Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.176
Filtrar
1.
PLoS One ; 15(8): e0236226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866160

RESUMO

Amine oxidases (AOs) including copper containing amine oxidases (CuAOs) and FAD-dependent polyamine oxidases (PAOs) are associated with polyamine catabolism in the peroxisome, apoplast and cytoplasm and play an essential role in growth and developmental processes and response to biotic and abiotic stresses. Here, we identified PAO genes in common wheat (Triticum aestivum), T. urartu and Aegilops tauschii and reported the genome organization, evolutionary features and expression profiles of the wheat PAO genes (TaPAO). Expression analysis using publicly available RNASeq data showed that TaPAO genes are expressed redundantly in various tissues and developmental stages. A large percentage of TaPAOs respond significantly to abiotic stresses, especially temperature (i.e. heat and cold stress). Some TaPAOs were also involved in response to other stresses such as powdery mildew, stripe rust and Fusarium infection. Overall, TaPAOs may have various functions in stress tolerances responses, and play vital roles in different tissues and developmental stages. Our results provided a reference for further functional investigation of TaPAO proteins.


Assuntos
Resposta ao Choque Frio/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Proteínas de Plantas/genética , Termotolerância/genética , Triticum/genética , Aegilops/enzimologia , Aegilops/genética , Processamento Alternativo , Sequência de Aminoácidos , Conjuntos de Dados como Assunto , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Cadeias de Markov , Modelos Genéticos , Peso Molecular , Família Multigênica , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos/genética , RNA-Seq , Alinhamento de Sequência , Triticum/enzimologia
2.
Gene ; 762: 145104, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889060

RESUMO

Chalcone synthase (CHS, EC 2.3.1.74) is one of the key and rate-limiting enzymes of phenylpropanoid pathway which plays superior roles in the production of secondary metabolites. In the present study a full-length cDNA of CHS gene was isolated and characterized from Coelogyne ovalis, an orchid of ornamental and medicinal importance. The CHS gene sequence from C. ovalis (CoCHS) was found to be 1445 bp and comprised an open reading frame of 1182 bp, encoding for 394 amino acid residues. Further, the sequence alignment and phylogenetic analysis revealed that CoCHS protein shared high degree of similarity with CHS protein of other orchid species. It also confirmed that it contained all four motifs (I to IV) and signature sequence for the functionality of this gene. Structural modeling of CoCHS based on the crystallographic structure of Freesia hybrida indicated that CoCHS had a similar structure. Quantitative polymerase chain reaction (qPCR) disclosed that CoCHS was expressed in all tissues examined, with the highest transcript being in leaves, followed by pseudobulbs and roots. CoCHS expression was also evaluated in the in vitro-raised plantlets under the abiotic stress (dark, cold, UV-B, wounding, salinity). mRNA transcript expression of CHS gene was found to be positively enhanced and regulated by the different stress types. A correlation between the CoCHS transcript expression with flavonoid and anthocyanin contents revealed that a positive correlation existed between metabolites' content and CoCHS expression within the in vivo as well as in the in vitro-raised plant parts.


Assuntos
Aciltransferases/genética , Regulação da Expressão Gênica de Plantas , Orchidaceae/genética , Proteínas de Plantas/genética , Aciltransferases/química , Aciltransferases/metabolismo , Clonagem Molecular , Orchidaceae/classificação , Orchidaceae/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estresse Fisiológico
3.
Int J Nanomedicine ; 15: 6433-6449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922010

RESUMO

Background: Electrospun nanofibers based on Colocasia esculenta tuber (CET) protein are considered as a promising material for wound dressing applications. However, the use of these nanofibers in aqueous conditions has poor stability. The present study was performed to obtain insights into the crosslinked electrospun CET's protein-chitosan (CS)-poly(ethylene oxide) (PEO) nanofibers and to evaluate their potential for wound dressing applications. Methods: The electrospun nanofibers were crosslinked with glutaraldehyde (GA) vapor and heat treatment (HT) to enhance their physicochemical stability. The crosslinked nanofibers were characterized by protein profiles, morphology structures, thermal behavior, mechanical properties, and degradation behavior. Furthermore, the antibacterial properties and cytocompatibility were analyzed by antibacterial assessment and cell proliferation. Results: The protein profiles of the electrospun CET's protein-CS-PEO nanofibers before and after HT crosslinking contained one major bioactive protein with a molecular weight of 14.4 kDa. Scanning electron microscopy images of the crosslinked nanofibers indicated preservation of the structure after immersion in phosphate buffered saline. The crosslinked nanofibers resulted in higher ultimate tensile strength and lower ultimate strain compared to the non-crosslinked nanofibers. GA vapor crosslinking showed higher water stability compared to HT crosslinking. The in vitro antibacterial activity of the crosslinked nanofibers showed a stronger bacteriostatic effect on Staphylococcus aureus than on Escherichia coli. Human skin fibroblast cell proliferation on crosslinked GA vapor and HT nanofibers with 1% (w/v) CS and 2% (w/v) CET's protein demonstrated the highest among all the other crosslinked nanofibers after seven days of cell culture. Cell proliferation and cell morphology results revealed that introducing higher CET's protein concentration on crosslinked nanofibers could increase cell proliferation of the crosslinked nanofibers. Conclusion: These results are promising for the potential use of the crosslinked electrospun CET's protein-CS-PEO nanofibers as bioactive wound dressing materials.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Colocasia/química , Reagentes para Ligações Cruzadas/química , Nanofibras/química , Proteínas de Plantas/química , Tubérculos/química , Polietilenoglicóis/química , Animais , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Nanofibras/ultraestrutura , Proteínas de Plantas/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Estresse Mecânico , Temperatura
4.
PLoS One ; 15(8): e0238032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841304

RESUMO

Longan (Dimocarpus longan Lour.) is an important commercial fruit tree in southern China. The embryogenesis of longan affects the quality and yield of fruit. A large number of alternative splicing events occurs during somatic embryogenesis (SE), which is regulated by serine/arginine-rich (SR) proteins. However, the functions of SR proteins in longan are poorly understood. In this study, 21 Dlo-SR gene family members belonging to six subfamilies were identified, among which Dlo-RSZ20a, Dlo-SR30, Dlo-SR17, Dlo-SR53 and Dlo-SR32 were localized in the nucleus, Dlo-RSZ20b, Dlo-RSZ20c, Dlo-RSZ20d, Dlo-SC18, Dlo-RS2Z29, Dlo-SCL41, and Dlo-SR33 were localized in chloroplasts, and Dlo-RS43, Dlo-SC33, Dlo-SC37, Dlo-RS2Z33, Dlo-RS2Z16, Dlo-RS2Z24, Dlo-SCL43, Dlo-SR112, and Dlo-SR59 were localized in the nucleus and chloroplasts. The Dlo-SR genes exhibited differential expression patterns in different tissues of longan. The transcript levels of Dlo-RSZ20a, Dlo-SC18, Dlo-RS2Z29, DLo-SR59, Dlo-SR53, and Dlo-SR17 were low in all analyzed tissues, whereas Dlo-RS43, Dlo-RS2Z16, Dlo-RS2Z24, and Dlo-SR30 were highly expressed in all tissues. To clarify their function during SE, the transcript levels of Dlo-SR genes were analyzed at different four stages of SE, comprising non-embryonic callus (NEC), friable-embryogenic callus (EC), incomplete compact pro-embryogenic culture (ICpEC) and globular embryo (GE). Interestingly, the transcript levels of Dlo-RS2Z29 and Dlo-SR112 were increased in embryogenic cells compared with the NEC stage, whereas transcript levels of Dlo-RSZ20a, Dlo-RS43, Dlo-SC37, and Dlo-RS2Z16 were especially increased at the GE stage compared with the other stages. Alternative splicing events of Dlo-SR mRNA precursors (pre-mRNAs) was detected during SE, with totals of 41, 29, 35, and 44 events detected during NEC, EC, ICpEC, and GE respectively. Protein-protein interaction analysis showed that SR proteins were capable of interaction with each other. The results indicate that the alternative splicing of Dlo-SR pre-mRNAs occurs during SE and that Dlo-SR proteins may interact to regulate embryogenesis of longan.


Assuntos
Perfilação da Expressão Gênica , Genômica , Proteínas de Plantas/genética , Sapindaceae/genética , Motivos de Aminoácidos , Sequência Conservada , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Regiões Promotoras Genéticas/genética , Mapeamento de Interação de Proteínas , Sapindaceae/metabolismo
5.
PLoS One ; 15(8): e0237177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760115

RESUMO

LEA3 proteins, a family of abiotic stress proteins, are defined by the presence of a tryptophan-containing motif, which we name the W-motif. We use Pfam LEA3 sequences to search the Phytozome database to create a W-motif definition and a LEA3 sequence dataset. A comprehensive analysis of these sequences revealed four N-terminal motifs, as well as two previously undiscovered C-terminal motifs that contain conserved acidic and hydrophobic residues. The general architecture of the LEA3 sequences consisted of an N-terminal motif with a potential mitochondrial transport signal and the twin-arginine motif cut-site, followed by a W-motif and often a C-terminal motif. Analysis of species distribution of the motifs showed that one architecture was found exclusively in Commelinids, while two were distributed fairly evenly over all species. The physiochemical properties of the different architectures showed clustering in a relatively narrow range compared to the previously studied dehydrins. The evolutionary analysis revealed that the different sequences grouped into clades based on architecture, and that there appear to be at least two distinct groups of LEA3 proteins based on their architectures and physiochemical properties. The presence of LEA3 proteins in non-vascular plants but their absence in algae suggests that LEA3 may have arisen in the evolution of land plants.


Assuntos
Sequência Conservada , Proteínas de Plantas/genética , Motivos de Aminoácidos , Evolução Molecular , Proteínas de Plantas/química , Plantas/genética , Domínios Proteicos
6.
Science ; 369(6504): 663-670, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764065

RESUMO

Plants evolved lysine motif (LysM) receptors to recognize and parse microbial elicitors and drive intracellular signaling to limit or facilitate microbial colonization. We investigated how chitin and nodulation (Nod) factor receptors of Lotus japonicus initiate differential signaling of immunity or root nodule symbiosis. Two motifs in the LysM1 domains of these receptors determine specific recognition of ligands and discriminate between their in planta functions. These motifs define the ligand-binding site and make up the most structurally divergent regions in cognate Nod factor receptors. An adjacent motif modulates the specificity for Nod factor recognition and determines the selection of compatible rhizobial symbionts in legumes. We also identified how binding specificities in LysM receptors can be altered to facilitate Nod factor recognition and signaling from a chitin receptor, advancing the prospects of engineering rhizobial symbiosis into nonlegumes.


Assuntos
Lotus/enzimologia , Proteínas de Plantas/química , Proteínas Quinases/química , Motivos de Aminoácidos , Quitina/química , Ligantes , Domínios Proteicos
7.
PLoS Genet ; 16(8): e1008691, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32764743

RESUMO

Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process.


Assuntos
Axonema/metabolismo , Transtornos da Motilidade Ciliar/genética , Códon sem Sentido , Dineínas/metabolismo , Proteínas/genética , Células 3T3 , Adulto , Animais , Axonema/fisiologia , Células Cultivadas , Chlamydomonas reinhardtii , Cílios/metabolismo , Cílios/fisiologia , Transtornos da Motilidade Ciliar/patologia , Sequência Conservada , Humanos , Masculino , Camundongos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas/química , Proteínas/metabolismo , Mucosa Respiratória/metabolismo
8.
PLoS One ; 15(8): e0237884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841243

RESUMO

The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein's helical domains. Removal of these bonds leads to enhanced membrane interactions. This work examined the effects of their sequential removal, both individually and in combination, using all-atom molecular dynamics to elucidate the role of disulfide linkages in maintaining overall protein tertiary structure. The tertiary structure was found to remain stable at both acidic (active) and neutral (inactive) pH despite the removal of disulfide linkages. The findings include how the dimer structure is stabilized and the impact on secondary structure on a residue-basis as a function of disulfide bond removal. The StPSI possesses an extensive network of inter-monomer hydrophobic interactions and intra-monomer hydrogen bonds, which is likely the key to the stability of the StPSI by stabilizing local secondary structure and the tertiary saposin-fold, leading to a robust association between monomers, regardless of the disulfide bond state. Removal of disulfide bonds did not significantly impact secondary structure, nor lead to quaternary structural changes. Instead, disulfide bond removal induces regions of amino acids with relatively higher or lower variation in secondary structure, relative to when all the disulfide bonds are intact. Although disulfide bonds are not required to preserve overall secondary structure, they may have an important role in maintaining a less plastic structure within plant cells in order to regulate membrane affinity or targeting.


Assuntos
Dissulfetos/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Plantas/metabolismo , Saposinas/metabolismo , Solanum tuberosum/metabolismo , Cisteína/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Plantas/química , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Sais/química , Enxofre/metabolismo
9.
DNA Cell Biol ; 39(9): 1606-1620, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32749870

RESUMO

The sugars will eventually be exported transporters (SWEET) gene family is a glycoprotein gene family that can regulate the transport of sugar in plants and plays an important role in plant growth and development, as well as in response to environmental stress. In this study, Kentucky bluegrass (cv. Baron) seedlings were grown in various treatments, including heavy metal cadmium, salt, drought, cold, and heat stress for 6 h, 24 h, 48 h, and 7 day. The relative expression of the identified PpSWEET genes in Kentucky bluegrass was measured. The results showed there were a total of 13 SWEET genes, which could be divided into four clades by phylogenetic analysis. Most PpSWEET genes are alkali proteins with seven transmembrane helices. Moreover, almost all PpSWEET proteins possess similar conserved motifs and active sites. In addition, an analysis of the relative expression of PpSWEET genes under various stress treatments indicated that PpSWEET12 and PpSWEET15 had very high expression under the five types of stress, meaning they can be used as important candidate genes for studying responses to environmental stresses of turfgrass. Furthermore, certain genes only showed changes in expression under one or two specific stress treatments. This study provides important insight into the SWEET gene family in Kentucky bluegrass and its functional roles in responses to various environmental stresses.


Assuntos
Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Plantas/genética , Poa/genética , Estresse Fisiológico , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Poa/classificação , Poa/metabolismo , Domínios Proteicos
10.
Proc Natl Acad Sci U S A ; 117(31): 18832-18839, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32709746

RESUMO

Plant and animal intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors detect pathogen-derived molecules and activate defense. Plant NLRs can be divided into several classes based upon their N-terminal signaling domains, including TIR (Toll-like, Interleukin-1 receptor, Resistance protein)- and CC (coiled-coil)-NLRs. Upon ligand detection, mammalian NAIP and NLRC4 NLRs oligomerize, forming an inflammasome that induces proximity of its N-terminal signaling domains. Recently, a plant CC-NLR was revealed to form an inflammasome-like hetero-oligomer. To further investigate plant NLR signaling mechanisms, we fused the N-terminal TIR domain of several plant NLRs to the N terminus of NLRC4. Inflammasome-dependent induced proximity of the TIR domain in planta initiated defense signaling. Thus, induced proximity of a plant TIR domain imposed by oligomerization of a mammalian inflammasome is sufficient to activate authentic plant defense. Ligand detection and inflammasome formation is maintained when the known components of the NLRC4 inflammasome is transferred across kingdoms, indicating that NLRC4 complex can robustly function without any additional mammalian proteins. Additionally, we found NADase activity of a plant TIR domain is necessary for plant defense activation, but NADase activity of a mammalian or a bacterial TIR is not sufficient to activate defense in plants.


Assuntos
Proteínas NLR , Imunidade Vegetal , Proteínas de Plantas , Proteínas Recombinantes de Fusão , Transdução de Sinais , Animais , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Mamíferos , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
11.
Food Chem ; 331: 127352, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32652343

RESUMO

The influence of some additives, including metal ions, antioxidants, enzyme inhibitors and organic solvents, on the storage stability of four organophosphorus pesticides in cucumber samples were investigated. It was found that metal ions, including Al3+, Fe3+, and Co2+, increased the stability of dichlorvos, malathion, and chlorpyrifos. Conversely, Al3+, Fe3+, Fe2+, and Co2+ caused catalytic degradation of diazinon. With the addition of organic solvents (CH2Cl2, CHCl3, CCl4, CH3OH and CH3COCH3), remaining of diazinon residues was higher (16-54%) after storage for seven days. CCl4 was associated with the highest retention of malathion, diazinon, and chlorpyrifos (33%, 48% and 44%, respectively) in samples. SDS also stabilized the pesticides since residues were, again, higher (13-38%) after seven days storage. Furthermore, addition of Al3+ and Fe3+ decreased peroxidase (POD) activity and inhibited degradation of dichlorvos and malathion. After 14 days, lyophilization increased the pesticide residues remaining by 36%, 29%, and 58% for diazinon, malathion and chlorpyrifos, respectively. Overall, the stability of these pesticides during storage is impacted by water content and addition of exogenous substances. This could ensure higher quality of pesticide residue data in samples.


Assuntos
Cucumis sativus/química , Contaminação de Alimentos/análise , Armazenamento de Alimentos , Inseticidas/química , Compostos Organofosforados/química , Alumínio/química , Clorpirifos/análise , Clorpirifos/química , Diazinon/análise , Diazinon/química , Diclorvós/análise , Diclorvós/química , Aditivos Alimentares/química , Liofilização , Inseticidas/análise , Malation/análise , Malation/química , Compostos Organofosforados/análise , Oxirredutases/química , Peroxidases/química , Peroxidases/metabolismo , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dodecilsulfato de Sódio/química , Água/química
12.
Food Chem ; 333: 127492, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659673

RESUMO

In this study, recombinant rice quiescin sulfhydryl oxidase (rQSOX) was expressed and characterized, and its performance in flour-processing quality was further evaluated. The purified rQSOX exhibited the highest sulfhydryl oxidation activity (1.96 IU/mg) using dithiothreitol as a substrate, accompanying the production of H2O2. The optimal temperature and pH were 60 °C and pH 8.0 for rQSOX catalyzing oxidation of dithiothreitol. And rQSOX retained 50% of its maximum activity after incubation at 80 °C for 1 h. Moreover, rQSOX supplementation improved the farinograph properties of dough, indicated by the increased dough stability time and decreased degree of softening, and enhanced viscoelastic properties of the dough. Addition of rQSOX (10 IU/g flour) provided remarkable improvement in specific volume (37%) and springiness (17%) of the steamed bread, and significantly reduced the hardness by half, which was attributed to the strengthened gluten network. The results provide an understanding for rQSOX using in flour-processing industry.


Assuntos
Farinha/análise , Oryza/enzimologia , Oxirredutases/química , Proteínas de Plantas/química , Triticum/química , Biocatálise , Pão/análise , Manipulação de Alimentos , Glutens/química , Dureza , Peróxido de Hidrogênio/análise , Oryza/química , Oryza/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Food Chem ; 333: 127503, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32683258

RESUMO

Protein isolates were prepared from wet heat processed (APIp) and unprocessed alfalfa seeds (APIc) and characterized for composition and functionality at different pH. APIc and APIp exhibited high content of all the essential amino acids. Antinutrient content of APIp was lower in comparison to APIc and marked reduction in the trypsin inhibitor (85.97%) and lectin activity (100%) was observed. Processing did not cause much reduction of bioactive constituents and antioxidant activity of APIp. Alfalfa protein isolates exhibited complex polypeptide banding ranging from molecular weight of 11-75 kDa. APIp exhibited change in the conformation of protein discerned as alteration in interrelated nuances of ATR-FTIR spectra, XRD-pattern, morphology, charge on proteins and reduced solubility in comparison to APIc due to processing. APIp exhibited marked improvement in the functional properties in comparison to APIc discerned as improved hydration, surface active and gelation properties. Highest hydration and surface active properties were exhibited at pH 9.0, even though APIp at pH 7.0 showed fairly similar functional properties as APIc and APIp at pH 9.0. APIp exhibited reduced least gelation concentration in comparison to APIc at pH 7.0 and also engendered gelation at pH 4.0 and 9.0 contrary to APIc.


Assuntos
Aminoácidos Essenciais/química , Medicago sativa/química , Proteínas de Plantas/química , Concentração de Íons de Hidrogênio , Medicago sativa/efeitos dos fármacos , Peso Molecular , Proteínas de Plantas/isolamento & purificação , Solubilidade , Inibidores da Tripsina/química
14.
Science ; 369(6507): 1089-1094, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32646917

RESUMO

Cellulose is an essential plant cell wall component and represents the most abundant biopolymer on Earth. Supramolecular plant cellulose synthase complexes organize multiple linear glucose polymers into microfibrils as load-bearing wall components. We determined the structure of a poplar cellulose synthase CesA homotrimer that suggests a molecular basis for cellulose microfibril formation. This complex, stabilized by cytosolic plant-conserved regions and helical exchange within the transmembrane segments, forms three channels occupied by nascent cellulose polymers. Secretion steers the polymers toward a common exit point, which could facilitate protofibril formation. CesA's N-terminal domains assemble into a cytosolic stalk that interacts with a microtubule-tethering protein and may thus be involved in CesA localization. Our data suggest how cellulose synthase complexes assemble and provide the molecular basis for plant cell wall engineering.


Assuntos
Glucosiltransferases/química , Complexos Multienzimáticos/química , Proteínas de Plantas/química , Populus/enzimologia , Biocatálise , Domínio Catalítico , Multimerização Proteica
15.
Food Chem ; 332: 127399, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32645676

RESUMO

Different baking conditions were used in order to evaluate its effects on bread aspects. Doughs were baked at 160, 190 and 220 °C, during 9, 12, 15 and 20 min, and characterized in relation to color change, oxalate and mineral concentration, and protein digestibility. The higher the baking temperature and time, the higher the crust color change, the lower the oxalate concentration, and the higher the amount of some macro minerals. Protein digestibility may also be favored, however it does not follow a linear correlation. Although it is not possible to obtain a condition that favors the content of all minerals, protein digestibility and reduces oxalate content, the use of high temperatures and times is important as it can reduce oxalate and thereby prevent its associated problems. Understanding how to optimize it during baking could be used to produce breads with a higher mineral bioavailability, an important strategy for food industry and also when using alternative flours.


Assuntos
Pão/análise , Digestão , Manipulação de Alimentos/métodos , Minerais/análise , Oxalatos/análise , Proteínas de Plantas/química , Triticum/química , Farinha/análise , Temperatura Alta , Proteínas de Plantas/metabolismo
16.
PLoS One ; 15(7): e0222747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32639982

RESUMO

Physiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.


Assuntos
Café/genética , Resistência à Doença/genética , Genoma de Planta , Sequência de Aminoácidos , Basidiomycota/fisiologia , Sítios de Ligação , Café/classificação , Biblioteca Gênica , Lycopersicon esculentum/classificação , Lycopersicon esculentum/genética , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Alinhamento de Sequência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Vitis/classificação , Vitis/genética
17.
Gene ; 757: 144935, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32653482

RESUMO

MYB transcription factors (TFs) play important roles in the plant's response to abiotic stress. In this study, we cloned a novel MYB TF gene from Vaccinium corymbosum (blueberry) using rapid amplification of cDNA ends (RACE). The cDNA contained a 798-bp open reading frame that encodes a 265-amino acid protein. VcMYB4a possessed a C2/EAR-repressor motif domain and phylogenetic analysis showed that it clustered into a subgroup 4 with six Arabidopsis thaliana MYBs. Quantitative RT-PCR analysis demonstrated that VcMYB4a expression was downregulated by salt, drought, and cold treatment, but was induced by freezing and heat. Overexpression of VcMYB4a in blueberry callus enhanced sensitivity to salt, drought, cold, freezing, and heat stress. These results indicate that VcMYB4a may be an important repressor of abiotic stress in blueberry.


Assuntos
Mirtilos Azuis (Planta)/genética , Resposta ao Choque Térmico , Proteínas de Plantas/genética , Tolerância ao Sal , Termotolerância , Fatores de Transcrição/genética , Mirtilos Azuis (Planta)/metabolismo , Secas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
BMC Evol Biol ; 20(1): 91, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727363

RESUMO

BACKGROUND: The SIAMESE (SIM) locus is a cell-cycle kinase inhibitor (CKI) gene that has to date been identified only in plants; it encodes a protein that promotes transformation from mitosis to endoreplication. Members of the SIAMESE-RELATED (SMR) family have similar functions, and some are related to cell-cycle responses and abiotic stresses. However, the functions of SMRs are poorly understood in maize (Zea mays L.). RESULTS: In the present study, 12 putative SMRs were identified throughout the entire genome of maize, and these were clustered into six groups together with the SMRs from seven other plant species. Members of the ZmSMR family were divided into four groups according to their protein sequences. Various cis-acting elements in the upstream sequences of ZmSMRs responded to abiotic stresses. Expression analyses revealed that all ZmSMRs were upregulated at 5, 20, 25, and 35 days after pollination. In addition, we found that ZmSMR9/11/12 may have regulated the initiation of endoreplication in endosperm central cells. Additionally, ZmSMR2/10 may have been primarily responsible for the endoreplication regulation of outer endosperm or aleurone cells. The relatively high expression levels of almost all ZmSMRs in the ears and tassels also implied that these genes may function in seed development. The effects of treatments with ABA, heat, cold, salt, and drought on maize seedlings and expression of ZmSMR genes suggested that ZmSMRs were strongly associated with response to abiotic stresses. CONCLUSION: The present study is the first to conduct a genome-wide analysis of members of the ZmSMR family by investigating their locations in chromosomes, identifying regulatory elements in their promoter regions, and examining motifs in their protein sequences. Expression analysis of different endosperm developmental periods, tissues, abiotic stresses, and hormonal treatments suggests that ZmSMR genes may function in endoreplication and regulate the development of reproductive organs. These results may provide valuable information for future studies of the functions of the SMR family in maize.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Zea mays/genética , Sequência de Aminoácidos , Sequência de Bases , Cromossomos de Plantas/genética , Sequência Conservada/genética , Endosperma/genética , Duplicação Gênica , Genes de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Análise de Regressão , Especificidade da Espécie , Estresse Fisiológico/efeitos dos fármacos , Sintenia/genética
19.
Food Chem ; 332: 127375, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32622189

RESUMO

Biopolymer films based on chitosan/potato protein/linseed oil/ZnO NPs were developed to maintain the storage quality of raw meat. Results indicated that the incorporation of ZnO NPs could effectively improve the transparency and tensile strength of the films, while addition of linseed oil could make the composite film maintain good elastic property. Films blended with chitosan/potato protein/linseed oil/ZnO NPs (Fcpzl) exhibited an excellent moisture barrier capability. SEM showed that ZnO NPs could harmoniously exist in various polymers matrix. FTIR analysis demonstrated that different components were bound together by intramolecular and intermolecular interactions, among which hydrogen bonds were the main force. Raw meat samples were wrapped with different films to evaluate the preservative effect during 4 °C storage. Results indicated that Fcpzl possessed best protective effect of raw meat with excellent acceptable sensory properties during 7 days storage, which could reduce the speed of increasing pH and total bacterial counts.


Assuntos
Quitosana/química , Embalagem de Alimentos/métodos , Armazenamento de Alimentos/métodos , Óleo de Semente do Linho/química , Carne , Proteínas de Plantas/química , Óxido de Zinco/química , Qualidade dos Alimentos , Carne/microbiologia , Solanum tuberosum/química , Resistência à Tração
20.
PLoS One ; 15(7): e0235416, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614884

RESUMO

Plectranthus amboinicus (Lour.) Spreng is an aromatic medicinal herb known for its therapeutic and nutritional properties attributed by the presence of monoterpene and sesquiterpene compounds. Up until now, research on terpenoid biosynthesis has focused on a few mint species with economic importance such as thyme and oregano, yet the terpene synthases responsible for monoterpene production in P. amboinicus have not been described. Here we report the isolation, heterologous expression and functional characterization of a terpene synthase involved in P. amboinicus terpenoid biosynthesis. A putative monoterpene synthase gene (PamTps1) from P. amboinicus was isolated with an open reading frame of 1797 bp encoding a predicted protein of 598 amino acids with molecular weight of 69.6 kDa. PamTps1 shares 60-70% amino acid sequence similarity with other known terpene synthases of Lamiaceae. The in vitro enzymatic activity of PamTps1 demonstrated the conversion of geranyl pyrophosphate and farnesyl pyrophosphate exclusively into linalool and nerolidol, respectively, and thus PamTps1 was classified as a linalool/nerolidol synthase. In vivo activity of PamTps1 in a recombinant Escherichia coli strain revealed production of linalool and nerolidol which correlated with its in vitro activity. This outcome validated the multi-substrate usage of this enzyme in producing linalool and nerolidol both in in vivo and in vitro systems. The transcript level of PamTps1 was prominent in the leaf during daytime as compared to the stem. Gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analyses showed that maximal linalool level was released during the daytime and lower at night following a diurnal circadian pattern which correlated with the PamTps1 expression pattern. The PamTps1 cloned herein provides a molecular basis for the terpenoid biosynthesis in this local herb that could be exploited for valuable production using metabolic engineering in both microbial and plant systems.


Assuntos
Alquil e Aril Transferases , Proteínas de Plantas , Plectranthus/enzimologia , Monoterpenos Acíclicos/metabolismo , Alquil e Aril Transferases/biossíntese , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Clonagem Molecular , Escherichia coli/genética , Folhas de Planta/enzimologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA