Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60.968
Filtrar
1.
Medicine (Baltimore) ; 100(35): e27162, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477172

RESUMO

ABSTRACT: Cancer-associated fibroblasts (CAFs) have been attracting attention in recent years, but their nature has not been fully elucidated. Although CAFs have been recognized as an important therapeutic target, therapeutic agents have not been developed to date. CAFs are characterized by their high migration rate and involvement in epithelial-to-mesenchymal transition with some displaying a dendritic morphology that is reminiscent of fascin expression.The present study was designed to immunohistochemically investigate fascin expression in lung adenocarcinoma including CAFs and compare the results with existing CAF markers.We immunohistochemically investigated fascin expression in not only cancer tissue but also CAFs from 26 autopsy cases of lung adenocarcinoma. Immunohistochemistry of α-smooth muscle actin and fibroblast activation protein was also performed.Fascin-positive staining in CAFs was observed in all cases, with a strong correlation observed with existing CAF markers α-smooth muscle actin and fibroblast activation protein (P < .001). In addition, the proportion of tumor cells showing fascin-positive staining was found to correlate with its expression in CAFs (P < .05).We propose that CAFs express fascin, and that fascin may mediate crosstalk between cancer tissue and CAFs. Fascin might be a novel therapeutic target for treatments that target the cancer stroma.


Assuntos
Adenocarcinoma/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Actinas/metabolismo , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Endopeptidases/metabolismo , Feminino , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade
2.
Nat Commun ; 12(1): 5218, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471125

RESUMO

CD47 is the only 5-transmembrane (5-TM) spanning receptor of the immune system. Its extracellular domain (ECD) is a cell surface marker of self that binds SIRPα and inhibits macrophage phagocytosis, and cancer immuno-therapy approaches in clinical trials are focused on blocking CD47/SIRPα interaction. We present the crystal structure of full length CD47 bound to the function-blocking antibody B6H12. CD47 ECD is tethered to the TM domain via a six-residue peptide linker (114RVVSWF119) that forms an extended loop (SWF loop), with the fundamental role of inserting the side chains of W118 and F119 into the core of CD47 extracellular loop region (ECLR). Using hydrogen-deuterium exchange and molecular dynamics simulations we show that CD47's ECLR architecture, comprised of two extracellular loops and the SWF loop, creates a molecular environment stabilizing the ECD for presentation on the cell surface. These findings provide insights into CD47 immune recognition, signaling and therapeutic intervention.


Assuntos
Biomarcadores , Antígeno CD47/química , Antígeno CD47/metabolismo , Proteínas de Transporte/metabolismo , Receptores Imunológicos/metabolismo , Anticorpos Bloqueadores/química , Anticorpos Bloqueadores/farmacologia , Antígenos de Diferenciação/imunologia , Sítios de Ligação , Antígeno CD47/efeitos dos fármacos , Antígeno CD47/genética , Humanos , Macrófagos/metabolismo , Modelos Moleculares , Fagocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
Nat Commun ; 12(1): 5216, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471137

RESUMO

Bacterial biosensors, or bactosensors, are promising agents for medical and environmental diagnostics. However, the lack of scalable frameworks to systematically program ligand detection limits their applications. Here we show how novel, clinically relevant sensing modalities can be introduced into bactosensors in a modular fashion. To do so, we have leveraged a synthetic receptor platform, termed EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) which supports the modular assembly of sensing modules onto a high-performance, generic signaling scaffold controlling gene expression in E. coli. We apply EMeRALD to detect bile salts, a biomarker of liver dysfunction, by repurposing sensing modules from enteropathogenic Vibrio species. We improve the sensitivity and lower the limit-of-detection of the sensing module by directed evolution. We then engineer a colorimetric bactosensor detecting pathological bile salt levels in serum from patients having undergone liver transplant, providing an output detectable by the naked-eye. The EMeRALD technology enables functional exploration of natural sensing modules and rapid engineering of synthetic receptors for diagnostics, environmental monitoring, and control of therapeutic microbes.


Assuntos
Bactérias/metabolismo , Biomarcadores/metabolismo , Técnicas Biossensoriais , Proteínas de Transporte/metabolismo , Patologia Molecular/métodos , Bactérias/genética , Ácidos e Sais Biliares/sangue , Técnicas Biossensoriais/métodos , Proteínas de Transporte/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Transplante de Fígado , Engenharia Metabólica/métodos , Sensibilidade e Especificidade , Alinhamento de Sequência , Vibrio , Vibrioses/diagnóstico
4.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445203

RESUMO

Wheat is a major staple food crop worldwide, due to its total yield and unique processing quality. Its grain yield and quality are threatened by Fusarium head blight (FHB), which is mainly caused by Fusarium graminearum. Salicylic acid (SA) has a strong and toxic effect on F. graminearum and is a hopeful target for sustainable control of FHB. F. graminearum is capable of efficientdealing with SA stress. However, the underlying mechanisms remain unclear. Here, we characterized FgMFS1 (FGSG_03725), a major facilitator superfamily (MFS) transporter gene in F. graminearum. FgMFS1 was highly expressed during infection and was upregulated by SA. The predicted three-dimensional structure of the FgMFS1 protein was consistent with the schematic for the antiporter. The subcellular localization experiment indicated that FgMFS1 was usually expressed in the vacuole of hyphae, but was alternatively distributed in the cell membrane under SA treatment, indicating an element of F. graminearum in response to SA. ΔFgMFS1 (loss of function mutant of FgMFS1) showed enhanced sensitivity to SA, less pathogenicity towards wheat, and reduced DON production under SA stress. Re-introduction of a functional FgMFS1 gene into ∆FgMFS1 recovered the mutant phenotypes. Wheat spikes inoculated with ΔFgMFS1 accumulated more SA when compared to those inoculated with the wild-type strain. Ecotopic expression of FgMFS1 in yeast enhanced its tolerance to SA as expected, further demonstrating that FgMFS1 functions as an SA exporter. In conclusion, FgMFS1 encodes an SA exporter in F. graminearum, which is critical for its response to wheat endogenous SA and pathogenicity towards wheat.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Genes Fúngicos , Doenças das Plantas/microbiologia , Ácido Salicílico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Triticum/microbiologia , Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Fusarium/genética
5.
Biomed Res Int ; 2021: 1978434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337001

RESUMO

Lung cancer is one of the most serious leading cancers with high incidence globally. Identifying molecular markers is key for disease diagnosis and treatment. Coal dust might be important triggering factors in disease development. Here, we first performed RNA-seq-based screening in coal dust treated and nontreated RAW264.7 cell lines. PHLDB2 was found to be the top differentially expressed gene. By retrieving TCGA lung cancer dataset, we observed that PHLDB2 showed upregulations in males and smoker patients. Patients with lower PHLDB2 expression survived longer than those with higher expressions. Furthermore, PHLDB2 was negatively correlated with EMT makers, and a total of 2.74% mutation rate were observed in 1,059 patients. This finding highlights the critical role of PHLDB2 in lung cancer development. PHLDB2 might be a molecular maker for disease diagnosis or treatment.


Assuntos
Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Carvão Mineral , Poeira , Detecção Precoce de Câncer , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , RNA-Seq , Animais , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Morte Celular/genética , Sobrevivência Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Células RAW 264.7 , Análise de Sobrevida
6.
Biomed Res Int ; 2021: 5554991, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337024

RESUMO

Background: Obesity is a main contributing factor for the development of glucose intolerance and type 2 diabetes mellitus (T2D). Roux-en-Y gastric bypass (RYGB) is believed to be one of the most effective treatments to reduce body weight and improve glucose metabolism. In this study, we sought to explore the underlying mechanisms of weight reduction and insulin resistance improvement after RYGB. Methods: This was a prospective observational study using consecutive samples of 14 obese subjects undergoing bariatric surgery. Main assessments were serum indexes (blood metabolites, glucose-lipid regulating hormones, trimethylamine-N-oxide (TMAO), and lipopolysaccharide-binding protein (LBP), fecal short-chain fatty acids (SCFAs), and gut microbiota. Correlation analysis of the factors changed by RYGB was used to indicate the potential mechanism by which surgery improves insulin resistance. Results: The subjects showed significant improvement on indices of obesity and insulin resistance and a correlated change of gut microbiota components at 1 month, 3 months, and 6 months post-RYGB operation. In particular, the abundance of a counterobese strain, Akkemansia muciniphila, had gradually increased with the postoperative time. Moreover, these changes were negatively correlated to serum levels of LBP and positively correlated to serum TMAO and fecal SCFAs. Conclusions: Our findings uncovered links between intestinal microbiota alterations, circulating endotoxemia, and insulin resistance. This suggests that the underlying mechanism of protection of the intestine by RYGB in obesity may be through changing the gut microbiota.


Assuntos
Endotoxemia/microbiologia , Endotoxemia/cirurgia , Derivação Gástrica , Microbioma Gastrointestinal , Resistência à Insulina , Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Regulação para Baixo , Humanos , Glicoproteínas de Membrana/metabolismo , Metaboloma , Metilaminas/metabolismo , Obesidade/microbiologia , Obesidade/cirurgia
7.
J Plant Physiol ; 264: 153484, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34343729

RESUMO

High concentrations of As in contaminated environments pose a serious threat to plant, human, and animal health. In this study, we characterized an As-responsive Really Interesting New Gene (RING) E3 ubiquitin ligase gene under arsenate (AsV) stress, named as Oryza sativa As-Induced RING E3 ligase 3 (OsAIR3). AsV treatment highly induced the expression of OsAIR3. OsAIR3-EYFP was localized to the nucleus in rice protoplasts and exhibited E3 ligase activity. Yeast two-hybrid screening and bimolecular fluorescence complementation and pull-down assays revealed the interaction of OsAIR3 with an O. sativa molybdate transporter (OsMOT1;3) in the plasma membrane and cytoplasm. In addition, an in vitro cell-free degradation assay was performed to demonstrate the degradation of OsMOT1;3 by OsAIR3 via the 26S proteasome system. Heterogeneous overexpression of OsAIR3 in Arabidopsis yielded AsV-tolerant phenotypes, as indicated by the comparison of cotyledon expansion, root elongation, shoot fresh weight, and As accumulation between the OsAIR3-overexpressing and control plants. Collectively, these findings suggest that OsAIR3 positively regulates plant response to AsV stress.


Assuntos
Proteínas de Transporte/metabolismo , Molibdênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arsênio/toxicidade , Oryza/enzimologia , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
8.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445467

RESUMO

Ribosome-binding protein 1 (RRBP1) is a potential oncogene in several cancer types. However, the correlation between RRBP1 expression and the prognosis of patients with upper tract urothelial carcinoma (UTUC) remains unclear. In this study, we identified that RRBP1 is associated with carcinogenesis and metastasis in UTUC using a methylation profiling microarray. High correlations between RRBP1 and cancer stages, nodal metastasis status, molecular subtypes, and prognosis in bladder urothelial cancer (BLCA) were found. Aberrant DNA methylation in the gene body region of RRBP1 was determined in UTUC tissues by methylation-specific PCR. RRBP1 expression was significantly increased in UTUC tissues and cell lines, as determined by real-time PCR and immunohistochemistry. RRBP1 depletion significantly reduced BFTC909 cell growth induced by specific shRNA. On the other hand, molecular subtype analysis showed that the expression of RRBP1 was associated with genes related to cell proliferation, epithelial-mesenchymal transition, and basal markers. A patient-derived organoid model was established to analyze patients' responses to different drugs. The expression of RRBP1 was related to chemoresistance. Taken together, these results provide the first evidence that RRBP1 gene body hypomethylation predicts RRBP1 high expression in UTUC. The data highlight the importance of RRBP1 in UTUC malignancy and chemotherapeutic tolerance.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Camundongos , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Science ; 373(6553)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437091

RESUMO

The biogenesis of high-density lipoprotein (HDL) requires apoA1 and the cholesterol transporter ABCA1. Although the liver generates most of the HDL in the blood, HDL synthesis also occurs in the small intestine. Here, we show that intestine-derived HDL traverses the portal vein in the HDL3 subspecies form, in complex with lipopolysaccharide (LPS)-binding protein (LBP). HDL3, but not HDL2 or low-density lipoprotein, prevented LPS binding to and inflammatory activation of liver macrophages and instead supported extracellular inactivation of LPS. In mouse models involving surgical, dietary, or alcoholic intestinal insult, loss of intestine-derived HDL worsened liver injury, whereas outcomes were improved by therapeutics that elevated and depended upon raising intestinal HDL. Thus, protection of the liver from injury in response to gut-derived LPS is a major function of intestinally synthesized HDL.


Assuntos
Intestino Delgado/metabolismo , Lipoproteínas HDL3/metabolismo , Hepatopatias/prevenção & controle , Fígado/metabolismo , Veia Porta/metabolismo , Proteínas de Fase Aguda/metabolismo , Adulto , Animais , Proteínas de Transporte/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Enterócitos/metabolismo , Humanos , Intestino Delgado/cirurgia , Macrófagos do Fígado/imunologia , Macrófagos do Fígado/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Lipoproteínas HDL3/sangue , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Hepatopatias/patologia , Receptores X do Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
10.
Int J Mol Sci ; 22(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34445236

RESUMO

Sepsis-induced liver dysfunction (SILD) is a common event and is strongly associated with mortality. Establishing a causative link between protein post-translational modification and diseases is challenging. We studied the relationship among lysine acetylation (Kac), sirtuin (SIRTs), and the factors involved in SILD, which was induced in LPS-stimulated HepG2 cells. Protein hyperacetylation was observed according to SIRTs reduction after LPS treatment for 24 h. We identified 1449 Kac sites based on comparative acetylome analysis and quantified 1086 Kac sites on 410 proteins for acetylation. Interestingly, the upregulated Kac proteins are enriched in glycolysis/gluconeogenesis pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) category. Among the proteins in the glycolysis pathway, hyperacetylation, a key regulator of lactate level in sepsis, was observed at three pyruvate kinase M2 (PKM2) sites. Hyperacetylation of PKM2 induced an increase in its activity, consequently increasing the lactate concentration. In conclusion, this study is the first to conduct global profiling of Kac, suggesting that the Kac mechanism of PKM2 in glycolysis is associated with sepsis. Moreover, it helps to further understand the systematic information regarding hyperacetylation during the sepsis process.


Assuntos
Proteínas de Transporte/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/enzimologia , Proteínas de Membrana/metabolismo , Sepse/enzimologia , Hormônios Tireóideos/metabolismo , Acetilação/efeitos dos fármacos , Células Hep G2 , Humanos , Lisina/metabolismo , Sepse/induzido quimicamente
11.
Front Immunol ; 12: 708149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335624

RESUMO

Microbial translocation (MT) and intestinal damage (ID) are poorly explored in COVID-19. Aims were to assess whether alteration of gut permeability and cell integrity characterize COVID-19 patients, whether it is more pronounced in severe infections and whether it influences the development of subsequent bloodstream infection (BSI). Furthermore, we looked at the potential predictive role of TM and ID markers on Intensive Care Unit (ICU) admission and in-hospital mortality. Over March-July 2020, 45 COVID-19 patients were enrolled. Markers of MT [LPB (Lipopolysacharide Binding Protein) and EndoCab IgM] and ID [I-FABP (Intestinal Fatty Acid Binding Protein)] were evaluated at COVID-19 diagnosis and after 7 days. As a control group, age- and gender-matched healthy donors (HDs) enrolled during the same study period were included. Median age was 66 (56-71) years. Twenty-one (46.6%) were admitted to ICU and mortality was 22% (10/45). Compared to HD, a high degree of MT and ID was observed. ICU patients had higher levels of MT, but not of ID, than non-ICU ones. Likewise, patients with BSI had lower EndoCab IgM than non-BSI. Interestingly, patients with high degree of MT and low ID were likely to be admitted to ICU (AUC 0.822). Patients with COVID-19 exhibited high level of MT, especially subjects admitted to ICU. COVID-19 is associated with gut permeability.


Assuntos
COVID-19/metabolismo , Mucosa Intestinal/metabolismo , SARS-CoV-2/fisiologia , Proteínas de Fase Aguda/metabolismo , Idoso , Biomarcadores/metabolismo , COVID-19/diagnóstico , COVID-19/mortalidade , COVID-19/patologia , Proteínas de Transporte/metabolismo , Progressão da Doença , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Unidades de Terapia Intensiva , Mucosa Intestinal/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Análise de Sobrevida , Junções Íntimas/metabolismo
12.
Nat Commun ; 12(1): 4178, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234147

RESUMO

Mosaic loss of chromosome Y (LOY) in leukocytes is the most common form of clonal mosaicism, caused by dysregulation in cell-cycle and DNA damage response pathways. Previous genetic studies have focussed on identifying common variants associated with LOY, which we now extend to rarer, protein-coding variation using exome sequences from 82,277 male UK Biobank participants. We find that loss of function of two genes-CHEK2 and GIGYF1-reach exome-wide significance. Rare alleles in GIGYF1 have not previously been implicated in any complex trait, but here loss-of-function carriers exhibit six-fold higher susceptibility to LOY (OR = 5.99 [3.04-11.81], p = 1.3 × 10-10). These same alleles are also associated with adverse metabolic health, including higher susceptibility to Type 2 Diabetes (OR = 6.10 [3.51-10.61], p = 1.8 × 10-12), 4 kg higher fat mass (p = 1.3 × 10-4), 2.32 nmol/L lower serum IGF1 levels (p = 1.5 × 10-4) and 4.5 kg lower handgrip strength (p = 4.7 × 10-7) consistent with proposed GIGYF1 enhancement of insulin and IGF-1 receptor signalling. These associations are mirrored by a common variant nearby associated with the expression of GIGYF1. Our observations highlight a potential direct connection between clonal mosaicism and metabolic health.


Assuntos
Proteínas de Transporte/genética , Cromossomos Humanos Y/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Mosaicismo , Adulto , Idoso , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Análise Mutacional de DNA , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Insulina/metabolismo , Leucócitos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/genética , Sequenciamento Completo do Exoma
13.
Nat Commun ; 12(1): 4055, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210965

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are recruited and activated by DNA damage, resulting in ADP-ribosylation at numerous sites, both within PARP1 itself and in other proteins. Several PARP1 and PARP2 inhibitors are currently employed in the clinic or undergoing trials for treatment of various cancers. These drugs act primarily by trapping PARP1 on damaged chromatin, which can lead to cell death, especially in cells with DNA repair defects. Although PARP1 trapping is thought to be caused primarily by the catalytic inhibition of PARP-dependent modification, implying that ADP-ribosylation (ADPr) can counteract trapping, it is not known which exact sites are important for this process. Following recent findings that PARP1- or PARP2-mediated modification is predominantly serine-linked, we demonstrate here that serine ADPr plays a vital role in cellular responses to PARP1/PARP2 inhibitors. Specifically, we identify three serine residues within PARP1 (499, 507, and 519) as key sites whose efficient HPF1-dependent modification counters PARP1 trapping and contributes to inhibitor tolerance. Our data implicate genes that encode serine-specific ADPr regulators, HPF1 and ARH3, as potential PARP1/PARP2 inhibitor therapy biomarkers.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Reparo do DNA , Neoplasias/tratamento farmacológico , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Serina/metabolismo , ADP-Ribosilação , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional
14.
FASEB J ; 35(8): e21800, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324733

RESUMO

Hemophilia A and B are congenital bleeding disorders caused by a deficiency in pro-coagulant factor VIII or IX that is treated by downregulation of antithrombin. However, the molecular mechanisms that regulate antithrombin expression remain poorly understood. Here, we identified Cullin 2 and USP2 (ubiquitin-specific peptidase-2) as novel regulators of antithrombin expression that act by modulating antithrombin ubiquitination. Inhibition of the proteasome caused accumulation of antithrombin and its ubiquitinated forms in HepG2 and SMMC7721 cells. Notably, inhibition of neddylation with MLN4924 suppressed both ubiquitination and degradation of antithrombin, which is recapitulated by silencing of the neddylation enzymes, NAE1, UBA3, and UBE2M, with small interfering RNA (siRNA). We identified Cullin 2 as the interaction partner of antithrombin, and siRNA-mediated Cullin 2 knockdown reduced antithrombin ubiquitination and increased antithrombin protein. We further found that USP2 interacted with antithrombin and regulated antithrombin expression, showing that overexpression of USP2 inhibits the ubiquitination and proteasomal clearance of antithrombin, whereas pharmacological inhibition or siRNA-mediated knockdown of USP2 downregulates antithrombin. Collectively, these results suggest that Cullin 2 E3 ubiquitin ligase and USP2 coordinately regulate antithrombin ubiquitination and degradation. Thus, targeting Cullin 2 and USP2 could be a potential strategy for treatment of hemophilia.


Assuntos
Antitrombinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Proteínas Culina/genética , Regulação da Expressão Gênica , Interferência de RNA , Ubiquitina Tiolesterase/genética , Ubiquitinação
15.
Arterioscler Thromb Vasc Biol ; 41(9): 2483-2493, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320838

RESUMO

Objective: Despite considerable research, the goal of finding nonsurgical remedies against thoracic aortic aneurysm and acute aortic dissection remains elusive. We sought to identify a novel aortic PK (protein kinase) that can be pharmacologically targeted to mitigate aneurysmal disease in a well-established mouse model of early-onset progressively severe Marfan syndrome (MFS). Approach and Results: Computational analyses of transcriptomic data derived from the ascending aorta of MFS mice predicted a probable association between thoracic aortic aneurysm and acute aortic dissection development and the multifunctional, stress-activated HIPK2 (homeodomain-interacting protein kinase 2). Consistent with this prediction, Hipk2 gene inactivation significantly extended the survival of MFS mice by slowing aneurysm growth and delaying transmural rupture. HIPK2 also ranked among the top predicted PKs in computational analyses of DEGs (differentially expressed genes) in the dilated aorta of 3 MFS patients, which strengthened the clinical relevance of the experimental finding. Additional in silico analyses of the human and mouse data sets identified the TGF (transforming growth factor)-ß/Smad3 signaling pathway as a potential target of HIPK2 in the MFS aorta. Chronic treatment of MFS mice with an allosteric inhibitor of HIPK2-mediated stimulation of Smad3 signaling validated this prediction by mitigating thoracic aortic aneurysm and acute aortic dissection pathology and partially improving aortic material stiffness. Conclusions: HIPK2 is a previously unrecognized determinant of aneurysmal disease and an attractive new target for antithoracic aortic aneurysm and acute aortic dissection multidrug therapy.


Assuntos
Aneurisma Dissecante/prevenção & controle , Aorta Torácica/efeitos dos fármacos , Aneurisma da Aorta Torácica/prevenção & controle , Fibrilina-1/genética , Síndrome de Marfan/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Remodelação Vascular/efeitos dos fármacos , Adulto , Aneurisma Dissecante/enzimologia , Aneurisma Dissecante/genética , Aneurisma Dissecante/patologia , Animais , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Síndrome de Marfan/complicações , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Proteína Smad3/metabolismo
16.
Comput Biol Chem ; 93: 107537, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34217007

RESUMO

MOTIVATION: Primary and secondary active transport are two types of active transport that involve using energy to move the substances. Active transport mechanisms do use proteins to assist in transport and play essential roles to regulate the traffic of ions or small molecules across a cell membrane against the concentration gradient. In this study, the two main types of proteins involved in such transport are classified from transmembrane transport proteins. We propose a Support Vector Machine (SVM) with contextualized word embeddings from Bidirectional Encoder Representations from Transformers (BERT) to represent protein sequences. BERT is a powerful model in transfer learning, a deep learning language representation model developed by Google and one of the highest performing pre-trained model for Natural Language Processing (NLP) tasks. The idea of transfer learning with pre-trained model from BERT is applied to extract fixed feature vectors from the hidden layers and learn contextual relations between amino acids in the protein sequence. Therefore, the contextualized word representations of proteins are introduced to effectively model complex structures of amino acids in the sequence and the variations of these amino acids in the context. By generating context information, we capture multiple meanings for the same amino acid to reveal the importance of specific residues in the protein sequence. RESULTS: The performance of the proposed method is evaluated using five-fold cross-validation and independent test. The proposed method achieves an accuracy of 85.44 %, 88.74 % and 92.84 % for Class-1, Class-2, and Class-3, respectively. Experimental results show that this approach can outperform from other feature extraction methods using context information, effectively classify two types of active transport and improve the overall performance.


Assuntos
Proteínas de Transporte/metabolismo , Processamento de Linguagem Natural , Máquina de Vetores de Suporte , Sequência de Aminoácidos , Transporte Biológico Ativo , Proteínas de Transporte/química
17.
Toxicology ; 458: 152848, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34217791

RESUMO

High maternal serum bile acid level is common and sometimes harmful to the gravida. This study aimed to confirm the bile acid phenotypic change caused by prenatal ethanol exposure (PEE) and elucidate its placental mechanism. Pregnant Wistar rats were administered intragastrically with ethanol 4 g/kg⋅d from gestational day 9-20. Total bile acids (TBA) were detected in maternal, fetal serum and placental tissues, increasing significantly in the serum but no significant change in the placental tissues. Meta-analysis was performed and verified the efficacy of the PEE-induced model based on published data from several relevant studies. Mining of microarray data from human and rat placental sources identified the involvement of bile acid metabolism and its significant genes, which were verified by RT-qPCR and western blotting on tissues and treated BeWo cells with the administration of FXR/PXR siRNAs or FXR/PXR agonists. Our examination, consistent with microarray data and wet experiments, showed that organic anion transporter polypeptide-related protein 2B1 (Oatp2b1), multidrug resistance-associated proteins 3 (Mrp3) and breast cancer resistance protein (Bcrp) expression were increased, while nuclear receptor farnesoid X receptor (Fxr) was decreased but pregnane X receptor (Pxr) was increased. Furthermore, the interventional experiments confirmed that FXR regulated Bcrp while PXR regulated Oatp2b1 and Mrp3. In summary, PEE could induce high bile acid level in maternal serum and its mechanism is associated with the high expression of BCRP/MRP3/OATP2B1 in the placenta through up-regulating PXR and down-regulating FXR, thereby leading to an excessive bile acid transport to maternal blood via the placenta. Our study provides a novel perspective in terms of placenta, explaining the increased maternal blood bile acids under the toxicity of PEE.


Assuntos
Ácidos e Sais Biliares/metabolismo , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Placenta/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Proteínas de Transporte/metabolismo , Linhagem Celular , Mineração de Dados , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Análise em Microsséries , Gravidez , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares
18.
Nat Commun ; 12(1): 4373, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272385

RESUMO

Although homologous recombination (HR) is indicated as a high-fidelity repair mechanism, break-induced replication (BIR), a subtype of HR, is a mutagenic mechanism that leads to chromosome rearrangements. It remains poorly understood how cells suppress mutagenic BIR. Trapping of Topoisomerase 1 by camptothecin (CPT) in a cleavage complex on the DNA can be transformed into single-ended double-strand breaks (seDSBs) upon DNA replication or colliding with transcriptional machinery. Here, we demonstrate a role of Abraxas in limiting seDSBs undergoing BIR-dependent mitotic DNA synthesis. Through counteracting K63-linked ubiquitin modification, Abraxas restricts SLX4/Mus81 recruitment to CPT damage sites for cleavage and subsequent resection processed by MRE11 endonuclease, CtIP, and DNA2/BLM. Uncontrolled SLX4/MUS81 loading and excessive end resection due to Abraxas-deficiency leads to increased mitotic DNA synthesis via RAD52- and POLD3- dependent, RAD51-independent BIR and extensive chromosome aberrations. Our work implicates Abraxas/BRCA1-A complex as a critical regulator that restrains BIR for protection of genome stability.


Assuntos
Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Recombinases/metabolismo , Animais , Camptotecina/farmacologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , DNA Polimerase III/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Recombinação Homóloga , Humanos , Proteína Homóloga a MRE11/metabolismo , Camundongos , RNA Interferente Pequeno , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinases/genética , Inibidores da Topoisomerase I/farmacologia , Ubiquitinação
19.
Nat Commun ; 12(1): 4578, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321481

RESUMO

Mitochondria are transported along microtubules by opposing kinesin and dynein motors. Kinesin-1 and dynein-dynactin are linked to mitochondria by TRAK proteins, but it is unclear how TRAKs coordinate these motors. We used single-molecule imaging of cell lysates to show that TRAK2 robustly activates kinesin-1 for transport toward the microtubule plus-end. TRAK2 is also a novel dynein activating adaptor that utilizes a conserved coiled-coil motif to interact with dynein to promote motility toward the microtubule minus-end. However, dynein-mediated TRAK2 transport is minimal unless the dynein-binding protein LIS1 is present at a sufficient level. Using co-immunoprecipitation and co-localization experiments, we demonstrate that TRAK2 forms a complex containing both kinesin-1 and dynein-dynactin. These motors are functionally linked by TRAK2 as knockdown of either kinesin-1 or dynein-dynactin reduces the initiation of TRAK2 transport toward either microtubule end. We propose that TRAK2 coordinates kinesin-1 and dynein-dynactin as an interdependent motor complex, providing integrated control of opposing motors for the proper transport of mitochondria.


Assuntos
Dineínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesina/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase , Proteínas de Transporte/metabolismo , Complexo Dinactina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Associadas aos Microtúbulos , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Transporte Proteico/fisiologia , Transcriptoma
20.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205334

RESUMO

Sigma-2 (σ2) is an endoplasmic receptor identified as the Endoplasmic Reticulum (ER) transmembrane protein TMEM97. Despite its controversial identity, which was only recently solved, this protein has gained scientific interest because of its role in the proliferative status of cells; many tumor cells from different organs overexpress the σ2 receptor, and many σ2 ligands display cytotoxic actions in (resistant) cancer cells. These properties have shed light on the σ2 receptor as a potential druggable target to be bound/activated for the diagnosis or therapy of tumors. Additionally, diverse groups have shown how the σ2 receptor can be exploited for the targeted delivery of the anticancer drugs to tumors. As the cancer disease is a multifactorial pathology with multiple cell populations, a polypharmacological approach is very often needed. Instead of the simultaneous administration of different classes of drugs, the use of one molecule that interacts with diverse pharmacological targets, namely MultiTarget Directed Ligand (MTDL), is a promising and currently pursued strategy, that may overcome the pharmacokinetic problems associated with the administration of multiple molecules. This review aims to point out the progress regarding the σ2 ligands in the oncology field, with a focus on MTDLs directed towards σ2 receptors as promising weapons against (resistant) cancer diseases.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores sigma/metabolismo , Animais , Proteínas de Transporte/metabolismo , Humanos , Ligantes , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...