolismo , Vibrioses/imunologia , Vibrioses/veterinária
15.
Fish Shellfish Immunol ; 90: 338-348, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31075404

RESUMO

N-Carbamylglutamate (NCG), an analogue of N-acetylglutamate (NAG), can promote the synthesis of endogenous Arginine (Arg) in mammals, but not well studied in fish. This study was conducted to investigate the capacity of Arg endogenous synthesis by NCG, and the effects of various dietary NCG doses on growth performance, hepatic health and underlying nutrient regulation metabolism on ERK1/2-mTOR-S6K1 signaling pathway in Japanese seabass (Lateolabrax japonicus). Four experimental diets were prepared with NCG supplement levels of 0 (N0), 360 (N360), 720 (N720) and 3600 (N3600) mg/kg, in which N360 was at the maximum recommended level authorized by MOA, China in fish feed, and the N720 and N3600 levels were 2 and 10-fold of N360, respectively. Each diet was fed to 6 replicates with 30 Japanese seabass (initial body weight, IBW = 11.67 ±â€¯0.02 g) in each tank. The results showed that the dietary NCG supplementation had no significant effects on the SGR and morphometric parameters of Japanese seabass, but 360-720 mg/kg NCG inclusion promoted PPV, while the 10-fold (3600 mg/kg) overdose of NCG had remarkably negative effects with significantly reduced feed efficiency, PPV and LPV. We found that Japanese seabass can utilize 360-720 mg/kg NCG to synthesis Arg to improve the amino acid metabolism by increasing plasma Arg and up-regulating intestinal ASL gene expression. Increased plasma GST and decreased MDA indicated the improved antioxidant response. Dietary NCG inclusion decreased plasma IgM and down-regulated the mRNA levels of inflammation (TNF-α and IL8), apoptosis (caspase family) and fibrosis (TGF-ß1) related genes in the liver. The immunofluorescence examination revealed significantly decreased hepatic apoptosis and necrosis signals in the NCG groups. The ameliorated liver function and histological structure were closely related to the improved lipid metabolism parameters with decreased plasma VLDL and hepatic TG and NEFA accumulation, down-regulated fatty acid and cholesterol synthesis and simultaneously increased lipolysis gene mRNA levels, which regulated by inhibiting phosphorylation of ERK1/2-mTOR-S6K1 signaling pathway. Consuming 3600 mg/kg of dietary NCG is not safe for Japanese seabass culturing with the significantly increased FCR and decreased protein and lipid retention, and reduced plasma ALB. Accordingly, the observed efficacy and safety level of dietary NCG in the diet of Japanese seabass is 720 mg/kg.


Assuntos
Bass , Doenças dos Peixes/prevenção & controle , Glutamatos/metabolismo , Hepatopatias/veterinária , Doenças Metabólicas/veterinária , Ração Animal/análise , Animais , Apoptose/efeitos dos fármacos , Arginina/biossíntese , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Glutamatos/administração & dosagem , Hepatócitos/efeitos dos fármacos , Hepatopatias/imunologia , Hepatopatias/prevenção & controle , Doenças Metabólicas/imunologia , Doenças Metabólicas/prevenção & controle , Nutrientes/metabolismo , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-31129293

RESUMO

Adaptive mechanisms underlying the long-term existence of intestinal parasites in their enzymatically hostile environment are still poorly understood, particularly with regard to fish cestodes. The study describes the activity distribution of proteolytic enzymes along the gut of the bream Abramis brama infected with intestinal cestodes Caryophyllaeus laticeps and characterizes the capacity of these worms to inhibit host proteinase activity. Mucosal proteolytic activity was mainly presented by serine proteinases. The research revealed an insignificant increase in total proteolytic activity from anterior and middle to posterior part of the gut accompanied with changes in proportions of various proteinase subclasses along the intestine. The trypsin (but not chymotrypsin) activity in the posterior section was significantly higher than in the mid-section. Both the incubation medium of the worms and their extract had a significant inhibitory effect on mucosal proteolytic activity and commercial trypsin samples. In both instances, the effect was comparable with that of a synthetic serine protease inhibitor, PMSF. SDS-PAGE electrophoregrams of the incubation medium of C. laticeps and its extract revealed three common protein bands, with apparent molecular masses from 19 to 47 kDa, possibly responsible for the worms' inhibitory capacities. According to casein-zymography performed, the target host proteinases for a putative cestode inhibitor (inhibitors) have an approximate molecular weight of 28-53 kDa. A comparative test with the extracts from three other cestodes showed that each of them can suppress the proteolytic activity of the bream mucosa. The level of inhibitory activity was found to increase with protein content in the extracts of these tapeworms.


Assuntos
Infecções por Cestoides/veterinária , Cyprinidae/metabolismo , Cyprinidae/parasitologia , Doenças dos Peixes/enzimologia , Doenças dos Peixes/parasitologia , Peptídeo Hidrolases/metabolismo , Animais , Cestoides/metabolismo , Cestoides/patogenicidade , Infecções por Cestoides/enzimologia , Infecções por Cestoides/parasitologia , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/metabolismo , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Mucosa Intestinal/enzimologia , Mucosa Intestinal/parasitologia , Peso Molecular , Peptídeo Hidrolases/isolamento & purificação , Perciformes , Inibidores de Proteases/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-31051268

RESUMO

Myoglobins (Mb) are ubiquitous proteins found in striated muscle of nearly all vertebrate taxa. Although their function is most commonly associated with facilitating oxygen storage and diffusion, Mb has also been implicated in cellular antioxidant defense. The oxidized (Fe3+) form of Mb (metMB) can react with hydrogen peroxide (H2O2) to produce ferrylMb. FerrylMb can be reduced back to metMb for another round of reaction with H2O2. In the present study, we have shown that horse skeletal muscle Mb displays peroxidase activity using 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as reducing substrates, as well as the biologically-relevant substrates NADH/NADPH, ascorbate, caffeic acid, and resveratrol. We have also shown that ferrylMb can be reduced by both ethanol and acetaldehyde, which are known to accumulate in some vertebrate tissues under anaerobic conditions, such as anoxic goldfish and crucian carp, implying a potential mechanism for ethanol detoxification in striated muscle. We found that metMb peroxidase activity is pH-dependent, increasing as pH decreases from 7.4 to 6.1, which is biologically relevant to anaerobic vertebrate muscle when incurring intracellular lactic acidosis. Finally, we found that metMb reacts with hypochlorite in a heme-dependent fashion, indicating that Mb could play a role in hypochlorite detoxification. Taken together, these data suggest that Mb peroxidase activity might be an important antioxidant mechanism in vertebrate cardiac and skeletal muscle under a variety of physiological conditions, such as those that might occur in contracting skeletal muscle or during hypoxia.


Assuntos
Peróxido de Hidrogênio/química , Músculo Estriado/enzimologia , Mioglobina/química , Peroxidase/química , Animais , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Carpa Dourada , Cavalos , Concentração de Íons de Hidrogênio , Camundongos , Mioglobina/metabolismo , Peroxidase/metabolismo
18.
Food Chem ; 294: 316-325, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126469

RESUMO

The present study studied the effects of fish gelatin (FG) incorporated with grape seed extract (GSE) through vacuum impregnation (VI) on refrigerated tilapia (Oreochromis niloticus) fillets over 12 days. The VI of FG-GSE significantly improved the quality of the fish by decreasing drip loss, texture changes, and microbial survival. It also delayed protein oxidation by inhibiting the formation of disulphide bonds and carbonyl groups, and maintaining a higher sulfhydryl content and Ca2+-ATPase activity. Regarding myofibril degradation, FG-GSE maintained their secondary structure by increasing the ratio of α-helices and ß-sheets (70.88-75.51%). Atomic force microscopy further revealed that the FG-GSE coating preserved the myofibril nanostructure by maintaining their length, width, and height. Overall, the synergistic effects of VI with 3% FG and 0.9% GSE suggested a promising approach for fillet preservation.


Assuntos
Proteínas de Peixes/química , Gelatina/química , Extrato de Sementes de Uva/química , Animais , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Peixes/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Dureza , Microscopia de Força Atômica , Miofibrilas/metabolismo , Oxirredução , Estrutura Secundária de Proteína , Alimentos Marinhos/análise , Compostos de Sulfidrila/metabolismo , Tilápia/metabolismo , Vácuo
19.
Fish Shellfish Immunol ; 90: 180-187, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31048035

RESUMO

In mammals and fish, emerging evidence highlights that TRIM family members play important roles in the interferon (IFN) antiviral immune response. Fish TRIM family has undergone an unprecedented expansion leading to generation of finTRIM subfamily, which is exclusively specific to fish. Our recent results have shown that FTRCA1 (finTRIM C. auratus 1) is likely a fish species-specific finTRIM member in crucian carp C. auratus and acts as a negative modulator to downregulate fish IFN response by autophage-lysosomal degradation of protein kinase TBK1. In the present study, we found that FTRCA1 also impedes the activation of crucian carp IFN promoter by IRF7 but not by IRF3. Mechanistically, FTRCA1 attenuates IRF7 transcription levels likely due to enhanced decay of IRF7 mRNA, leading to reduced IRF7 protein levels and subsequently reduced fish IFN expression. E3 ligase activity is required for FTRCA1 to negatively regulate IRF7-mediated IFN response, because ligase-inactive mutants and the RING-deleted mutant of FTRCA1 lose the ability to block the activation of crucian carp IFN promoter by IRF7. These results together indicate that FTRCA1 is a multifaceted modulator to target different signaling factors for shaping fish IFN response in crucian carp.


Assuntos
Carpas/genética , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Fator Regulador 7 de Interferon/metabolismo , Interferons/metabolismo , Transcrição Genética , Animais , Carpas/metabolismo , Proteínas de Peixes/metabolismo
20.
Fish Shellfish Immunol ; 90: 102-108, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31048038

RESUMO

The suppressor of cytokine signaling (SOCS) family members play crucial roles in regulating immune signal pathways by acting as inhibitors of cytokine receptor signaling. In this study, 10 SOCS genes were identified in soiny mullet (Liza haematocheila), an economically important aquaculture mugilid species in China and other Asian countries. Sequence comparison showed that the sequence identity between mullet SOCSs and their counterparts from other vertebrates ranged from 38.2% to 92.5%. All mullet SOCS genes were constitutively expressed in tissues examined, but their expression patterns were different. Further, following Streptococcus dysgalactiae infection, all mullet SOCS genes exhibited distinct expression patterns in tissues. These results suggest that SOCSs are involved in immune response to bacterial infection and provide the basis for understanding the complex cytokine regulatory network of teleosts.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Smegmamorpha/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/veterinária , Análise de Sequência de DNA/veterinária , Análise de Sequência de Proteína/veterinária , Smegmamorpha/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus/fisiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA