Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.230
Filtrar
1.
Nat Commun ; 11(1): 4625, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934225

RESUMO

A hallmark of neurodegeneration is defective protein quality control. The E3 ligase Listerin (LTN1/Ltn1) acts in a specialized protein quality control pathway-Ribosome-associated Quality Control (RQC)-by mediating proteolytic targeting of incomplete polypeptides produced by ribosome stalling, and Ltn1 mutation leads to neurodegeneration in mice. Whether neurodegeneration results from defective RQC and whether defective RQC contributes to human disease have remained unknown. Here we show that three independently-generated mouse models with mutations in a different component of the RQC complex, NEMF/Rqc2, develop progressive motor neuron degeneration. Equivalent mutations in yeast Rqc2 selectively interfere with its ability to modify aberrant translation products with C-terminal tails which assist with RQC-mediated protein degradation, suggesting a pathomechanism. Finally, we identify NEMF mutations expected to interfere with function in patients from seven families presenting juvenile neuromuscular disease. These uncover NEMF's role in translational homeostasis in the nervous system and implicate RQC dysfunction in causing neurodegeneration.


Assuntos
Doenças Neuromusculares/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Doenças Neuromusculares/genética , Doenças Neuromusculares/patologia , Proteólise , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
2.
PLoS Comput Biol ; 16(9): e1007815, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925900

RESUMO

Protein-protein interactions are involved in a wide range of cellular processes. These interactions often involve intrinsically disordered proteins (IDPs) and protein binding domains. However, the details of IDP binding pathways are hard to characterize using experimental approaches, which can rarely capture intermediate states present at low populations. SH3 domains are common protein interaction domains that typically bind proline-rich disordered segments and are involved in cell signaling, regulation, and assembly. We hypothesized, given the flexibility of SH3 binding peptides, that their binding pathways include multiple steps important for function. Molecular dynamics simulations were used to characterize the steps of binding between the yeast Abp1p SH3 domain (AbpSH3) and a proline-rich IDP, ArkA. Before binding, the N-terminal segment 1 of ArkA is pre-structured and adopts a polyproline II helix, while segment 2 of ArkA (C-terminal) adopts a 310 helix, but is far less structured than segment 1. As segment 2 interacts with AbpSH3, it becomes more structured, but retains flexibility even in the fully engaged state. Binding simulations reveal that ArkA enters a flexible encounter complex before forming the fully engaged bound complex. In the encounter complex, transient nonspecific hydrophobic and long-range electrostatic contacts form between ArkA and the binding surface of SH3. The encounter complex ensemble includes conformations with segment 1 in both the forward and reverse orientation, suggesting that segment 2 may play a role in stabilizing the correct binding orientation. While the encounter complex forms quickly, the slow step of binding is the transition from the disordered encounter ensemble to the fully engaged state. In this transition, ArkA makes specific contacts with AbpSH3 and buries more hydrophobic surface. Simulating the binding between ApbSH3 and ArkA provides insight into the role of encounter complex intermediates and nonnative hydrophobic interactions for other SH3 domains and IDPs in general.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas dos Microfilamentos , Proteínas de Saccharomyces cerevisiae , Domínios de Homologia de src , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Domínios de Homologia de src/genética , Domínios de Homologia de src/fisiologia
3.
Nat Commun ; 11(1): 4206, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826896

RESUMO

Saccharomyces cerevisiae TBP associated factor 14 (Taf14) is a well-studied transcriptional regulator that controls diverse physiological processes and that physically interacts with at least seven nuclear complexes in yeast. Despite multiple previous Taf14 structural studies, the nature of its disparate transcriptional regulatory functions remains opaque. Here, we demonstrate that the extra-terminal (ET) domain of Taf14 (Taf14ET) recognizes a common motif in multiple transcriptional coactivator proteins from several nuclear complexes, including RSC, SWI/SNF, INO80, NuA3, TFIID, and TFIIF. Moreover, we show that such partner binding promotes liquid-liquid phase separation (LLPS) of Taf14ET, in a mechanism common to YEATS-associated ET domains (e.g., AF9ET) but not Bromo-associated ET domains from BET-family proteins. Thus, beyond identifying the molecular mechanism by which Taf14ET associates with many transcriptional regulators, our study suggests that Taf14 may function as a versatile nuclear hub that orchestrates transcriptional machineries to spatiotemporally regulate diverse cellular pathways.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Proteínas de Transporte , Proteínas de Ciclo Celular/metabolismo , Análise por Conglomerados , Proteínas de Ligação a DNA , Epigenômica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/genética , Fatores de Transcrição/metabolismo
4.
PLoS One ; 15(8): e0237540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804965

RESUMO

The yeast MAP kinase Hog1 pathway activates transcription of several hundreds genes. Large-scale gene expression and DNA binding assays suggest that most Hog1-induced genes are regulated by the transcriptional activators Msn2/4, Hot1 and Sko1. These studies also revealed the target genes of each activator and the putative binding sites on their promoters. In a previous study we identified a group of genes, which we considered the bona fide targets of Hog1, because they were induced in response to expression of intrinsically active mutant of Hog1, in the absence of any stress. We previously analyzed the promoter of the most highly induced gene, STL1, and noticed that some promoter properties were different from those proposed by large-scale data. We therefore continue to study promoters individually and present here analyses of promoters of more Hog1's targets, RTC3, HSP12, DAK1 and ALD3. We report that RTC3 and HSP12 promoters are robust and are induced, to different degrees, even in cells lacking all four activators. DAK1 and ALD3 promoters are not robust and fully depend on a single activator, DAK1 on Sko1 and ALD3 on Msn2/4. Most of these observations could not be inferred from the large-scale data. Msn2/4 are involved in regulating all four promoters. It was assumed, therefore, that the promoters are spontaneously active in ras2Δ cells, in which Msn2/4 are known to be de-repressed. Intriguingly, the promoters were not active in BY4741ras2Δ cells, but were de-repressed, as expected, in ras2Δ cells of other genetic backgrounds. This study describes two phenomena. One, some Hog1's target promoters are most robust, backupped by many activators. Second, in contrast to most laboratory strains, the widely used BY4741 strain does not induce Msn2/4 activity when the Ras/cAMP cascade is downregulated.


Assuntos
Proteínas de Choque Térmico/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico/química , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
5.
Nat Commun ; 11(1): 4263, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848132

RESUMO

Eukaryotic DNA replication initiation relies on the origin recognition complex (ORC), a DNA-binding ATPase that loads the Mcm2-7 replicative helicase onto replication origins. Here, we report cryo-electron microscopy (cryo-EM) structures of DNA-bound Drosophila ORC with and without the co-loader Cdc6. These structures reveal that Orc1 and Orc4 constitute the primary DNA binding site in the ORC ring and cooperate with the winged-helix domains to stabilize DNA bending. A loop region near the catalytic Walker B motif of Orc1 directly contacts DNA, allosterically coupling DNA binding to ORC's ATPase site. Correlating structural and biochemical data show that DNA sequence modulates DNA binding and remodeling by ORC, and that DNA bending promotes Mcm2-7 loading in vitro. Together, these findings explain the distinct DNA sequence-dependencies of metazoan and S. cerevisiae initiators in origin recognition and support a model in which DNA geometry and bendability contribute to Mcm2-7 loading site selection in metazoans.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Domínio AAA , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hidrólise , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Complexo de Reconhecimento de Origem/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
PLoS Genet ; 16(8): e1008569, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810145

RESUMO

Correct bioriented attachment of sister chromatids to the mitotic spindle is essential for chromosome segregation. In budding yeast, the conserved protein shugoshin (Sgo1) contributes to biorientation by recruiting the protein phosphatase PP2A-Rts1 and the condensin complex to centromeres. Using peptide prints, we identified a Serine-Rich Motif (SRM) of Sgo1 that mediates the interaction with condensin and is essential for centromeric condensin recruitment and the establishment of biorientation. We show that the interaction is regulated via phosphorylation within the SRM and we determined the phospho-sites using mass spectrometry. Analysis of the phosphomimic and phosphoresistant mutants revealed that SRM phosphorylation disrupts the shugoshin-condensin interaction. We present evidence that Mps1, a central kinase in the spindle assembly checkpoint, directly phosphorylates Sgo1 within the SRM to regulate the interaction with condensin and thereby condensin localization to centromeres. Our findings identify novel mechanisms that control shugoshin activity at the centromere in budding yeast.


Assuntos
Adenosina Trifosfatases/metabolismo , Centrômero/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
PLoS Biol ; 18(7): e3000780, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687489

RESUMO

Cells adjust to nutrient deprivation by reversible translational shutdown. This is accompanied by maintaining inactive ribosomes in a hibernation state, in which they are bound by proteins with inhibitory and protective functions. In eukaryotes, such a function was attributed to suppressor of target of Myb protein 1 (Stm1; SERPINE1 mRNA-binding protein 1 [SERBP1] in mammals), and recently, late-annotated short open reading frame 2 (Lso2; coiled-coil domain containing short open reading frame 124 [CCDC124] in mammals) was found to be involved in translational recovery after starvation from stationary phase. Here, we present cryo-electron microscopy (cryo-EM) structures of translationally inactive yeast and human ribosomes. We found Lso2/CCDC124 accumulating on idle ribosomes in the nonrotated state, in contrast to Stm1/SERBP1-bound ribosomes, which display a rotated state. Lso2/CCDC124 bridges the decoding sites of the small with the GTPase activating center (GAC) of the large subunit. This position allows accommodation of the duplication of multilocus region 34 protein (Dom34)-dependent ribosome recycling system, which splits Lso2-containing, but not Stm1-containing, ribosomes. We propose a model in which Lso2 facilitates rapid translation reactivation by stabilizing the recycling-competent state of inactive ribosomes.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Evolução Molecular , Células HEK293 , Humanos , Modelos Moleculares , Peptídeos/química , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 117(31): 18459-18469, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694211

RESUMO

Mdn1 is an essential mechanoenzyme that uses the energy from ATP hydrolysis to physically reshape and remodel, and thus mature, the 60S subunit of the ribosome. This massive (>500 kDa) protein has an N-terminal AAA (ATPase associated with diverse cellular activities) ring, which, like dynein, has six ATPase sites. The AAA ring is followed by large (>2,000 aa) linking domains that include an ∼500-aa disordered (D/E-rich) region, and a C-terminal substrate-binding MIDAS domain. Recent models suggest that intramolecular docking of the MIDAS domain onto the AAA ring is required for Mdn1 to transmit force to its ribosomal substrates, but it is not currently understood what role the linking domains play, or why tethering the MIDAS domain to the AAA ring is required for protein function. Here, we use chemical probes, single-particle electron microscopy, and native mass spectrometry to study the AAA and MIDAS domains separately or in combination. We find that Mdn1 lacking the D/E-rich and MIDAS domains retains ATP and chemical probe binding activities. Free MIDAS domain can bind to the AAA ring of this construct in a stereo-specific bimolecular interaction, and, interestingly, this binding reduces ATPase activity. Whereas intramolecular MIDAS docking appears to require a treatment with a chemical inhibitor or preribosome binding, bimolecular MIDAS docking does not. Hence, tethering the MIDAS domain to the AAA ring serves to prevent, rather than promote, MIDAS docking in the absence of inducing signals.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Associadas a Diversas Atividades Celulares/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Nat Commun ; 11(1): 3751, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719344

RESUMO

The protein composition and structure of assembling 60S ribosomal subunits undergo numerous changes as pre-ribosomes transition from the nucleolus to the nucleoplasm. This includes stable anchoring of the Rpf2 subcomplex containing 5S rRNA, rpL5, rpL11, Rpf2 and Rrs1, which initially docks onto the flexible domain V of rRNA at earlier stages of assembly. In this work, we tested the function of the C-terminal domain (CTD) of Rpf2 during these anchoring steps, by truncating this extension and assaying effects on middle stages of subunit maturation. The rpf2Δ255-344 mutation affects proper folding of rRNA helices H68-70 during anchoring of the Rpf2 subcomplex. In addition, several assembly factors (AFs) are absent from pre-ribosomes or in altered conformations. Consequently, major remodeling events fail to occur: rotation of the 5S RNP, maturation of the peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), and export of assembling subunits to the cytoplasm.


Assuntos
Ribonucleoproteínas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Rotação , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação/genética , Domínios Proteicos , Dobramento de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Subunidades Ribossômicas Maiores/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
10.
Proc Natl Acad Sci U S A ; 117(30): 17747-17756, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669428

RESUMO

DNA replication origins serve as sites of replicative helicase loading. In all eukaryotes, the six-subunit origin recognition complex (Orc1-6; ORC) recognizes the replication origin. During late M-phase of the cell-cycle, Cdc6 binds to ORC and the ORC-Cdc6 complex loads in a multistep reaction and, with the help of Cdt1, the core Mcm2-7 helicase onto DNA. A key intermediate is the ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) complex in which DNA has been already inserted into the central channel of Mcm2-7. Until now, it has been unclear how the origin DNA is guided by ORC-Cdc6 and inserted into the Mcm2-7 hexamer. Here, we truncated the C-terminal winged-helix-domain (WHD) of Mcm6 to slow down the loading reaction, thereby capturing two loading intermediates prior to DNA insertion in budding yeast. In "semi-attached OCCM," the Mcm3 and Mcm7 WHDs latch onto ORC-Cdc6 while the main body of the Mcm2-7 hexamer is not connected. In "pre-insertion OCCM," the main body of Mcm2-7 docks onto ORC-Cdc6, and the origin DNA is bent and positioned adjacent to the open DNA entry gate, poised for insertion, at the Mcm2-Mcm5 interface. We used molecular simulations to reveal the dynamic transition from preloading conformers to the loaded conformers in which the loading of Mcm2-7 on DNA is complete and the DNA entry gate is fully closed. Our work provides multiple molecular insights into a key event of eukaryotic DNA replication.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Componente 6 do Complexo de Manutenção de Minicromossomo/química , Componente 6 do Complexo de Manutenção de Minicromossomo/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexo de Reconhecimento de Origem , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
11.
Nat Commun ; 11(1): 3306, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620754

RESUMO

The endoplasmic reticulum (ER) is selectively degraded by autophagy (ER-phagy) through proteins called ER-phagy receptors. In Saccharomyces cerevisiae, Atg40 acts as an ER-phagy receptor to sequester ER fragments into autophagosomes by binding Atg8 on forming autophagosomal membranes. During ER-phagy, parts of the ER are morphologically rearranged, fragmented, and loaded into autophagosomes, but the mechanism remains poorly understood. Here we find that Atg40 molecules assemble in the ER membrane concurrently with autophagosome formation via multivalent interaction with Atg8. Atg8-mediated super-assembly of Atg40 generates highly-curved ER regions, depending on its reticulon-like domain, and supports packing of these regions into autophagosomes. Moreover, tight binding of Atg40 to Atg8 is achieved by a short helix C-terminal to the Atg8-family interacting motif, and this feature is also observed for mammalian ER-phagy receptors. Thus, this study significantly advances our understanding of the mechanisms of ER-phagy and also provides insights into organelle fragmentation in selective autophagy of other organelles.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação/genética , Estresse do Retículo Endoplasmático/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mutação , Ligação Proteica , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
Nat Commun ; 11(1): 3290, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620929

RESUMO

In mitochondria, ß-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold ß-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane ß-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 ß-barrel opens a lateral gate to accommodate its substrates.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Detergentes/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Sordariales/genética , Sordariales/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(28): 16383-16390, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601238

RESUMO

Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Transporte Biológico , Canais de Cálcio/química , Canais de Cálcio/genética , Cardiolipinas/genética , Cardiolipinas/metabolismo , Humanos , Camundongos , Mitocôndrias/química , Mitocôndrias/genética , Mioblastos/metabolismo , Fosfolipídeos , Estabilidade Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
14.
Nat Commun ; 11(1): 3398, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636384

RESUMO

SWI/SNF remodelers play a key role in regulating chromatin architecture and gene expression. Here, we report the cryo-EM structure of the Saccharomyces cerevisiae Swi/Snf complex in a nucleosome-free state. The structure consists of a stable triangular base module and a flexible Arp module. The conserved subunits Swi1 and Swi3 form the backbone of the complex and closely interact with other components. Snf6, which is specific for yeast Swi/Snf complex, stabilizes the binding of the ATPase-containing subunit Snf2 to the base module. Comparison of the yeast Swi/Snf and RSC complexes reveals conserved structural features that govern the assembly and function of these two subfamilies of chromatin remodelers. Our findings complement those from recent structures of the yeast and human chromatin remodelers and provide further insights into the assembly and function of the SWI/SNF remodelers.


Assuntos
Adenosina Trifosfatases/química , Cromatina/química , Proteínas Cromossômicas não Histona/química , Proteínas Nucleares/química , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Humanos , Nucleossomos , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/química
15.
Science ; 369(6499): 59-64, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32631887

RESUMO

Eukaryotic histone H3-H4 tetramers contain a putative copper (Cu2+) binding site at the H3-H3' dimerization interface with unknown function. The coincident emergence of eukaryotes with global oxygenation, which challenged cellular copper utilization, raised the possibility that histones may function in cellular copper homeostasis. We report that the recombinant Xenopus laevis H3-H4 tetramer is an oxidoreductase enzyme that binds Cu2+ and catalyzes its reduction to Cu1+ in vitro. Loss- and gain-of-function mutations of the putative active site residues correspondingly altered copper binding and the enzymatic activity, as well as intracellular Cu1+ abundance and copper-dependent mitochondrial respiration and Sod1 function in the yeast Saccharomyces cerevisiae The histone H3-H4 tetramer, therefore, has a role other than chromatin compaction or epigenetic regulation and generates biousable Cu1+ ions in eukaryotes.


Assuntos
Cobre/metabolismo , Histonas/química , Oxirredutases/química , Multimerização Proteica , Animais , Biocatálise , Domínio Catalítico/genética , Mutação com Ganho de Função , Histonas/genética , Histonas/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase-1/química , Fatores de Transcrição/metabolismo , Xenopus laevis
16.
Nature ; 584(7821): 475-478, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32494008

RESUMO

The endoplasmic reticulum (ER) membrane complex (EMC) cooperates with the Sec61 translocon to co-translationally insert a transmembrane helix (TMH) of many multi-pass integral membrane proteins into the ER membrane, and it is also responsible for inserting the TMH of some tail-anchored proteins1-3. How EMC accomplishes this feat has been unclear. Here we report the first, to our knowledge, cryo-electron microscopy structure of the eukaryotic EMC. We found that the Saccharomyces cerevisiae EMC contains eight subunits (Emc1-6, Emc7 and Emc10), has a large lumenal region and a smaller cytosolic region, and has a transmembrane region formed by Emc4, Emc5 and Emc6 plus the transmembrane domains of Emc1 and Emc3. We identified a five-TMH fold centred around Emc3 that resembles the prokaryotic YidC insertase and that delineates a largely hydrophilic client protein pocket. The transmembrane domain of Emc4 tilts away from the main transmembrane region of EMC and is partially mobile. Mutational studies demonstrated that the flexibility of Emc4 and the hydrophilicity of the client pocket are required for EMC function. The EMC structure reveals notable evolutionary conservation with the prokaryotic insertases4,5, suggests that eukaryotic TMH insertion involves a similar mechanism, and provides a framework for detailed understanding of membrane insertion for numerous eukaryotic integral membrane proteins and tail-anchored proteins.


Assuntos
Microscopia Crioeletrônica , Retículo Endoplasmático/enzimologia , Membranas Intracelulares/enzimologia , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae , Sítios de Ligação , Retículo Endoplasmático/química , Retículo Endoplasmático/ultraestrutura , Evolução Molecular , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/química , Membranas Intracelulares/ultraestrutura , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
17.
Proc Natl Acad Sci U S A ; 117(25): 14158-14167, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513738

RESUMO

Eukaryotic N-degron pathways are proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal (Nt) degradation signals called N-degrons, and to target these proteins for degradation by the 26S proteasome or autophagy. GID4, a subunit of the GID ubiquitin ligase, is the main recognition component of the proline (Pro)/N-degron pathway. GID4 targets proteins through their Nt-Pro residue or a Pro at position 2, in the presence of specific downstream sequence motifs. Here we show that human GID4 can also recognize hydrophobic Nt-residues other than Pro. One example is the sequence Nt-IGLW, bearing Nt-Ile. Nt-IGLW binds to wild-type human GID4 with a K d of 16 µM, whereas the otherwise identical Nt-Pro-bearing sequence PGLW binds to GID4 more tightly, with a K d of 1.9 µM. Despite this difference in affinities of GID4 for Nt-IGLW vs. Nt-PGLW, we found that the GID4-mediated Pro/N-degron pathway of the yeast Saccharomyces cerevisiae can target an Nt-IGLW-bearing protein for rapid degradation. We solved crystal structures of human GID4 bound to a peptide bearing Nt-Ile or Nt-Val. We also altered specific residues of human GID4 and measured the affinities of resulting mutant GID4s for Nt-IGLW and Nt-PGLW, thereby determining relative contributions of specific GID4 residues to the GID4-mediated recognition of Nt-Pro vs. Nt-residues other than Pro. These and related results advance the understanding of targeting by the Pro/N-degron pathway and greatly expand the substrate recognition range of the GID ubiquitin ligase in both human and yeast cells.


Assuntos
Prolina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/química , Proteínas de Transporte Vesicular/química , Humanos , Modelos Moleculares , Prolina/metabolismo , Complexo de Endopeptidases do Proteassoma , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
18.
Nat Commun ; 11(1): 3156, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572031

RESUMO

The eukaryotic leading strand DNA polymerase (Pol) ε contains 4 subunits, Pol2, Dpb2, Dpb3 and Dpb4. Pol2 is a fusion of two B-family Pols; the N-terminal Pol module is catalytic and the C-terminal Pol module is non-catalytic. Despite extensive efforts, there is no atomic structure for Pol ε holoenzyme, critical to understanding how DNA synthesis is coordinated with unwinding and the DNA path through the CMG helicase-Pol ε-PCNA clamp. We show here a 3.5-Šcryo-EM structure of yeast Pol ε revealing that the Dpb3-Dpb4 subunits bridge the two DNA Pol modules of Pol2, holding them rigid. This information enabled an atomic model of the leading strand replisome. Interestingly, the model suggests that an OB fold in Dbp2 directs leading ssDNA from CMG to the Pol ε active site. These results complete the DNA path from entry of parental DNA into CMG to exit of daughter DNA from PCNA.


Assuntos
DNA Polimerase II/química , Replicação do DNA , Microscopia Crioeletrônica , Modelos Moleculares , Estrutura Molecular , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Mol Cell ; 79(3): 459-471.e4, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32553192

RESUMO

Transcription factors (TFs) that bind common DNA motifs in vitro occupy distinct sets of promoters in vivo, raising the question of how binding specificity is achieved. TFs are enriched with intrinsically disordered regions (IDRs). Such regions commonly form promiscuous interactions, yet their unique properties might also benefit specific binding-site selection. We examine this using Msn2 and Yap1, TFs of distinct families that contain long IDRs outside their DNA-binding domains. We find that these IDRs are both necessary and sufficient for localizing to the majority of target promoters. This IDR-directed binding does not depend on any localized domain but results from a multitude of weak determinants distributed throughout the entire IDR sequence. Furthermore, IDR specificity is conserved between distant orthologs, suggesting direct interaction with multiple promoters. We propose that distribution of sensing determinants along extended IDRs accelerates binding-site detection by rapidly localizing TFs to broad DNA regions surrounding these sites.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/genética , Motivos de Nucleotídeos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Deleção de Sequência , Fatores de Transcrição/genética , Sítios de Ligação , Biologia Computacional/métodos , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Estatísticos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
20.
PLoS One ; 15(6): e0234192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479562

RESUMO

Saccharomyces cerevisiae Coq8 is a member of the ancient UbiB atypical protein kinase family. Coq8, and its orthologs UbiB, ABC1, ADCK3, and ADCK4, are required for the biosynthesis of coenzyme Q in yeast, E. coli, A. thaliana, and humans. Each Coq8 ortholog retains nine highly conserved protein kinase-like motifs, yet its functional role in coenzyme Q biosynthesis remains mysterious. Coq8 may function as an ATPase whose activity is stimulated by coenzyme Q intermediates and phospholipids. A key yeast point mutant expressing Coq8-A197V was previously shown to result in a coenzyme Q-less, respiratory deficient phenotype. The A197V substitution occurs in the crucial Ala-rich protein kinase-like motif I of yeast Coq8. Here we show that long-term cultures of mutants expressing Coq8-A197V produce spontaneous revertants with the ability to grow on medium containing a non-fermentable carbon source. Each revertant is shown to harbor a secondary intragenic suppressor mutation within the COQ8 gene. The intragenic suppressors restore the synthesis of coenzyme Q. One class of the suppressors fully restores the levels of coenzyme Q and key Coq polypeptides necessary for the maintenance and integrity of the high-molecular mass CoQ synthome (also termed complex Q), while the other class provides only a partial rescue. Mutants harboring the first class of suppressors grow robustly under respiratory conditions, while mutants containing the second class grow more slowly under these conditions. Our work provides insight into the function of this important yet still enigmatic Coq8 family.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Supressão Genética , Ubiquinona/biossíntese , Substituição de Aminoácidos , Asparagina , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA