Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.770
Filtrar
1.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203768

RESUMO

Mesembryanthemum crystallinum (common ice plant) is a halophyte species that has adapted to extreme conditions. In this study, we cloned a McHB7 transcription factor gene from the ice plant. The expression of McHB7 was significantly induced by 500 mM NaCl and it reached the peak under salt treatment for 7 days. The McHB7 protein was targeted to the nucleus. McHB7-overexpressing in ice plant leaves through Agrobacterium-mediated transformation led to 25 times more McHB7 transcripts than the non-transformed wild type (WT). After 500 mM NaCl treatment for 7 days, the activities of superoxide dismutase (SOD) and peroxidase (POD) and water content of the transgenic plants were higher than the WT, while malondialdehyde (MDA) was decreased in the transgenic plants. A total of 1082 and 1072 proteins were profiled by proteomics under control and salt treatment, respectively, with 22 and 11 proteins uniquely identified under control and salt stress, respectively. Among the 11 proteins, 7 were increased and 4 were decreased after salt treatment. Most of the proteins whose expression increased in the McHB7 overexpression (OE) ice plants under high salinity were involved in transport regulation, catalytic activities, biosynthesis of secondary metabolites, and response to stimulus. The results demonstrate that the McHB7 transcription factor plays a positive role in improving plant salt tolerance.


Assuntos
Mesembryanthemum/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Tolerância ao Sal/fisiologia , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Biologia Computacional , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Mesembryanthemum/efeitos dos fármacos , Mesembryanthemum/genética , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203933

RESUMO

Natural resistance-associated macrophage proteins (Nramps) are specific metal transporters in plants with different functions among various species. The evolutionary and functional information of the Nramp gene family in Spirodela polyrhiza has not been previously reported in detail. To identify the Nramp genes in S. polyrhiza, we performed genome-wide identification, characterization, classification, and cis-elements analysis among 22 species with 138 amino acid sequences. We also conducted chromosomal localization and analyzed the synteny relationship, promoter, subcellular localization, and expression patterns in S. polyrhiza. ß-Glucuronidase staining indicated that SpNramp1 and SpNramp3 mainly accumulated in the root and joint between mother and daughter frond. Moreover, SpNramp1 was also widely displayed in the frond. SpNramp2 was intensively distributed in the root and frond. Quantitative real-time PCR results proved that the SpNramp gene expression level was influenced by Cd stress, especially in response to Fe or Mn deficiency. The study provides detailed information on the SpNramp gene family and their distribution and expression, laying a beneficial foundation for functional research.


Assuntos
Araceae/genética , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Araceae/efeitos dos fármacos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cromossomos de Plantas/genética , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/efeitos dos fármacos , Sintenia/genética
3.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207256

RESUMO

ATP-binding cassette (ABC) transporter proteins are a gene super-family in plants and play vital roles in growth, development, and response to abiotic and biotic stresses. The ABC transporters have been identified in crop plants such as rice and buckwheat, but little is known about them in soybean. Soybean is an important oil crop and is one of the five major crops in the world. In this study, 255 ABC genes that putatively encode ABC transporters were identified from soybean through bioinformatics and then categorized into eight subfamilies, including 7 ABCAs, 52 ABCBs, 48 ABCCs, 5 ABCDs, 1 ABCEs, 10 ABCFs, 111 ABCGs, and 21 ABCIs. Their phylogenetic relationships, gene structure, and gene expression profiles were characterized. Segmental duplication was the main reason for the expansion of the GmABC genes. Ka/Ks analysis suggested that intense purifying selection was accompanied by the evolution of GmABC genes. The genome-wide collinearity of soybean with other species showed that GmABCs were relatively conserved and that collinear ABCs between species may have originated from the same ancestor. Gene expression analysis of GmABCs revealed the distinct expression pattern in different tissues and diverse developmental stages. The candidate genes GmABCB23, GmABCB25, GmABCB48, GmABCB52, GmABCI1, GmABCI5, and GmABCI13 were responsive to Al toxicity. This work on the GmABC gene family provides useful information for future studies on ABC transporters in soybean and potential targets for the cultivation of new germplasm resources of aluminum-tolerant soybean.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Alumínio/toxicidade , Proteínas de Plantas/metabolismo , Soja/genética , Transportadores de Cassetes de Ligação de ATP/genética , Resistência a Medicamentos/genética , Proteínas de Plantas/genética , Soja/efeitos dos fármacos , Soja/metabolismo
4.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207287

RESUMO

Gastrodia elata is a well-known medicinal and heterotrophic orchid. Its germination, limited by the impermeability of seed coat lignin and inhibition by abscisic acid (ABA), is triggered by symbiosis with fungi such as Mycena spp. However, the molecular mechanisms of lignin degradation by Mycena and ABA biosynthesis and signaling in G. elata remain unclear. In order to gain insights into these two processes, this study analyzed the transcriptomes of these organisms during their dynamic symbiosis. Among the 25 lignin-modifying enzyme genes in Mycena, two ligninolytic class II peroxidases and two laccases were significantly upregulated, most likely enabling Mycena hyphae to break through the lignin seed coats of G. elata. Genes related to reduced virulence and loss of pathogenicity in Mycena accounted for more than half of annotated genes, presumably contributing to symbiosis. After coculture, upregulated genes outnumbered downregulated genes in G. elata seeds, suggesting slightly increased biological activity, while Mycena hyphae had fewer upregulated than downregulated genes, indicating decreased biological activity. ABA biosynthesis in G. elata was reduced by the downregulated expression of 9-cis-epoxycarotenoid dioxygenase (NCED-2), and ABA signaling was blocked by the downregulated expression of a receptor protein (PYL12-like). This is the first report to describe the role of NCED-2 and PYL12-like in breaking G. elata seed dormancy by reducing the synthesis and blocking the signaling of the germination inhibitor ABA. This study provides a theoretical basis for screening germination fungi to identify effective symbionts and for reducing ABA inhibition of G. elata seed germination.


Assuntos
Ácido Abscísico/metabolismo , Agaricales/patogenicidade , Proteínas Fúngicas/genética , Gastrodia/microbiologia , Lignina/metabolismo , Proteínas de Plantas/genética , Agaricales/genética , Agaricales/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas Fúngicas/metabolismo , Gastrodia/genética , Gastrodia/crescimento & desenvolvimento , Gastrodia/metabolismo , Germinação , Lacase/genética , Lacase/metabolismo , Lignina/genética , Peroxidases/genética , Peroxidases/metabolismo , Proteínas de Plantas/metabolismo , Simbiose , Transcriptoma
5.
BMC Plant Biol ; 21(1): 326, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229625

RESUMO

BACKGROUND: Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for H2O2 production in plants. Catalase (CAT)-dependent H2O2 decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the H2O2 production in IAA regulation. RESULTS: In this study, we found that in glo mutants of rice, as H2O2 levels decreased IAA contents significantly increased, whereas high CO2 abolished the difference in H2O2 and IAA contents between glo mutants and WT. Further analyses showed that tryptophan (Trp, the precursor for IAA biosynthesis in the Trp-dependent biosynthetic pathway) also accumulated due to increased tryptophan synthetase ß (TSB) activity. Moreover, expression of the genes involved in Trp-dependent IAA biosynthesis and IBA to IAA conversion were correspondingly up-regulated, further implicating that both pathways contribute to IAA biosynthesis as mediated by the GLO-dependent production of H2O2. CONCLUSION: We investigated the function of GLO in IAA signaling in different levels from transcription, enzyme activities to metabolic levels. The results suggest that GLO-dependent H2O2 signaling, essentially via photorespiration, confers regulation over IAA biosynthesis in rice plants.


Assuntos
Oxirredutases do Álcool/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/enzimologia , Oxirredutases do Álcool/genética , Vias Biossintéticas/efeitos da radiação , Respiração Celular/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Modelos Biológicos , Mutação/genética , Oryza/genética , Oryza/efeitos da radiação , Peroxissomos/metabolismo , Peroxissomos/efeitos da radiação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triptofano/metabolismo
6.
Ecotoxicol Environ Saf ; 221: 112469, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34198190

RESUMO

Glutathione S-transferase (GST) is the key enzyme in glutathione (GSH) synthesis, and plays a crucial role in copper (Cu) detoxification. Nonetheless, its regulatory mechanisms remain largely unclear. In this study, we identified a Cu-induced glutathione S-transferase 1 (TaGST1) gene in wheat. Yeast one-hybrid (Y1H) screened out TaWRKY74, which was one member from the WRKY transcription factor family. The bindings between TaGST1 promoter and TaWRKY74 were further verified by using another Y1H and luciferase assays. Expression of TaWRKY74 was induced more than 30-folds by Cu stress. Functions of TaWRKY74 were tested by using transiently silence methods. In transiently TaWRKY74-silenced wheat plants, TaWRKY74 and TaGST1 expression, GST activity, and GSH content was significantly inhibited by 25.68%, 19.88%, 27.66%, and 12.68% in shoots, and 53.81%, 52.11%, 23.47%, and 17.11% in roots, respectively. However, contents of hydrogen peroxide, malondialdehyde, or Cu were significantly increased by 2.58%, 12.45%, or 37.74% in shoots, and 25.24%, 53.84%, and 103.99% in roots, respectively. Notably, exogenous application of GSH reversed the adverse effects of transiently TaWRKY74-silenced wheat plants during Cu stress. Taken together, our results suggesting that TaWRKY74 regulated TaGST1 expression and affected GSH accumulation under Cu stress, and could be useful to ameliorate Cu toxicity for crop food safety.


Assuntos
Cobre/toxicidade , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/efeitos dos fármacos , Fatores de Transcrição/genética , Triticum/genética , Triticum/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Leveduras/genética
7.
BMC Genomics ; 22(1): 519, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238217

RESUMO

BACKGROUND: Amino acid transporters (AATs) plays an essential roles in growth and development of plants, including amino acids long-range transport, seed germination, quality formation, responsiveness to pathogenic bacteria and abiotic stress by modulating the transmembrane transfer of amino acids. In this study, we performed a genome-wide screening to analyze the AAT genes in foxtail millet (Setaria italica L.), especially those associated with quality formation and abiotic stresses response. RESULTS: A total number of 94 AAT genes were identified and divided into 12 subfamilies by their sequence characteristics and phylogenetic relationship. A large number (58/94, 62%) of AAT genes in foxtail millet were expanded via gene duplication, involving 13 tandem and 12 segmental duplication events. Tandemly duplicated genes had a significant impact on their functional differentiation via sequence variation, structural variation and expression variation. Further comparison in multiple species showed that in addition to paralogous genes, the expression variations of the orthologous AAT genes also contributed to their functional differentiation. The transcriptomic comparison of two millet cultivars verified the direct contribution of the AAT genes such as SiAAP1, SiAAP8, and SiAUX2 in the formation of grain quality. In addition, the qRT-PCR analysis suggested that several AAT genes continuously responded to diverse abiotic stresses, such as SiATLb1, SiANT1. Finally, combined with the previous studies and analysis on sequence characteristics and expression patterns of AAT genes, the possible functions of the foxtail millet AAT genes were predicted. CONCLUSION: This study for the first time reported the evolutionary features, functional differentiation, roles in the quality formation and response to abiotic stresses of foxtail millet AAT gene family, thus providing a framework for further functional analysis of SiAAT genes, and also contributing to the applications of AAT genes in improving the quality and resistance to abiotic stresses of foxtail millet, and other cereal crops.


Assuntos
Setaria (Planta) , Sistemas de Transporte de Aminoácidos , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética
8.
BMC Genomics ; 22(1): 511, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233625

RESUMO

BACKGROUND: The CCCH zinc finger (zf_CCCH) is a unique subfamily featured one or more zinc finger motif(s) comprising of three Cys and one His residues. The zf_CCCH family have been reported involving in various processes of plant development and adaptation. RESULTS: In this study, the zf_CCCH genes were identified via a genome-wide search and were systematically analyzed. 116 Gmzf_CCCHs were obtained and classified into seventeen subfamilies. Gene duplication and expansion analysis showed that tandem and segmental duplications contributed to the expansion of the Gmzf_CCCH gene family, and that segmental duplication play the main role. The expression patterns of Gmzf_CCCH genes were tissue-specific. Eleven domesticated genes were detected involved in the regulation of seed oil and protein synthesis as well as growth and development of soybean through GWAS and haplotype analysis for Gmzf_CCCH genes among the 164 of 302 soybeans resequencing data. Among which, 8 genes play an important role in the synthesis of seed oil or fatty acid, and the frequency of their elite haplotypes changes significantly among wild, landrace and improved cultivars, indicating that they have been strongly selected in the process of soybean domestication. CONCLUSIONS: This study provides a scientific foundation for the comprehensive understanding, future cloning and functional studies of Gmzf_CCCH genes in soybean, meanwhile, it was also helpful for the improvement of soybean with high oil content.


Assuntos
Domesticação , Soja , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Haplótipos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Soja/genética , Soja/metabolismo , Dedos de Zinco/genética
9.
BMC Plant Biol ; 21(1): 308, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193032

RESUMO

BACKGROUND: Rice (Oryza sativa L.) Chalkiness, the opaque part in the kernel endosperm formed by loosely piled starch and protein bodies. Chalkiness is a complex quantitative trait regulated by multiple genes and various environmental factors. Phytohormones play important roles in the regulation of chalkiness formation but the underlying molecular mechanism is still unclear at present. RESULTS: In this research, Xiangzaoxian24 (X24, pure line of indica rice with high-chalkiness) and its origin parents Xiangzaoxian11 (X11, female parent, pure line of indica rice with high-chalkiness) and Xiangzaoxian7 (X7, male parent, pure line of indica rice with low-chalkiness) were used as materials. The phenotype, physiological and biochemical traits combined with transcriptome analysis were conducted to illustrate the dynamic process and transcriptional regulation of rice chalkiness formation. Impressively, phytohormonal contents and multiple phytohormonal signals were significantly different in chalky caryopsis, suggesting the involvement of phytohormones, particularly ABA and auxin, in the regulation of rice chalkiness formation, through the interaction of multiple transcription factors and their downstream regulators. CONCLUSION: These results indicated that chalkiness formation is a dynamic process associated with multiple genes, forming a complex regulatory network in which phytohormones play important roles. These results provided informative clues for illustrating the regulatory mechanisms of chalkiness formation in rice.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/genética , Oryza/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Transcrição Genética/efeitos dos fármacos , Endosperma/efeitos dos fármacos , Endosperma/metabolismo , Endosperma/ultraestrutura , Perfilação da Expressão Gênica , Ontologia Genética , Oryza/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Amido/metabolismo , Amido/ultraestrutura , Sacarose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
BMC Plant Biol ; 21(1): 305, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193036

RESUMO

BACKGROUND: Natural variations derived from both evolutionary selection and genetic recombination, presume to have important functions to respond to various abiotic stresses, which could be used to improve drought tolerance via genomic selection. RESULTS: In the present study, the NAC-encoding gene of ZmNAC080308 was cloned and sequenced in 199 inbred lines in maize. Phylogenetic analysis showed that ZmNAC080308 is closely clusteredinto the same group with other well-known NAC genes responding to improve drought tolerance. In total, 86 SNPs and 47 InDels were identified in the generic region of ZmNAC080308, 19 of these variations were associated with GY (grain yield) in different environments. Nine variations in the 5'-UTR region of ZmNAC080308 are closely linked, they might regulate the gene expression and respond to improve GY under drought condition via Sp1-mediated transactivation. Two haplotypes (Hap1 and Hap2) identified in the, 5'-UTR region using the nine variations, and Hap2 containing insertion variants, exhibited 15.47 % higher GY under drought stress condition. Further, a functional marker was developed to predict the drought stress tolerance in a US maize inbred line panel. Lines carrying Hap2 exhibited > 10 % higher GY than those carrying Hap1 under drought stress condition. In Arabidopsis, overexpression ZmNAC080308 enhanced drought tolerance. CONCLUSIONS: ZmNAC080308 is an important gene responding to drought tolerance, a functional marker is developed for improving maize drought tolerance by selecting this gene.


Assuntos
Secas , Variação Genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/fisiologia , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética , Plântula/metabolismo , Frações Subcelulares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204994

RESUMO

Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna "designs" becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.


Assuntos
Cianobactérias/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Plantas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transferência de Energia , Modelos Moleculares , Fotossíntese , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Multimerização Proteica
12.
Front Immunol ; 12: 673723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211468

RESUMO

Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named 'ReprogVirus'. This approach was recently applied and published. It resulted in identifying 'CoV-MAC-TED', a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a 'ReprogVirus Platform' to support anti-viral strategy design through common efforts.


Assuntos
COVID-19/prevenção & controle , Técnicas de Reprogramação Celular/métodos , Técnicas de Embriogênese Somática de Plantas/métodos , SARS-CoV-2/genética , COVID-19/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Humanos , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/metabolismo , Plantas/embriologia , Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
13.
BMC Plant Biol ; 21(1): 314, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215194

RESUMO

BACKGROUND: Anther dehiscence resulting in the release of pollen grains is tightly regulated in a spatiotemporal manner by various factors. In yellow lupine (Lupinus luteus L.), a species that shows cleistogamy, the anthers split before the flowers open, but the course and regulation of this process are unknown. The specific control of anther development takes place via hormonal pathways, the wide action of which ensures reproductive success. In our previous research concerning flower and early pod development in yellow lupine, we showed that the lowest transcript level of LlDELLA1, a main repressor of gibberellin (GA) signalling, occurs approximately at the time of anther opening; therefore, the main purpose of this study was to precisely investigate the gibberellic acid (GA3)-dependent regulation of the anther dehiscence in this species. RESULTS: In this paper, we showed the specific changes in the yellow lupine anther structure during dehiscence, including secondary thickening in the endothecium by lignocellulosic deposition, enzymatic cell wall breakdown at the septum/stomium and cell degeneration via programmed cell death (PCD), and identified several genes widely associated with this process. The expression profile of genes varied over time, with the most intense mRNA accumulation in the phases prior to or at the time of anther opening. The transcriptional activity also revealed that these genes are highly coexpressed and regulated in a GA-dependent manner. The cellular and tissue localization of GA3 showed that these molecules are present before anther opening, mainly in septum cells, near the vascular bundle and in the endothecium, and that they are subsequently undetectable. GA3 localization strongly correlates with the transcriptional activity of genes related to GA biosynthesis and deactivation. The results also suggest that GA3 controls LlGAMYB expression via an LlMIR159-dependent pathway. CONCLUSIONS: The presented results show a clear contribution of GA3 in the control of the extensive anther dehiscence process in yellow lupine. Understanding the processes underlying pollen release at the hormonal and molecular levels is a significant aspect of controlling fertility in this economically important legume crop species and is of increasing interest to breeders.


Assuntos
Flores/fisiologia , Giberelinas/farmacologia , Lupinus/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Simulação por Computador , Flores/efeitos dos fármacos , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/metabolismo , Lupinus/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
BMC Plant Biol ; 21(1): 319, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217205

RESUMO

BACKGROUND: PTI1 (Pto-interacting 1) protein kinase belongs to the receptor-like cytoplasmic kinase (RLCK) group of receptor-like protein kinases (RLK), but lack extracellular and transmembrane domains. PTI1 was first identified in tomato (Solanum lycopersicum) and named SlPTI1, which has been reported to interact with bacterial effector Pto, a serine/threonine protein kinase involved in plant resistance to bacterial disease. Briefly, the host PTI1 specifically recognizes and interacts with the bacterial effector AvrPto, which triggers hypersensitive cell death to inhibit the pathogen growth in the local infection site. Previous studies have demonstrated that PTI1 is associated with oxidative stress and hypersensitivity. RESULTS: We identified 12 putative PTI1 genes from the genome of foxtail millet (Setaria italica) in this study. Gene replication analysis indicated that both segmental replication events played an important role in the expansion of PTI1 gene family in foxtail millet. The PTI1 family members of model plants, i.e. S. italica, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays), S. lycopersicum, and soybean (Glycine max), were classified into six major categories according to the phylogenetic analysis, among which the PTI1 family members in foxtail millet showed higher degree of homology with those of rice and maize. The analysis of a complete set of SiPTI1 genes/proteins including classification, chromosomal location, orthologous relationships and duplication. The tissue expression characteristics revealed that SiPTI1 genes are mainly expressed in stems and leaves. Experimental qRT-PCR results demonstrated that 12 SiPTI1 genes were induced by multiple stresses. Subcellular localization visualized that all of foxtail millet SiPTI1s were localized to the plasma membrane. Additionally, heterologous expression of SiPTI1-5 in yeast and E. coli enhanced their tolerance to salt stress. CONCLUSIONS: Our results contribute to a more comprehensive understanding of the roles of PTI1 protein kinases and will be useful in prioritizing particular PTI1 for future functional validation studies in foxtail millet.


Assuntos
Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Salinidade , Setaria (Planta)/genética , Setaria (Planta)/fisiologia , Cromossomos de Plantas/genética , Escherichia coli/metabolismo , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Anotação de Sequência Molecular , Motivos de Nucleotídeos/genética , Filogenia , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Sintenia/genética
15.
BMC Genomics ; 22(1): 509, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229611

RESUMO

BACKGROUND: GRAS, an important family of transcription factors, have played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. Since the sequencing of the sorghum genome, a plethora of genetic studies were mainly focused on the genomic information. The indepth identification or genome-wide analysis of GRAS family genes, especially in Sorghum bicolor, have rarely been studied. RESULTS: A total of 81 SbGRAS genes were identified based on the S. bicolor genome. They were named SbGRAS01 to SbGRAS81 and grouped into 13 subfamilies (LISCL, DLT, OS19, SCL4/7, PAT1, SHR, SCL3, HAM-1, SCR, DELLA, HAM-2, LAS and OS4). SbGRAS genes are not evenly distributed on the chromosomes. According to the results of the gene and motif composition, SbGRAS members located in the same group contained analogous intron/exon and motif organizations. We found that the contribution of tandem repeats to the increase in sorghum GRAS members was slightly greater than that of fragment repeats. By quantitative (q) RT-PCR, the expression of 13 SbGRAS members in different plant tissues and in plants exposed to six abiotic stresses at the seedling stage were quantified. We further investigated the relationship between DELLA genes, GAs and grain development in S. bicolor. The paclobutrazol treatment significantly increased grain weight, and affected the expression levels of all DELLA subfamily genes. SbGRAS03 is the most sensitive to paclobutrazol treatment, but also has a high response to abiotic stresses. CONCLUSIONS: Collectively, SbGRAs play an important role in plant development and response to abiotic stress. This systematic analysis lays the foundation for further study of the functional characteristics of GRAS genes of S. bicolor.


Assuntos
Sorghum , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208567

RESUMO

Plant phosphoprotein phosphatases are ubiquitous and multifarious enzymes that respond to developmental requirements and stress signals through reversible dephosphorylation of target proteins. In this study, we investigated the hitherto unknown functions of Brassica rapa protein phosphatase 5.2 (BrPP5.2) by transgenic overexpression of B. rapa lines. The overexpression of BrPP5.2 in transgenic lines conferred heat shock tolerance in 65-89% of the young transgenic seedlings exposed to 46 °C for 25 min. The examination of purified recombinant BrPP5.2 at different molar ratios efficiently prevented the thermal aggregation of malate dehydrogenase at 42 °C, thus suggesting that BrPP5.2 has inherent chaperone activities. The transcriptomic dynamics of transgenic lines, as determined using RNA-seq, revealed that 997 and 1206 (FDR < 0.05, logFC ≥ 2) genes were up- and down-regulated, as compared to non-transgenic controls. Statistical enrichment analyses revealed abiotic stress response genes, including heat stress response (HSR), showed reduced expression in transgenic lines under optimal growth conditions. However, most of the HSR DEGs were upregulated under high temperature stress (37 °C/1 h) conditions. In addition, the glucosinolate biosynthesis gene expression and total glucosinolate content increased in the transgenic lines. These findings provide a new avenue related to BrPP5.2 downstream genes and their crucial metabolic and heat stress responses in plants.


Assuntos
Brassica rapa/fisiologia , Regulação da Expressão Gênica de Plantas , Glucosinolatos/biossíntese , Resposta ao Choque Térmico/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
17.
BMC Genomics ; 22(1): 541, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266381

RESUMO

BACKGROUND: The deubiquitinase (DUB) family constitutes a group of proteases that regulate the stability or reverse the ubiquitination of many proteins in the cell. These enzymes participate in cell-cycle regulation, cell division and differentiation, diverse physiological activities such as DNA damage repair, growth and development, and response to stress. However, limited information is available on this family of genes in woody plants. RESULTS: In the present study, 88 DUB family genes were identified in the woody model plant Populus trichocarpa, comprising 44 PtrUBP, 3 PtrUCH, 23 PtrOTU, 4 PtrMJD, and 14 PtrJAMM genes with similar domains. According to phylogenetic analysis, the PtrUBP genes were classified into 16 groups, the PtrUCH genes into two, the PtrOTU genes into eight, the PtrMJD genes into two, and the PtrJAMM genes into seven. Members of same subfamily had similar gene structure and motif distribution characteristics. Synteny analysis of the DUB family genes from P. thrchocarpa and four other plant species provided insight into the evolutionary traits of DUB genes. Expression profiles derived from previously published transcriptome data revealed distinct expression patterns of DUB genes in various tissues. On the basis of the results of analysis of promoter cis-regulatory elements, we selected 16 representative PtrUBP genes to treatment with abscisic acid, methyl jasmonate, or salicylic acid applied as a foliar spray. The majority of PtrUBP genes were upregulated in response to the phytohormone treatments, which implied that the genes play potential roles in abiotic stress response in Populus. CONCLUSIONS: The results of this study broaden our understanding of the DUB family in plants. Analysis of the gene structure, conserved elements, and expression patterns of the DUB family provides a solid foundation for exploration of their specific functions in Populus and to elucidate the potential role of PtrUBP gene in abiotic stress response.


Assuntos
Populus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Estresse Fisiológico/genética
18.
BMC Genomics ; 22(1): 548, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34273948

RESUMO

BACKGROUND: Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). RESULTS: In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. CONCLUSIONS: This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Fosfolipases , Fosfolipídeos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
19.
BMC Genomics ; 22(1): 549, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34275454

RESUMO

BACKGROUND: In plants, Calcium (Ca2+) acts as a universal messenger in various signal transduction pathways, including responses to biotic and abiotic stresses and regulation of cellular and developmental processes. The Ca2+/cation antiporter (CaCA) superfamily proteins play vital roles in the transport of Ca2+ and/or other cations. However, the characteristics of these superfamily members in Saccharum and their evolutionary and functional implications have remained unclear. RESULTS: A total of 34 CaCA genes in Saccharum spontaneum, 5 CaCA genes in Saccharum spp. R570, and 14 CaCA genes in Sorghum bicolor were identified and characterized. These genes consisted of the H+/cation exchanger (CAX), cation/Ca2+ exchanger (CCX), EF-hand / CAX (EFCAX), and Mg2+/H+ exchanger (MHX) families, among which the CCX and EFCAX could be classified into three groups while the CAX could be divided into two groups. The exon/intron structures and motif compositions suggested that the members in the same group were highly conserved. Synteny analysis of CaCAs established their orthologous and paralogous relationships among the superfamily in S. spontaneum, R570, and S. bicolor. The results of protein-protein interactions indicated that these CaCA proteins had direct or indirect interactions. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis demonstrated that most members of Saccharum CaCA genes exhibited a similar expression pattern in response to hormonal (abscisic acid, ABA) treatment but played various roles in response to biotic (Sporisorium scitamineum) and abiotic (cold) stresses. Furthermore, ScCAX4, a gene encoding a cytoplasm, plasma membrane and nucleus positioning protein, was isolated from sugarcane. This gene was constitutively expressed in different sugarcane tissues and its expression was only induced at 3 and 6 h time points after ABA treatment, however was inhibited and indued in the whole process under cold and S. scitamineum stresses, respectively. CONCLUSIONS: This study systematically conducted comparative analyses of CaCA superfamily genes among S. spontaneum, R570, and S. bicolor, delineating their sequence and structure characteristics, classification, evolutionary history, and putative functions. These results not only provided rich gene resources for exploring the molecular mechanism of the CaCA superfamily genes but also offered guidance and reference for research on other gene families in Saccharum.


Assuntos
Saccharum , Antiporters , Basidiomycota , Cátions , Regulação da Expressão Gênica de Plantas , Humanos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo , Estresse Fisiológico/genética
20.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072567

RESUMO

In recent years, much progress has been made in elucidating the functional roles of plant glycine-rich RNA-binding proteins (GR-RBPs) during development and stress responses. Canonical GR-RBPs contain an RNA recognition motif (RRM) or a cold-shock domain (CSD) at the N-terminus and a glycine-rich domain at the C-terminus, which have been associated with several different RNA processes, such as alternative splicing, mRNA export and RNA editing. However, many aspects of GR-RBP function, the targeting of their RNAs, interacting proteins and the consequences of the RNA target process are not well understood. Here, we discuss recent findings in the field, newly defined roles for GR-RBPs and the actions of GR-RBPs on target RNA metabolism.


Assuntos
Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Germinação/genética , Filogenia , Processamento Pós-Transcricional do RNA , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...