Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.003
Filtrar
1.
Anticancer Res ; 39(9): 4795-4803, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31519581

RESUMO

BACKGROUND/AIM: To determine the mechanism of vitamin D3-induced modulation of antioxidant-related factors in endometrial cancer, we investigated their role in apoptosis of human endometrial cancer cells exposed to vitamin D3 Materials and Methods: The survival rate of human endometrial cancer cells was estimated after treatment with activated vitamin D3 Reactive oxygen species (ROS) levels were measured using flow cytometry. The levels of VDR, Trx, TXNIP and apoptosis-related proteins were investigated using western blotting and immunocytochemistry in human tissues. RESULTS: Treatment with D3 induced apoptotic cell death and cell-cycle arrest by increasing ROS concentration. Vitamin D3 inhibited proliferation of human endometrial cancer cells. It regulated intracellular ROS concentration in endometrial cancer cells via increased TXNIP expression. CONCLUSION: Antioxidant regulation via TXNIP is an important cell death mechanism in human endometrial cancer, and occurs via induction by vitamin D3.


Assuntos
Antioxidantes/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias do Endométrio/metabolismo , Tiorredoxinas/metabolismo , Vitamina D/análogos & derivados , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Feminino , Humanos , Imuno-Histoquímica , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Vitamina D/farmacologia
2.
Adv Exp Med Biol ; 1155: 163-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468395

RESUMO

Taurine (2-aminoethanesulfonic acid), a sulfur-containing ß-amino acid, is a free amino acid present in high concentrations in mammalian tissues. Taurine has pivotal roles in anti-oxidation, membrane stabilization, osmoregulation, anti-inflammation, and other process. In a DNA microarray analysis, we previously found that taurine markedly increases the mRNA expression of thioredoxin interacting protein (TXNIP) in Caco-2 cells. In this study, we investigated the effect of these taurine-induced changes in TXNIP on the function of Caco-2 cells. We found that taurine decreases glucose uptake in a dose-dependent manner. The taurine-induced decrease in glucose uptake was completely abolished by transfection with siRNA against TXNIP, suggesting that TXNIP is involved in the taurine-induced down-regulation of glucose uptake. We also revealed that taurine induces AMPK activation and further increases the intracellular ATP content in Caco-2 cells. These results suggest that taurine could regulate the function of Caco-2 cells via TXNIP induction, leading to extend our understanding of the functions of taurine.


Assuntos
Proteínas de Transporte/metabolismo , Glucose/metabolismo , Taurina/farmacologia , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Transporte Biológico , Células CACO-2 , Regulação para Baixo , Humanos , RNA Interferente Pequeno
3.
Oncology ; 97(3): 180-188, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31330520

RESUMO

BACKGROUND: Hormone receptor-positive breast cancer accounts for nearly two-thirds of breast cancer cases; it ultimately acquires resistance during endocrine treatment and becomes more aggressive. This study evaluated the role of developmental endothelial locus (Del)-1 in tamoxifen-resistant (TAM-R) breast cancer. METHODS: Del-1 expression in recurrent TAM-R breast cancer tissue was evaluated and compared to that in the original tumor tissue from the same patients. Del-1 expression was also evaluated in TAM-R cells by quantitative real-time PCR, western blotting, and enzyme-linked immunosorbent assay. The effects of Del-1 knockdown on the proliferation, migration, and invasion of TAM-R cells was assessed with wound-healing and Matrigel transwell assays. RESULTS: Del-1 was more highly expressed in recurrent breast cancer as compared to the original tumor tissues before initiation of endocrine treatment. Del-1 mRNA was upregulated in TAM-R and small interfering RNA-mediated knockdown of Del-1 suppressed the migration and proliferation of TAM-R cells while partly restoring TAM sensitivity. And the TAM resistance was recovered by knockdown of Del-1. CONCLUSIONS: TAM-R breast cancer is characterized by Del-1 overexpression and tumor progression can be inhibited by Del-1 depletion, which restores TAM sensitivity. Thus, therapeutic strategies that target Del-1 may be effective for the treatment of hormone-resistant breast cancer.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Proteínas de Transporte/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Tamoxifeno/farmacologia , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Técnicas de Silenciamento de Genes , Humanos , Interferência de RNA , RNA Interferente Pequeno
4.
Anticancer Res ; 39(7): 3347-3351, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262855

RESUMO

BS69 is encoded by a gene located on chromosome 10, in a region frequently deleted in human cancers and BS69 expression is often down-regulated in human cancers. In addition, BS69 acts as a transcriptional repressor via interaction with transcriptional factors associated with tumorigenesis, such as cellular homolog of the avian myeloblastosis viral oncoprotein, v-ets erythroblastosis virus E26 oncogene homolog 2 oncoprotein, MYC-associated protein X gene-associated protein. Overexpression of BS69 can suppress proliferation of osteosarcoma, breast cancer and glioma cells in vitro; and inhibits tumor growth in xenograft models. Therefore, BS69 may act as a tumor suppressor, and may be a new target for cancer therapy. However, BS69 down-regulation has been found to be involved in cellular senescence and is associated with the reversion of the malignant phenotype of breast cancer cells. Therefore, additional studies are necessary to clarify the role of BS69 in tumor development.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias/metabolismo , Animais , Senescência Celular , Humanos , Proteínas Supressoras de Tumor/metabolismo
5.
J Cancer Res Clin Oncol ; 145(9): 2241-2250, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31342168

RESUMO

PURPOSE: The tripartite motif (TRIM)16 acts as a tumour suppressor in both squamous cell carcinoma (SCC) and melanoma. TRIM16 is known to be secreted by keratinocytes, but no studies have been reported yet to assess the relationship between TRIM16 keratinocyte expression and melanoma development. METHODS: To study the role of TRIM16 in skin cancer development, we developed a keratinocyte TRIM16-specific knockout mouse model, and used the classical two-stage skin carcinogenesis challenge method, to assess the loss of keratinocyte TRIM16 on both papilloma, SCC and melanoma development in the skin after topical carcinogen treatment. RESULTS: Heterozygous, but not homozygous, TRIM16 knockout mice exhibited an accelerated development of skin papillomas and melanomas, larger melanoma lesions and an increased potential for lymph node metastasis. CONCLUSION: This study provides the first evidence that keratinocyte loss of the putative melanoma tumour suppressor protein, TRIM16, enhances melanomagenesis. Our data also suggest that TRIM16 expression in keratinocytes is involved in cross talk between keratinocytes and melanocytes, and has a role in melanoma tumorigenesis.


Assuntos
Proteínas de Transporte/genética , Queratinócitos/metabolismo , Perda de Heterozigosidade/fisiologia , Linfonodos/metabolismo , Melanócitos/metabolismo , Melanoma/genética , Neoplasias Cutâneas/genética , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas de Transporte/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Queratinócitos/patologia , Linfonodos/patologia , Metástase Linfática , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Knockout , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
6.
Cell Physiol Biochem ; 53(1): 200-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31287628

RESUMO

BACKGROUND/AIMS: Skeletal mass loss is reported in several catabolic conditions and it has been associated with a reduced intracellular L-glutamine content. We investigated the association of intracellular L-glutamine concentration with the protein content in skeletal muscle cells. METHODS: We cultivated C2C12 myotubes in the absence or presence of 2 (reference condition), 8 or 16 mM L-glutamine for 48 hours, and the variations in the contents of amino acids and proteins measured. We used an inhibitor of L-glutamine synthesis (L-methionine sulfoximine - MSO) to promote a further reduction in intracellular L-glutamine levels. Amino acids contents in cells and media were measured using LC-MS/MS. We measured changes in phosphorylated Akt, RP-S6, and 4E-BP1contents in the absence or presence of insulin by western blotting. RESULTS: Reduced intracellular L-glutamine concentration was associated with decreased protein content and increased protein breakdown. Low intracellular glutamine levels were also associated with decreased p-Akt contents in the presence of insulin. A further decrease in intracellular L-glutamine caused by glutamine synthetase inhibitor reduced protein content and levels of amino acids generated from glutamine metabolism and increased bAib still further. Cells exposed to high medium glutamine levels did not have any change in protein content but exhibited increased contents of the amino acids derived from L-glutamine metabolism. CONCLUSION: Intracellular L-glutamine levels per se play a role in the control of protein content in skeletal muscle myotubes.


Assuntos
Proteínas de Transporte/metabolismo , Glutamina/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Animais , Proteínas de Transporte/análise , Linhagem Celular , Cromatografia Líquida , Glutamina/análise , Insulina/análise , Camundongos , Fibras Musculares Esqueléticas/química , Fosfoproteínas/análise , Fosforilação , Proteínas Proto-Oncogênicas c-akt/análise , Proteína S6 Ribossômica/análise , Espectrometria de Massas em Tandem
7.
Acta Gastroenterol Belg ; 82(2): 285-290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31314190

RESUMO

BACKGROUND AND AIM: Intestinal barrier dysfunction has been implicated in the development of infectious complications of acute pancreatitis. Nucleotide-Binding Oligomerization DomainContaining Protein 2 (NOD2) plays an important role in the proper functioning of intestinal defense mechanisms. Here, we investigated the frequency of NOD2 variants in patients with mild and severe acute pancreatitis. MATERIALS AND METHODS: Groups 1, 2 and 3 comprised healthy participants and patients with mild and severe pancreatitis, respectively. Four NOD2 variants and serum interleukin-6 (IL-6), Tumor Necrosis Factor-a (TNF-a) and lipopolysaccharide-binding protein (LBP) levels were analyzed. RESULTS: Three patients (3/32, 9.4%) in the severe pancreatitis group were positive for the p.R702W variant. This variant was negative in other groups. One, three and three patients in the healthy (1/27, 3.7%), mild (3/36, 8.3%) and severe pancreatitis (3/32, 9.4%) groups tested positive for the 1007fs variant, respectively. No significant differences in the frequencies of NOD2 variants were evident among the groups. Serum IL-6, TNF-a and LBP levels were markedly higher in the severe pancreatitis than the healthy and mild pancreatitis groups (all p<0.001). We observed no significant correlation between cytokine levels and NOD2 variants. CONCLUSION: Our results support an association between the presence of the p.R702W variant and severe pancreatitis.


Assuntos
Proteínas de Transporte/sangue , Interleucina-6/sangue , Glicoproteínas de Membrana/sangue , Proteína Adaptadora de Sinalização NOD2/metabolismo , Pancreatite/sangue , Fator de Necrose Tumoral alfa/sangue , Doença Aguda , Proteínas da Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Voluntários Saudáveis , Humanos , Interleucina-6/metabolismo , Intestinos , Glicoproteínas de Membrana/metabolismo , Nucleotídeos , Pancreatite/diagnóstico , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/metabolismo
8.
Int J Nanomedicine ; 14: 4229-4245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239677

RESUMO

Purpose: Gene therapies via Noggin small interfering (si)RNA (siNoggin) and bone morphogenetic protein (BMP)-2 plasmid DNA (pBMP-2) may be promising strategies for bone repair/regeneration, but their ideal delivery vectors, efficacy difference, and underlying mechanisms have not been explored, so these issues were probed here. Methods: This study used lipopolysaccharide-amine nanopolymersomes (LNPs), an efficient cytosolic delivery vector developed by the research team, to mediate siNoggin and pBMP-2 to transfect MC3T3-E1 cells, respectively. The cytotoxicity, cell uptake, and gene knockdown efficiency of siNoggin-loaded LNPs (LNPs/siNoggin) were studied, then the osteogenic-differentiation efficacy of MC3T3-E1 cells treated by LNPs/pBMP-2 and LNPs/siNoggin, respectively, were compared by measuring the expression of osteogenesis-related genes and proteins, alkaline phosphatase (ALP) activity, and mineralization of the extracellular matrix at all osteogenic stages. Finally, the possible signaling pathways of the two treatments were explored. Results: LNPs delivered siNoggin into cells efficiently to silence 50% of Noggin expression without obvious cytotoxicity. LNPs/siNoggin and LNPs/pBMP-2 enhanced the osteogenic differentiation of MC3T3 E1 cells, but LNPs/siNoggin was better than LNPs/pBMP-2. BMP/Mothers against decapentaplegic homolog (Smad) and glycogen synthase kinase (GSK)-3ß/ß-catenin signaling pathways appeared to be involved in osteogenic differentiation induced by LNPs/siNoggin, but GSK-3ß/ß-catenin was not stimulated upon LNPs/pBMP-2 treatment. Conclusion: LNPs are safe and efficient delivery vectors for DNA and RNA, which may find wide applications in gene therapy. siNoggin treatment may be a more efficient strategy to enhance osteogenic differentiation than pBMP-2 treatment. LNPs loaded with siNoggin and/or pBMP-2 may provide new opportunities for the repair and regeneration of bone.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular , Lipopolissacarídeos/farmacologia , Nanopartículas/química , Osteogênese , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Fosfatase Alcalina/metabolismo , Aminas/química , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Minerais/química , Nanopartículas/toxicidade , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Plasmídeos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transfecção , beta Catenina/metabolismo
9.
Nat Commun ; 10(1): 2678, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213601

RESUMO

Myeloid cells contribute to tumor progression, but how the constellation of receptors they express regulates their functions within the tumor microenvironment (TME) is unclear. We demonstrate that Fcmr (Toso), the putative receptor for soluble IgM, modulates myeloid cell responses to cancer. In a syngeneic melanoma model, Fcmr ablation in myeloid cells suppressed tumor growth and extended mouse survival. Fcmr deficiency increased myeloid cell population density in this malignancy and enhanced anti-tumor immunity. Single-cell RNA sequencing of Fcmr-deficient tumor-associated mononuclear phagocytes revealed a unique subset with enhanced antigen processing/presenting properties. Conversely, Fcmr activity negatively regulated the activation and migratory capacity of myeloid cells in vivo, and T cell activation by bone marrow-derived dendritic cells in vitro. Therapeutic targeting of Fcmr during oncogenesis decreased tumor growth when used as a single agent or in combination with anti-PD-1. Thus, Fcmr regulates myeloid cell activation within the TME and may be a potential therapeutic target.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Transporte/metabolismo , Melanoma Experimental/imunologia , Proteínas de Membrana/metabolismo , Monócitos/imunologia , Neoplasias Cutâneas/imunologia , Animais , Apresentação do Antígeno/efeitos dos fármacos , Apresentação do Antígeno/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular Tumoral/transplante , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Feminino , Ativação Linfocitária/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
10.
Nat Commun ; 10(1): 2828, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249301

RESUMO

H2A.Z variant has emerged as a critical player in regulating plant responses to environment; however, the mechanism by which H2A.Z mediates this regulation remains unclear. In Arabidopsis, H2A.Z has been proposed to have opposite effects on transcription depending on its localization within the gene. These opposite roles have been assigned by correlating gene expression and H2A.Z enrichment analyses but without considering the impact of possible H2A.Z post-translational modifications. Here, we show that H2A.Z can be monoubiquitinated by the PRC1 components AtBMI1A/B/C. The incorporation of this modification is required for H2A.Z-mediated transcriptional repression through a mechanism that does not require PRC2 activity. Our data suggest that the dual role of H2A.Z in regulating gene expression depends on the modification that it carries, while the levels of H2A.Z within genes depend on the transcriptional activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Histonas/genética , Complexo Repressor Polycomb 1/genética , Ubiquitinação
11.
Biochimie ; 163: 163-170, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201843

RESUMO

Acute myocardial infarction causes irreversible myocardial damage and is a leading cause of death and disability worldwide. Casein kinase 2 interacting protein-1 (CKIP-1) has been suggested to confer cytoprotection against various pathologic injuries. However, it remains unclear whether CKIP-1 regulates myocardial infarction-induced cardiomyocyte injury. This study aimed to explore the potential role of CKIP-1 in regulating hypoxia-induced cardiomyocyte injury and reveal the underlying mechanism. The results demonstrated that hypoxia-exposed cardiomyocytes showed lower CKIP-1 expression. CKIP-1 restoration by transfecting a CKIP-1 expression vector significantly improved viability and reduced apoptosis in hypoxia-treated cardiomyocytes. Moreover, CKIP-1 overexpression suppressed hypoxia-induced oxidative stress in cardiomyocytes. Mechanism research revealed that CKIP-1 overexpression reduced the expression of kelch-like ECH-associated protein 1 (Keap1) and increased the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), actions which resulted in an increase in the transcription of Nrf2 target genes. However, Keap1 overexpression partially reversed CKIP-1-mediated Nrf2 promotion and cardioprotection. Notably, the blockade of Nrf2 signaling also significantly abolished CKIP-1-mediated cardioprotection. Overall, our findings demonstrate that CKIP-1 alleviates hypoxia-induced cardiomyocyte injury through the up-regulation of Nrf2 antioxidant signaling via the down-regulation of Keap1, suggesting a potential role for CKIP-1 in myocardial infarction.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Hipóxia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Regulação da Expressão Gênica , Hipóxia/genética , Hipóxia/fisiopatologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos
12.
Toxicol Lett ; 313: 108-119, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251971

RESUMO

Polychlorinated biphenyls (PCBs) are classic persistent organic pollutants (POPs) and are associated with the progression of many cancers, including liver cancer. The present study investigated the effect of 2,3'4,4',5-pentachlorobiphenyl (PCB118) on hepatocellular carcinoma cell proliferation and its underlying mechanisms. The results indicated that PCB118 exposure promotes the proliferation and glycolysis of hepatocellular carcinoma SMMC-7721 cells. Moreover, PCB118 exposure increased the expression level of pyruvate kinase M2 (PKM2) and its nuclear translocation, whereas treatment with PKM2 shRNA suppressed the induction of cell proliferation and glycolysis by PCB118. PCB118 stimulated reactive oxygen species (ROS) production by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Treatment with the antioxidants N-acetyl-L-cysteine (NAC) and superoxide dismutase (SOD) prevented PCB118-induced effects on PKM2, cell proliferation and glycolysis. Furthermore, we found that PCB118 activated NADPH oxidase through the aryl hydrocarbon receptor (AhR) in SMMC-7721 cells. Consistently, treatment with AhR shRNA suppressed PCB118-induced effects on PKM2, cell proliferation and glycolysis. Overall, these results indicated that PCB118 promotes HCC cell proliferation via PKM2-dependent upregulation of glycolysis, which is mediated by AhR/NADPH oxidase-induced ROS production.


Assuntos
Carcinógenos Ambientais/toxicidade , Carcinoma Hepatocelular/enzimologia , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Neoplasias Hepáticas/enzimologia , Proteínas de Membrana/metabolismo , Bifenilos Policlorados/toxicidade , Hormônios Tireóideos/metabolismo , Transporte Ativo do Núcleo Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/genética
13.
Vet Microbiol ; 234: 8-16, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31213276

RESUMO

Mycoplasma bovis is an economically important pathogen of the cattle industry worldwide, and there is an urgent need for a more effective vaccine to control the diseases caused by this organism. Although the M. bovis genome sequence is available, very few gene functions of M. bovis have been experimentally determined, and a better understanding of the genes involved in pathogenesis are required for vaccine development. In this study, we compared the metabolite profiles of wild type M. bovis to a number of strains that each contained a transposon insertion into a putative transporter gene. Transport systems are thought to play an important role in survival of mycoplasmas, as they rely on the host for many nutrients. We also performed 13C-stable isotope labelling on strains with transposon insertions into putative glycerol transporters. Integration of metabolomic and bioinformatic analyses revealed unexpected results (when compared to genome annotation) for two mutants, with a putative amino acid transporter (MBOVPG45_0533) appearing more likely to transport nucleotide sugars, and a second mutant, a putative dicarboxylate/amino acid:cation (Na+ or H+) symporter (DAACS), more likely to function as a biopterin/folate transporter. This study also highlighted the apparent redundancy in some transport and metabolic pathways, such as the glycerol transport systems, even in an organism with a reduced genome. Overall, this study highlights the value of metabolomics for revealing the likely function of a number of transporters of M. bovis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Biologia Computacional , Metabolômica , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/genética , Animais , Proteínas de Bactérias/genética , Biopterina/metabolismo , Proteínas de Transporte/genética , Bovinos , Doenças dos Bovinos/microbiologia , Genoma Bacteriano , Redes e Vias Metabólicas , Mutação , Mycoplasma bovis/patogenicidade
14.
Photochem Photobiol Sci ; 18(7): 1685-1699, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31166333

RESUMO

The UVR8 photoreceptor in Arabidopsis thaliana is specific for ultraviolet-B (UV-B; 280-315 nm) radiation and its activation leads to a number of UV-B acclimation responses, including the accumulation of flavonoids. UVR8 participates in a signaling cascade involving COP1 and HY5 so that the absence of any of these components results in a reduction in the ability of a plant to accumulate flavonoids in response to UV; Cop1 mutants show high dropouts and hy5-ks50 hyh double mutants show very low levels of flavonoids. The predominant phenolics in Arabidopsis thaliana are sinapic acid derivatives as well as non-aclyated quercetin and kaempferol di- and triglycosides containing glucose and rhamnose as glycosylated sugar moieties. How this flavonoid profile in Arabidopsis thaliana is affected by UV radiation, how rapidly these changes occur in changing UV conditions, and which components of the UV-B signalling pathway are involved in rapid UV acclimatization reactions is poorly understood. In the present study, we examined these questions by characterizing the flavonoid profiles of Arabidopsis thaliana signalling mutants and wild types grown under different UV levels of constant UV-B+PAR ratios and then transferring a subset of plants to alternate UV conditions. Results indicate that flavonoid accumulation in Arabidopsis thaliana is triggered by UV and this response is amplified by higher levels of UV but not by all compounds to the same extent. The catechol structure in quercetin seems to be less important than the glycosylation pattern, e.g. having 2 rhamnose moieties in determining responsivity. At low UV+PAR intensities the introduction of UV leads to an initial tendency of increase of flavonoids in the wild types that was detected after 3 days. It took 7 days for these changes to be detected in plants grown under high UV+PAR intensities suggesting a priming of PAR. Thus, the flavonoid profile in Arabidopsis thaliana is altered over time following exposure to UV and PAR, but the functional significance of these changes is currently unclear.


Assuntos
Arabidopsis/efeitos da radiação , Flavonoides/metabolismo , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatografia Líquida de Alta Pressão , Proteínas Cromossômicas não Histona/metabolismo , Flavonoides/análise , Mutagênese , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Photochem Photobiol Sci ; 18(7): 1675-1684, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31218318

RESUMO

UV-B exposure of plants regulates expression of numerous genes concerned with various responses. Sudden exposure of non-acclimated plants to high fluence rate, short wavelength UV-B induces expression via stress-related signaling pathways that are not specific to the UV-B stimulus, whereas low fluence rates of UV-B can regulate expression via the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). However, there is little information about whether non-stressful, low fluence rate UV-B treatments can activate gene expression independently of UVR8. Here, transcriptomic analysis of wild-type and uvr8 mutant Arabidopsis exposed to low fluence rate UV-B showed that numerous genes were regulated independently of UVR8. Moreover, nearly all of these genes were distinct to those induced by stress treatments. A small number of genes were expressed at all UV-B fluence rates employed and may be concerned with activation of eustress responses that facilitate acclimation to changing conditions. Expression of the gene encoding the transcription factor ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 13 (ANAC13) was studied to characterise a low fluence rate, UVR8-independent response. ANAC13 is induced by as little as 0.1 µmol m-2 s-1 UV-B and its regulation is independent of components of the canonical UVR8 signaling pathway COP1 and HY5/HYH. Furthermore, UV-B induced expression of ANAC13 is independent of the photoreceptors CRY1, CRY2, PHOT1 and PHOT2 and phytochromes A, B, D and E. ANAC13 expression is induced over a range of UV-B wavelengths at low doses, with maximum response at 310 nm. This study provides a basis for further investigation of UVR8 and stress independent, low fluence rate UV-B signaling pathway(s).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Raios Ultravioleta , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/genética , Criptocromos/genética , Criptocromos/metabolismo , Transdução de Sinais/efeitos da radiação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Nat Commun ; 10(1): 2707, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222004

RESUMO

Bone metastases occur in most advanced breast cancer patients and cause serious skeletal-related complications. The mechanisms by which bone metastasis seeds develop in primary tumors and specifically colonize the bone remain to be elucidated. Here, we show that forkhead box F2 (FOXF2) functions as a master transcription factor for reprogramming cancer cells into an osteomimetic phenotype by pleiotropic transactivation of the BMP4/SMAD1 signaling pathway and bone-related genes that are expressed at early stages of bone differentiation. The epithelial-to-osteomimicry transition regulated by FOXF2 confers a tendency on cancer cells to metastasize to bone which leads to osteolytic bone lesions. The BMP antagonist Noggin significantly inhibits FOXF2-driven osteolytic bone metastasis of breast cancer cells. Thus, targeting the FOXF2-BMP/SMAD axis might be a promising therapeutic strategy to manage bone metastasis. The role of FOXF2 in transactivating bone-related genes implies a biological function of FOXF2 in regulating bone development and remodeling.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Proteína Morfogenética Óssea 4/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/secundário , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Reprogramação Celular/genética , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Osteoblastos , Transdução de Sinais/genética , Proteína Smad1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biochemistry (Mosc) ; 84(4): 346-357, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31228926

RESUMO

Sterols are important components of biological membranes that determine the physicochemical properties of lipid bilayer and regulate the functioning of membrane proteins. Being insoluble in water, sterols cannot diffuse between the membrane compartments separated by an aqueous phase. For this reason, distribution of sterols across cellular membranes is rather uneven. Membrane-to-membrane transport of sterols occurs mainly in a non-vesicular fashion and is provided by Lam and Osh proteins. In this review, we discuss the consequences of impairments in sterol biosynthesis and transport mostly relying on the studies performed on the model organism Saccharomyces cerevisiae. Despite the fact that molecular mechanisms underlying the functioning of Lam and Osh proteins are well established, the biological roles of these proteins are still unclear, because deletions of corresponding genes do not affect yeast phenotype. At the same time, disruptions in the biosynthesis of ergosterol, the major sterol of S. cerevisiae, lead to either cell death or reduced stress resistance. However, under certain conditions (e.g., mild salt or thermal stresses), a decrease in the ergosterol levels causes an increase in cell resistance. This suggests that the cells possess a mechanism facilitating rapid adjustment of the plasma membrane sterol content. We argue that the biological role of Lam proteins is, in particular, fast optimization of sterol composition of cell membranes.


Assuntos
Ergosterol/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Ergosterol/biossíntese , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo , Esteróis/metabolismo
18.
Cancer Sci ; 110(8): 2558-2572, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215106

RESUMO

Glioma, the most common human primary brain tumor, is characterized by invasive capabilities and angiogenesis. Vasorin (VASN), a transmembrane protein, is reported to be associated with vascular injury repair and is overexpressed in some human tumors. However, its role in tumor progression and angiogenesis in glioma is unknown. In this study, VASN was shown to be overexpressed in high-grade gliomas, and the expression level correlated with tumor grade and microvessel density in glioma specimens. Glioma patients with high VASN expression had a shorter overall survival time. Knockdown of VASN in glioma cells by shRNA significantly inhibited the malignancy of glioma, including cell proliferation, colony formation, invasion, and sphere formation. Ectopic expression of VASN increased glioma progression in vitro. The expression of VASN correlated with the mesenchymal type of glioblastoma multiforme (GBM) subtyped by gene set enrichment analysis (GSEA). Our results showed that the concentration of VASN was increased in the conditioned medium (CM) from glioma cells with VASN overexpression, and the CM from glioma cells with knockdown or overexpressed VASN inhibited or promoted HUVEC migration and tubulogenesis in vitro, respectively. Glioma growth and angiogenesis were stimulated upon ectopic expression of VASN in vivo. The STAT3 and NOTCH pathways were found to be activated and inhibited by VASN overexpression. Our findings suggest that VASN stimulates tumor progression and angiogenesis in glioma, and, as such, represents a novel therapeutic target for glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Glioma/metabolismo , Glioma/patologia , Proteínas de Membrana/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Adulto , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
DNA Cell Biol ; 38(8): 874-879, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215797

RESUMO

Microglia-mediated neuroinflammation plays an important role in Alzheimer's disease development. Resveratrol, a natural polyphenol from the Japanese knotweed (Polygonum cuspidatumand), is known to protect against neuroinflammation, but the mechanism remains unclear. To begin to explore potential mechanisms, we created a model of inflammatory injury in BV-2 murine microglial cells based on the induction of amyloid-ß. We found that resveratrol (10 and 50 nM) significantly inhibited Aß-induced proliferation and activation of BV-2 cells, as well as their release of the proinflammatory cytokines, IL-6 and TNF-α. Resveratrol also suppressed the overexpression of cleaved caspase-1 and IL-1ß, and decreased Aß-stimulated degradation of IkBα and phosphorylation of NF-κB phosphorylation. Western blot analysis showed that Aß upregulated the TXNIP/TRX/NLRP3 pathway, while resveratrol treatment inhibited it. We conclude that resveratrol protects microglia from Aß-stimulated inflammation by suppressing the inflammatory response, at least in part by inhibiting the TXNIP/TRX/NLRP3 signaling pathway.


Assuntos
Proteínas de Transporte/metabolismo , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Resveratrol/farmacologia , Tiorredoxinas/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Caspase 1/metabolismo , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Microglia/fisiologia , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Parasit Vectors ; 12(1): 317, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234897

RESUMO

Glycophorins are heavily glycosylated sialoglycoproteins of human and animal erythrocytes. In humans, there are four glycophorins: A, B, C and D. Glycophorins play an important role in the invasion of red blood cells (RBCs) by malaria parasites, which involves several ligands binding to RBC receptors. Four Plasmodium falciparum merozoite EBL ligands have been identified: erythrocyte-binding antigen-175 (EBA-175), erythrocyte-binding antigen-181 (EBA-181), erythrocyte-binding ligand-1 (EBL-1) and erythrocyte-binding antigen-140 (EBA-140). It is generally accepted that glycophorin A (GPA) is the receptor for P. falciparum EBA-175 ligand. It has been shown that α(2,3) sialic acid residues of GPA O-glycans form conformation-dependent clusters on GPA polypeptide chain which facilitate binding. P. falciparum can also invade erythrocytes using glycophorin B (GPB), which is structurally similar to GPA. It has been shown that P. falciparum EBL-1 ligand binds to GPB. Interestingly, a hybrid GPB-GPA molecule called Dantu is associated with a reduced risk of severe malaria and ameliorates malaria-related morbidity. Glycophorin C (GPC) is a receptor for P. falciparum EBA-140 ligand. Likewise, successful binding of EBA-140 depends on sialic acid residues of N- and O-linked oligosaccharides of GPC, which form a cluster or a conformational structure depending on the presence of peptide fragment encompassing amino acids (aa) 36-63. Evaluation of the homologous P. reichenowi EBA-140 unexpectedly revealed that the chimpanzee homolog of human glycophorin D (GPD) is probably the receptor for this ligand. In this review, we concentrate on the role of glycophorins as erythrocyte receptors for Plasmodium parasites. The presented data support the long-lasting idea of high evolutionary pressure exerted by Plasmodium on the human glycophorins, which emerge as important receptors for these parasites.


Assuntos
Proteínas de Transporte/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Glicoforina/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteínas de Transporte/genética , Glicoforina/genética , Humanos , Ligantes , Merozoítos , Pan troglodytes , Ligação Proteica , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA