Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.841
Filtrar
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 33(4): 396-400, 2021 Aug 19.
Artigo em Chinês | MEDLINE | ID: mdl-34505447

RESUMO

OBJECTIVE: To investigate the genetic polymorphisms of Plasmodium falciparum multidrug resistance protein 1 (PfMDR1), chloroquine resistance transporter (PfCRT) and Kelch 13 (PfK13) genes in Bioko Island, Equatorial Guinea, so as to provide insights into the development of the malaria control strategy in local areas. METHODS: A total of 85 peripheral blood samples were collected from patients with Plasmodium falciparum infections in Bioko Island, Equatorial Guinea in 2018 and 2019, and genomic DNA was extracted. The PfMDR1, PfCRT and PfK13 genes were amplified using a nested PCR assay. The amplification products were sequenced, and the gene sequences were aligned. RESULTS: There were no mutations associated with artemisinin resistance in PfK13 gene in Bioko Island, Equatorial Guinea, while drug-resistant mutations were detected in PfMDR1 and PfCRT genes, and the proportions of PfMDR1_N86Y, PfMDR1_Y184F and PfCRT_K76T mutations were 35.29% (30/85), 72.94% (62/85) and 24.71% (21/85), respectively. CONCLUSIONS: There are mutations in PfMDR1, PfCRT and PfK13 genes in P. falciparum isolates from Bioko Island, Equatorial Guinea.


Assuntos
Antimaláricos , Malária Falciparum , Preparações Farmacêuticas , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Guiné Equatorial/epidemiologia , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética
2.
Front Cell Infect Microbiol ; 11: 693449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368014

RESUMO

Intestinal parasites are a global problem, mainly in developing countries. Obtaining information about plants and compounds that can combat gastrointestinal disorders and gastrointestinal symptoms is a fundamental first step in designing new treatment strategies. In this study, we analyzed the antiamoebic activity of the aerial part of Croton sonorae. The dichloromethane fraction of C. sonorae (CsDCMfx) contained flavonoids, terpenes, alkaloids, and glycosides. The ultrastructural morphology of the amoebae treated for 72 h with CsDCMfx was completely abnormal. CsDCMfx reduced erythrophagocytosis of trophozoites and the expression of genes involved in erythrocyte adhesion (gal/galnac lectin) and actin cytoskeleton rearrangement in the phagocytosis pathway (rho1 gtpase and formin1). Interestingly, CsDCMfx decreased the expression of genes involved in Entamoeba histolytica trophozoite pathogenesis, such as cysteine proteases (cp1, cp4, and cp5), sod, pfor, and enolase. These results showed that C. sonorae is a potential source of antiamoebic compounds.


Assuntos
Croton , Entamoeba histolytica , Extratos Vegetais/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/genética , Expressão Gênica , Medicina Tradicional , Cloreto de Metileno , Proteínas de Protozoários/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-34407160

RESUMO

This molecular epidemiological study was designed to determine the antimalarial drug resistance pattern, and the genetic diversity of malaria isolates collected from a war-altered Federally Administered Tribal Area (FATA), in Pakistan. Clinical isolates were collected from Bajaur, Mohmand, Khyber, Orakzai and Kurram agencies of FATA region between May 2017 and May 2018, and they underwent DNA extraction and amplification. The investigation of gene polymorphisms in drug resistance genes (dhfr, dhps, crt, and mdr1) of Plasmodium falciparum and Plasmodium vivax was carried out by pyrosequencing and Sanger sequencing, respectively. Out of 679 PCR-confirmed malaria samples, 523 (77%) were P. vivax, 121 (18%) P. falciparum, and 35 (5%) had mixed-species infections. All P. falciparum isolates had pfdhfr double mutants (C59R+S108N), while pfdhfr/pfdhps triple mutants (C59R+S108N+A437G) were detected in 11.5% of the samples. About 97.4% of P. falciparum isolates contained pfcrt K76T mutation, while pfmdr1 N86Y and Y184F mutations were present in 18.2% and 10.2% of the samples. P. vivax pvdhfr S58R mutation was present in 24.9% of isolates and the S117N mutation in 36.2%, while no mutation in the pvdhps gene was found. Pvmdr1 F1076L mutation was found in nearly all samples, as it was observed in 98.9% of isolates. No significant anti-folate and chloroquine resistance was observed in P. vivax; however, mutations associated with antifolate-resistance were found, and the chloroquine-resistant gene has been observed in 100% of P. falciparum isolates. Chloroquine and sulphadoxine-pyrimethamine resistance were found to be high in P. falciparum and low in P. vivax. Chloroquine could still be used for P. vivax infection but need to be tested in vivo, whereas a replacement of the artemisinin combination therapy for P. falciparum appears to be justified.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Humanos , Mutação , Paquistão , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética
4.
Commun Biol ; 4(1): 953, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376792

RESUMO

Major Intrinsic Proteins (MIPs) are membrane channels that permeate water and other small solutes. Some trypanosomatid MIPs mediate the uptake of antiparasitic compounds, placing them as potential drug targets. However, a thorough study of the diversity of these channels is still missing. Here we place trypanosomatid channels in the sequence-function space of the large MIP superfamily through a sequence similarity network. This analysis exposes that trypanosomatid aquaporins integrate a distant cluster from the currently defined MIP families, here named aquaporin X (AQPX). Our phylogenetic analyses reveal that trypanosomatid MIPs distribute exclusively between aquaglyceroporin (GLP) and AQPX, being the AQPX family expanded in the Metakinetoplastina common ancestor before the origin of the parasitic order Trypanosomatida. Synteny analysis shows how African trypanosomes specifically lost AQPXs, whereas American trypanosomes specifically lost GLPs. AQPXs diverge from already described MIPs on crucial residues. Together, our results expose the diversity of trypanosomatid MIPs and will aid further functional, structural, and physiological research needed to face the potentiality of the AQPXs as gateways for trypanocidal drugs.


Assuntos
Aquagliceroporinas/genética , Aquaporinas/genética , Proteínas de Protozoários/genética , Trypanosomatina/genética , Sequência de Aminoácidos , Aquagliceroporinas/química , Aquaporinas/química , Proteínas de Protozoários/química , Alinhamento de Sequência , Trypanosomatina/química
5.
J Microbiol ; 59(9): 848-853, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34449058

RESUMO

Rap small GTPases are involved in diverse signaling pathways associated with cell growth, proliferation, and cell migration. There are three Rap proteins in Dictyostelium, RapA, RapB, and RapC. RapA is a key regulator in the control of cell adhesion and migration. Recently RapA and RapC have been reported to have opposite functions in the regulation of cellular processes. In this study, we demonstrate that the C-terminus of RapC, which is not found in RapA, is essential for the opposite functions of RapC and is able to reverse the functions of RapA when fused to the tail of RapA. Cells lacking RapC displayed several defective phenotypes, including spread morphology, strong adhesion, and decreased cell migration compared to wild-type cells. These phenotypes were rescued by full-length RapC, but not by RapC missing the C-terminus. Furthermore, recombinant RapA fused with the C-terminus of RapC completely recovered the phenotypes of rapC null cells, indicating that the functions of RapA were modified to become similar to those of RapC by the C-terminus of RapC with respect to cell morphology, cell adhesion and migration, cytokinesis, and development. These results suggest that the C-terminal residues of RapC are able to suppress and change the functions of other Ras proteins in Ras oncogenic signaling pathways.


Assuntos
Dictyostelium/enzimologia , Proteínas de Protozoários/metabolismo , Proteínas ras/metabolismo , Motivos de Aminoácidos , Dictyostelium/química , Dictyostelium/genética , Regulação da Expressão Gênica , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas ras/genética
6.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360709

RESUMO

Toxoplasma gondii (T. gondii) is an important human and veterinary pathogen causing life-threatening disease in immunocompromised patients. The UBL-UBA shuttle protein family are important components of the ubiquitin-proteasome system. Here, we identified a novel UBL-UBA shuttle protein DSK2b that is charactered by an N-terminal ubiquitin-like domain (UBL) and a C-terminal ubiquitin-associated domain (UBA). DSK2b was localized in the cytoplasm and nucleus. The deletion of dsk2b did not affect the degradation of ubiquitinated proteins, parasite growth in vitro or virulence in mice. The double-gene knockout of dsk2b and its paralogs dsk2a (ΔΔdsk2adsk2b) results in a significant accumulation of ubiquitinated proteins and the asynchronous division of T. gondii. The growth of ΔΔdsk2adsk2b was significantly inhibited in vitro, while virulence in mice was not attenuated. In addition, autophagy occurred in the ΔΔdsk2adsk2b, which was speculated to degrade the accumulated ubiquitinated proteins in the parasites. Overall, DSK2b is a novel UBL-UBA shuttle protein contributing to the degradation of ubiquitinated proteins and is important for the synchronous cell division of T. gondii.


Assuntos
Divisão Celular , Proteólise , Proteínas de Protozoários/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Toxoplasma/metabolismo , Ubiquitinação , Animais , Deleção de Genes , Humanos , Camundongos , Proteínas de Protozoários/genética , Receptores Citoplasmáticos e Nucleares/genética , Toxoplasma/genética , Toxoplasma/patogenicidade
7.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360597

RESUMO

Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 µM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites.


Assuntos
Cumarínicos/metabolismo , Malatos/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Ubiquinona/metabolismo , Animais , Humanos , Proteínas Mitocondriais/genética , Oxirredutases/genética , Proteínas de Protozoários/genética , Especificidade por Substrato
8.
Braz J Biol ; 83: e247422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34431917

RESUMO

Plasmodium falciparum resistance to Chloroquine (CQ) is a significant cause of mortality and morbidity worldwide. There is a paucity of documented data on the prevalence of CQ-resistant mutant haplotypes of Pfcrt and Pfmdr1 genes from malaria-endemic war effected Federally Administered Tribal Areas of Pakistan. The objective of this study was to investigate the prevalence of P. falciparum CQ-resistance in this area. Clinical isolates were collected between May 2017 and May 2018 from North Waziristan and South Waziristan agencies of Federally Administrated Trial Area. Subsequently, Giemsa-stained blood smears were examined to detect Plasmodium falciparum. Extraction of malarial DNA was done from microscopy positive P. falciparum samples, and P. falciparum infections were confirmed by nested PCR (targeting Plasmodium small subunit ribosomal ribonucleic acid (ssrRNA) genes). All PCR confirmed P. falciparum samples were sequenced by pyrosequencing to find out mutation in Pfcrt gene at codon K76T and in pfmdr1 at codons N86Y, Y184F, N1042D, and D1246Y. Out of 121 microscopies positive P. falciparum cases, 109 samples were positive for P. falciparum by nested PCR. Pfcrt K76T mutation was found in 96% of isolates, Pfmdr1 N86Y mutation was observed in 20%, and 11% harboured Y184F mutation. All samples were wild type for Pfmdr1 codon N1042D and D1246Y. In the FATA, Pakistan, the frequency of resistant allele 76T remained high despite the removal of CQ. However, current findings of the study suggest complete fixation of P. falciparum CQ-resistant genotype in the study area.


Assuntos
Antimaláricos , Plasmodium falciparum , Alelos , Antimaláricos/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Paquistão , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
9.
Mol Biochem Parasitol ; 244: 111393, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34197864

RESUMO

Mitochondrial protein import depends on heterooligomeric translocases in the outer and inner membranes. Using import substrates consisting of various lengths of the N-terminal part of mitochondrial dihydrolipoamide dehydrogenase (LDH) fused to dihydrofolate reductase we present an in vivo analysis showing that in Trypanosoma brucei at least 96 aa of mature LDH are required to efficiently produce an import intermediate that spans both translocases. This is different to yeast, where around 50 aa are sufficient to achieve the same task and likely reflects the different arrangement and architecture of the trypanosomal mitochondrial translocases. Furthermore, we show that formation of the stuck import intermediate leads to a strong growth inhibition suggesting that, depending on the length of the LDH, the import channels in the translocases are quantitatively blocked.


Assuntos
Di-Hidrolipoamida Desidrogenase/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Sistemas de Translocação de Proteínas/genética , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genética , Trypanosoma brucei brucei/genética , Sequência de Aminoácidos , Di-Hidrolipoamida Desidrogenase/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Especificidade da Espécie , Tetra-Hidrofolato Desidrogenase/metabolismo , Trypanosoma brucei brucei/enzimologia
10.
Mol Biochem Parasitol ; 244: 111394, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34216677

RESUMO

The Trypanosomatidae family encompasses many unicellular organisms responsible of several tropical diseases that affect humans and animals. Livestock tripanosomosis caused by Trypanosoma brucei brucei (T. brucei), Trypanosoma equiperdum (T. equiperdum) and Trypanosoma evansi (T. evansi), have a significant socio-economic impact and limit animal protein productivity throughout the intertropical zones of the world. Similarly, to all organisms, the maintenance of Ca2+ homeostasis is vital for these parasites, and the mechanism involved in the intracellular Ca2+ regulation have been widely described. However, the evidences related to the mechanisms responsible for the Ca2+ entry are scarce. Even more, to date the presence of a store-operated Ca2+ channel (SOC) has not been reported. Despite the apparent absence of Orai and STIM-like proteins in these parasites, in the present work we demonstrate the presence of a store-operated Ca2+-entry (SOCE) in T. equiperdum, using physiological techniques. This Ca2+-entry is induced by thapsigargin (TG) and 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ), and inhibited by 2-aminoethoxydiphenyl borate (2APB). Additionally, the use of bioinformatics techniques allowed us to identify putative transient receptor potential (TRP) channels, present in members of the Trypanozoon family, which would be possible candidates responsible for the SOCE described in the present work in T. equiperdum.


Assuntos
Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Protozoários/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Trypanosoma/metabolismo , Animais , Compostos de Boro/farmacologia , Quelantes de Cálcio/química , Biologia Computacional/métodos , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/química , Fura-2/química , Expressão Gênica , Homeostase/genética , Hidroquinonas/farmacologia , Proteínas Sensoras de Cálcio Intracelular/genética , Manganês/metabolismo , Proteínas de Protozoários/genética , Tapsigargina/farmacologia , Canais de Potencial de Receptor Transitório/genética , Trypanosoma/efeitos dos fármacos , Trypanosoma/genética , Tripanossomíase/parasitologia
11.
Front Cell Infect Microbiol ; 11: 669088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268135

RESUMO

The human malaria parasite Plasmodium falciparum expresses variant PfEMP1 proteins on the infected erythrocyte, which function as ligands for endothelial receptors in capillary vessels, leading to erythrocyte sequestration and severe malaria. The factors that orchestrate the mono-allelic expression of the 45-90 PfEMP1-encoding var genes within each parasite genome are still not fully identified. Here, we show that the transcription factor PfAP2-O influences the transcription of var genes. The temporary knockdown of PfAP2-O leads to a complete loss of var transcriptional memory and a decrease in cytoadherence in CD36 adherent parasites. AP2-O-knocked-down parasites exhibited also significant reductions in transmission through Anopheles mosquitoes. We propose that PfAP2-O is, beside its role in transmission stages, also one of the virulence gene transcriptional regulators and may therefore be exploited as an important target to disrupt severe malaria and block parasite transmission.


Assuntos
Malária Falciparum , Plasmodium falciparum , Animais , Eritrócitos , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Desenvolvimento Sexual , Fatores de Transcrição/genética , Transcrição Genética , Virulência/genética
12.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204357

RESUMO

Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway's enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.


Assuntos
Alveolados/fisiologia , Apicomplexa/metabolismo , Diatomáceas/metabolismo , Heme/metabolismo , Redes e Vias Metabólicas , Sequência de Aminoácidos , Transporte Biológico , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
13.
Front Cell Infect Microbiol ; 11: 672691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222045

RESUMO

Elucidation of the mechanisms of drug resistance in malaria parasites is crucial for combatting the emergence and spread of resistant parasites, which can be achieved by tracing resistance-associated mutations and providing useful information for drug development. Previously, we produced a novel genetic tool, a Plasmodium berghei mutator (PbMut), whose base substitution rate is 36.5 times higher than that of wild-type parasites. Here, we report the isolation of a mutant with reduced susceptibility to piperaquine (PPQ) from PbMut under PPQ pressure by sequential nine-cycle screening and named it PbMut-PPQ-R-P9. The ED50 of PbMut-PPQ-R-P9 was 1.79 times higher than that of wild-type parasites, suggesting that its PPQ resistance is weak. In the 1st screen, recrudescence occurred in the mice infected with PbMut but not in those infected with wild-type parasites, suggesting earlier emergence of PPQ-resistant parasites from PbMut. Whole-genome sequence analysis of PbMut-PPQ-R-P9 clones revealed that eight nonsynonymous mutations were conserved in all clones, including N331I in PbCRT, the gene encoding chloroquine resistance transporter (CRT). The PbCRT(N331I) mutation already existed in the parasite population after the 2nd screen and was predominant in the population after the 8th screen. An artificially inserted PbCRT(N331I) mutation gave rise to reduced PPQ susceptibility in genome-edited parasites (PbCRT-N331I). The PPQ susceptibility and growth rates of PbCRT-N331I parasites were significantly lower than those of PbMut-PPQ-R-P9, implying that additional mutations in the PbMut-PPQ-R9 parasites could compensate for the fitness cost of the PbCRT(N331I) mutation and contribute to reduced PPQ susceptibility. In summary, PbMut could serve as a novel genetic tool for predicting gene mutations responsible for drug resistance. Further study on PbMut-PPQ-R-P9 could identify genetic changes that compensate for fitness costs owing to drug resistance acquisition.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Camundongos , Plasmodium berghei/genética , Plasmodium falciparum , Proteínas de Protozoários/genética , Quinolinas , Roedores
14.
Front Cell Infect Microbiol ; 11: 683423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249776

RESUMO

Drug-resistant Plasmodium vivax malaria impedes efforts to control, eliminate, and ultimately eradicate malaria in Southeast Asia. P. vivax resistance to antifolate drugs derives from point mutations in specific parasite genes, including the dihydropteroate synthase (pvdhps), dihydrofolate reductase (pvdhfr), and GTP cyclohydrolase I (pvgch1) genes. This study aims to investigate the prevalence and spread of drug resistance markers in P. vivax populating the China-Myanmar border. Blood samples were collected from symptomatic patients with acute P. vivax infection. Samples with single-clone P. vivax infections were sequenced for pvdhps and pvdhfr genes and genotyped for 6 flanking microsatellite markers. Copy number variation in the pvgch1 gene was also examined. Polymorphisms were observed in six different codons of the pvdhps gene (382, 383, 512, 549, 553, and 571) and six different codons of the pvdhfr gene (13, 57, 58, 61, 99, 117) in two study sites. The quadruple mutant haplotypes 57I/L/58R/61M/117T of pvdhfr gene were the most common (comprising 76% of cases in Myitsone and 43.7% of case in Laiza). The double mutant haplotype 383G/553G of pvdhps gene was also prevalent at each site (40.8% and 31%). Microsatellites flanking the pvdhfr gene differentiated clinical samples from wild type and quadruple mutant genotypes (F ST= 0.259-0.3036), as would be expected for a locus undergoing positive selection. The lack of copy number variation of pvgch1 suggests that SP-resistant P. vivax may harbor alternative mechanisms to secure sufficient folate.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Migrantes , Antimaláricos/farmacologia , China , Variações do Número de Cópias de DNA , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Mutação , Mianmar , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genética
15.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205228

RESUMO

BACKGROUND: Artemether-lumefantrine is a highly effective artemisinin-based combination therapy that was adopted in Mali as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study was designed to measure the efficacy of artemether-lumefantrine and to assess the selection of the P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multi-drug resistance 1 (pfmdr1) genotypes that have been associated with drug resistance. METHODS: A 28-day follow-up efficacy trial of artemether-lumefantrine was conducted in patients aged 6 months and older suffering from uncomplicated falciparum malaria in four different Malian areas during the 2009 malaria transmission season. The polymorphic genetic markers MSP2, MSP1, and Ca1 were used to distinguish between recrudescence and reinfection. Reinfection and recrudescence were then grouped as recurrent infections and analyzed together by PCR-restriction fragment length polymorphism (RFLP) to identify candidate markers for artemether-lumefantrine tolerance in the P. falciparum chloroquine resistance transporter (pfcrt) gene and the P. falciparum multi-drug resistance 1 (pfmdr1) gene. RESULTS: Clinical outcomes in 326 patients (96.7%) were analyzed and the 28-day uncorrected adequate clinical and parasitological response (ACPR) rate was 73.9%. The total PCR-corrected 28-day ACPR was 97.2%. The pfcrt 76T and pfmdr1 86Y population prevalence decreased from 49.3% and 11.0% at baseline (n = 337) to 38.8% and 0% in patients with recurrent infection (n = 85); p = 0.001), respectively. CONCLUSION: Parasite populations exposed to artemether-lumefantrine in this study were selected toward chloroquine-sensitivity and showed a promising trend that may warrant future targeted reintroduction of chloroquine or/and amodiaquine.


Assuntos
Combinação Arteméter e Lumefantrina/administração & dosagem , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Protozoários/genética , Alelos , Combinação Arteméter e Lumefantrina/efeitos adversos , Artemisininas/administração & dosagem , Artemisininas/efeitos adversos , Criança , Pré-Escolar , Cloroquina/administração & dosagem , Cloroquina/efeitos adversos , Resistência a Medicamentos/genética , Feminino , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Masculino , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade
16.
Genetica ; 149(4): 217-237, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34254217

RESUMO

The biological meaning of low complexity regions in the proteins of Plasmodium species is a topic of discussion in evolutionary biology. There is a debate between selectionists and neutralists, who either attribute or do not attribute an effect of low-complexity regions on the fitness of these parasites, respectively. In this work, we comparatively study 22 Plasmodium species to understand whether their low complexity regions undergo a neutral or, rather, a selective and species-dependent evolution. The focus is on the connection between the codon repertoire of the genetic coding sequences and the occurrence of low complexity regions in the corresponding proteins. The first part of the work concerns the correlation between the length of plasmodial proteins and their propensity at embedding low complexity regions. Relative synonymous codon usage, entropy, and other indicators reveal that the incidence of low complexity regions and their codon bias is species-specific and subject to selective evolutionary pressure. We also observed that protein length, a relaxed selective pressure, and a broad repertoire of codons in proteins, are strongly correlated with the occurrence of low complexity regions. Overall, it seems plausible that the codon bias of low-complexity regions contributes to functional innovation and codon bias enhancement of proteins on which Plasmodium species rest as successful evolutionary parasites.


Assuntos
Uso do Códon , Evolução Molecular , Plasmodium/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Sequências Repetitivas de Aminoácidos , Seleção Genética
17.
Front Cell Infect Microbiol ; 11: 704662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268141

RESUMO

Hepatocyte invasion by Plasmodium sporozoites represents a promising target for innovative antimalarial therapy, but the molecular events mediating this process are still largely uncharacterized. We previously showed that Plasmodium falciparum sporozoite entry into hepatocytes strictly requires CD81. However, CD81-overexpressing human hepatoma cells remain refractory to P. falciparum infection, suggesting the existence of additional host factors necessary for sporozoite entry. Here, through differential transcriptomic analysis of human hepatocytes and hepatoma HepG2-CD81 cells, the transmembrane protein Aquaporin-9 (AQP9) was found to be among the most downregulated genes in hepatoma cells. RNA silencing showed that sporozoite invasion of hepatocytes requires AQP9 expression. AQP9 overexpression in hepatocytes increased their permissiveness to P. falciparum. Moreover, chemical disruption with the AQP9 inhibitor phloretin markedly inhibited hepatocyte infection. Our findings identify AQP9 as a novel host factor required for P. falciparum sporozoite hepatocyte-entry and indicate that AQP9 could be a potential therapeutic target.


Assuntos
Aquaporinas , Esporozoítos , Animais , Hepatócitos/metabolismo , Humanos , Plasmodium falciparum , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Tetraspanina 28/metabolismo
18.
BMC Ecol Evol ; 21(1): 139, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238209

RESUMO

BACKGROUND: The most severe form of human malaria is caused by the protozoan parasite Plasmodium falciparum. This unicellular organism is a member of a subgenus of Plasmodium called the Laverania that infects apes, with P. falciparum being the only member that infects humans. The exceptional virulence of this species to humans can be largely attributed to a family of variant surface antigens placed by the parasites onto the surface of infected red blood cells that mediate adherence to the vascular endothelium. These proteins are encoded by a large, multicopy gene family called var, with each var gene encoding a different form of the protein. By changing which var gene is expressed, parasites avoid immune recognition, a process called antigenic variation that underlies the chronic nature of malaria infections. RESULTS: Here we show that the common ancestor of the branch of the Laverania lineage that includes the human parasite underwent a remarkable change in the organization and structure of elements linked to the complex transcriptional regulation displayed by the var gene family. Unlike the other members of the Laverania, the clade that gave rise to P. falciparum evolved distinct subsets of var genes distinguishable by different upstream transcriptional regulatory regions that have been associated with different expression profiles and virulence properties. In addition, two uniquely conserved var genes that have been proposed to play a role in coordinating transcriptional switching similarly arose uniquely within this clade. We hypothesize that these changes originated at a time of dramatic climatic change on the African continent that is predicted to have led to significant changes in transmission dynamics, thus selecting for patterns of antigenic variation that enabled lengthier, more chronic infections. CONCLUSIONS: These observations suggest that changes in transmission dynamics selected for significant alterations in the transcriptional regulatory mechanisms that mediate antigenic variation in the parasite lineage that includes P. falciparum. These changes likely underlie the chronic nature of these infections as well as their exceptional virulence.


Assuntos
Hominidae , Malária , Parasitos , Animais , Variação Antigênica/genética , Humanos , Proteínas de Protozoários/genética , Virulência/genética
19.
Front Immunol ; 12: 623492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079537

RESUMO

Babesia orientalis, a major infectious agent of water buffalo hemolytic babesiosis, is transmitted by Rhipicephalus haemaphysaloides. However, no effective vaccine is available. Essential antigens that are involved in parasite invasion of host red blood cells (RBCs) are potential vaccine candidates. Therefore, the identification and the conduction of functional studies of essential antigens are highly desirable. Here, we evaluated the function of B. orientalis merozoite surface antigen 2c1 (BoMSA-2c1), which belongs to the variable merozoite surface antigen (VMSA) family in B. orientalis. We developed a polyclonal antiserum against the purified recombinant (r)BoMSA-2c1 protein. Immunofluorescence staining results showed that BoMSA-2c1 was expressed only on extracellular merozoites, whereas the antigen was undetectable in intracellular parasites. RBC binding assays suggested that BoMSA-2c1 specifically bound to buffalo erythrocytes. Cytoadherence assays using a eukaryotic expression system in vitro further verified the binding and inhibitory ability of BoMSA-2c1. We found that BoMSA-2c1 with a GPI domain was expressed on the surface of HEK293T cells that bound to water buffalo RBCs, and that the anti-rBoMSA2c1 antibody inhibited this binding. These results indicated that BoMSA-2c1 was involved in mediating initial binding to host erythrocytes of B. orientalis. Identification of the occurrence of binding early in the invasion process may facilitate understanding of the growth characteristics, and may help in formulating strategies for the prevention and control of this parasite.


Assuntos
Antígenos de Protozoários/metabolismo , Antígenos de Superfície/metabolismo , Babesia/metabolismo , Babesiose/parasitologia , Adesão Celular , Eritrócitos/parasitologia , Merozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antígenos de Protozoários/genética , Antígenos de Superfície/genética , Babesia/genética , Babesia/patogenicidade , Babesiose/sangue , Búfalos , Eritrócitos/metabolismo , Células HEK293 , Humanos , Merozoítos/genética , Merozoítos/patogenicidade , Proteínas de Protozoários/genética
20.
Mol Biochem Parasitol ; 244: 111391, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34144085

RESUMO

The Leishmania LACK antigen is a ribosome-associated protein that facilitates expression of mitochondrial cytochrome c oxidase subunit IV (LmCOX4) to support parasite mitochondrial fitness and virulence within the vertebrate host. To further examine the relationship between LACK, its putative ribosome binding motif and LmCOX4, we compared the kinetics of LmCOX4 expression following temperature elevation in wildtype LACK (LACK WT) and LACK-putative ribosome-binding mutant (LACKDDE) L. major. We found that, after initial exposure to mammalian temperature, LmCOX4 levels became undetectable in LACKDDE L. major and also, surprisingly, in wild type (WT) control strains. Upon sustained exposure to mammalian temperature, LmCOX4 expression returned in WT control strains only. The initial loss of LmCOX4 in WT L. major was substantially reversed by treatment with the proteasome inhibitor MG132. Our findings indicate that initial loss of LmCOX4 under mammalian conditions is dependent upon proteasome degradation and LmCOX4 re-expression is dependent upon LACK possessing a WT putative ribosome binding motif.


Assuntos
Antígenos de Protozoários/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Leishmania major/genética , Mitocôndrias/genética , Proteínas de Protozoários/genética , Ribossomos/genética , Motivos de Aminoácidos , Animais , Antígenos de Protozoários/metabolismo , Sítios de Ligação , Temperatura Corporal , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Leishmania major/metabolismo , Leupeptinas/farmacologia , Mamíferos/parasitologia , Mitocôndrias/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Ligação Proteica , Proteólise , Proteínas de Protozoários/metabolismo , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...