RESUMO
Plant growth-promoting rhizobacteria (PGPR) are a sustainable crop production input; some show positive effects under laboratory conditions but poorly colonize host field-grown plants. Inoculating with PGPR in microbial growth medium (e.g., King's B) could overcome this. We evaluated cannabis plant (cv. CBD Kush) growth promotion by inoculating three PGPR (Bacillus sp., Mucilaginibacter sp., and Pseudomonas sp.) in King's B at vegetative and flower stages. At the vegetative stage, Mucilaginibacter sp. inoculation increased flower dry weight (24%), total CBD (11.1%), and THC (11.6%); Pseudomonas sp. increased stem (28%) dry matter, total CBD (7.2%), and THC (5.9%); and Bacillus sp. increased total THC by 4.8%. Inoculation with Mucilaginibacter sp. and Pseudomonas sp. at the flowering stage led to 23 and 18% increases in total terpene accumulation, respectively. Overall, vegetative inoculation with PGPR enhanced cannabis yield attributes and chemical profiles. Further research into PGPR inoculation onto cannabis and the subsequent level of colonization could provide key insights regarding PGPR-host interactions.
Assuntos
Alphaproteobacteria , Bacillus , Cannabis , Biomassa , Desenvolvimento Vegetal , Pseudomonas/metabolismo , Raízes de Plantas/microbiologiaRESUMO
Quorum sensing is a communication strategy that bacteria use to collectively alter gene expression in response to cell density. Pathogens use quorum sensing systems to control activities vital to infection, such as the production of virulence factors and biofilm formation. The Pseudomonas virulence factor (pvf) gene cluster encodes a signaling system (Pvf) that is present in over 500 strains of proteobacteria, including strains that infect a variety of plant and human hosts. We have shown that Pvf regulates the production of secreted proteins and small molecules in the insect pathogen Pseudomonas entomophila L48. Here, we identified genes that are likely regulated by Pvf using the model strain P. entomophila L48 which does not contain other known quorum sensing systems. Pvf regulated genes were identified through comparing the transcriptomes of wildtype P. entomophila and a pvf deletion mutant (ΔpvfA-D). We found that deletion of pvfA-D affected the expression of approximately 300 genes involved in virulence, the type VI secretion system, siderophore transport, and branched chain amino acid biosynthesis. Additionally, we identified seven putative biosynthetic gene clusters with reduced expression in ΔpvfA-D. Our results indicate that Pvf controls multiple virulence mechanisms in P. entomophila L48. Characterizing genes regulated by Pvf will aid understanding of host-pathogen interactions and development of anti-virulence strategies against P. entomophila and other pvf-containing strains.
Assuntos
Pseudomonas , Fatores de Virulência , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Pseudomonas/metabolismo , Virulência/genética , Percepção de Quorum/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
Riverine ecosystems polluted by pharmaceutical and metal industries are potential incubators of bacteria with dual resistance to heavy metals and antibiotics. The processes of co-resistance and cross resistance that empower bacteria to negotiate these challenges, strongly endorse dangers of antibiotic resistance generated by metal stress. Therefore, investigation into the molecular evidence of heavy metal and antibiotic resistance genes was the prime focus of this study. The selected Pseudomonas and Serratia species isolates evinced by their minimum inhibitory concentration and multiple antibiotic resistance (MAR) index showed significant heavy metal tolerance and multi-antibiotic resistance capability, respectively. Consequently, isolates with higher tolerance for the most toxic metal cadmium evinced high MAR index value (0.53 for Pseudomonas sp., and 0.46 for Serratia sp.) in the present investigation. Metal tolerance genes belonging to PIB-type and resistance nodulation division family of proteins were evident in these isolates. The antibiotic resistance genes like mexB, mexF and mexY occurred in Pseudomonas isolates while sdeB genes were present in Serratia isolates. Phylogenetic incongruency and GC composition analysis of PIB-type genes suggested that some of these isolates had acquired resistance through horizontal gene transfer (HGT). Therefore, the Teesta River has become a reservoir for resistant gene exchange or movement via selective pressure exerted by metals and antibiotics. The resultant adaptive mechanisms and altered phenotypes are potential tools to track metal tolerant strains with clinically significant antibiotic resistance traits.
Assuntos
Antibacterianos , Metais Pesados , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Rios , Ecossistema , Filogenia , Metais Pesados/farmacologia , Metais Pesados/metabolismo , Resistência Microbiana a Medicamentos , Bactérias/genéticaRESUMO
Plastic accumulation has become a serious environmental threat. Mitigation of plastic is important to save the ecosystem of our planet. With current research being focused on microbial degradation of plastics, microbes with the potential to degrade polyethylene were isolated in this study. In vitro studies were performed to define the correlation between the degrading capability of the isolates and laccase, a common oxidase enzyme. Instrumental analyses were used to evaluate morphological and chemical modifications in polyethylene, which demonstrated a steady onset of the degradation process in case of both isolates, Pseudomonas aeruginosa O1-P and Bacillus cereus O2-B. To understand the efficiency of laccase in degrading other common polymers, in silico approach was employed, for which 3D structures of laccase in both the isolates were constructed via homology modeling and molecular docking was performed, revealing that the enzyme laccase can be exploited to degrade a wide range of polymers.
Assuntos
Polímeros , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Bacillus cereus/metabolismo , Lacase/metabolismo , Ecossistema , Simulação de Acoplamento Molecular , Plásticos/análise , Plásticos/metabolismo , Polietileno/química , Polietileno/metabolismo , Biodegradação AmbientalRESUMO
A new Gram-negative, rod-shaped, flagellated bacterium was isolated from soil in the Guishan, Xinping County, Yuxi City, Yunnan Province, China, and named YIM B01952T. Growth occurred at 10-40 °C (optimum, 30 °C), pH 6.0-9.0 (optimum, pH 7.5) and with up to ≤ 5.0% (w/v) NaCl on Tryptic Soy Broth Agar (TSA) plates. Phylogenetic analysis based on the 16S rRNA gene and draft-genome sequence showed that strain YIM B01952T belonged to the genus Pseudomonas, and was closely related to the type strain of Pseudomonas alcaligenes (sequence similarity was 98.8%). The digital DNA-DNA hybridization (dDDH) value between strain YIM B01952T and the parallel strain P. alcaligenes ATCC 14909T was 49.0% based on the draft genome sequence. The predominant menaquinone was Q-9. The major fatty acids were summed feature 8 (C18:1 ω6c and/or C18:1 ω7c), summed feature 3 (C16:1 ω6c and/or C16:1 ω7c) and C16:0. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol. The genome size of strain YIM B01952T was 4.341 Mb, comprising 4156 predicted genes with a DNA G + C content of 66.4 mol%. In addition, we detected that strain YIM B01952T had some traditional functional genes (plant growth promotion and multidrug resistance), unique genes through genome comparison and analysis with similar strains. Based on genetic analyses and biochemical characterization, the strain YIM B01952T was identified as a novel species in the genus Pseudomonas, for which the name Pseudomonas subflava sp. nov. is proposed. The type strain is YIM B01952T (=CCTCC AB 2021498T = KCTC 92073T).
Assuntos
Ácidos Graxos , Pseudomonas , China , Filogenia , RNA Ribossômico 16S/genética , Pseudomonas/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Ácidos Graxos/análise , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análiseRESUMO
Malonyl-CoA is a central precursor for biosynthesis of a wide range of complex secondary metabolites. The development of platform strains with increased malonyl-CoA supply can contribute to the efficient production of secondary metabolites, especially if such strains exhibit high tolerance towards these chemicals. In this study, Pseudomonas taiwanensis VLB120 was engineered for increased malonyl-CoA availability to produce bacterial and plant-derived polyketides. A multi-target metabolic engineering strategy focusing on decreasing the malonyl-CoA drain and increasing malonyl-CoA precursor availability, led to an increased production of various malonyl-CoA-derived products, including pinosylvin, resveratrol and flaviolin. The production of flaviolin, a molecule deriving from five malonyl-CoA molecules, was doubled compared to the parental strain by this malonyl-CoA increasing strategy. Additionally, the engineered platform strain enabled production of up to 84 mg L-1 resveratrol from supplemented p-coumarate. One key finding of this study was that acetyl-CoA carboxylase overexpression majorly contributed to an increased malonyl-CoA availability for polyketide production in dependence on the used strain-background and whether downstream fatty acid synthesis was impaired, reflecting its complexity in metabolism. Hence, malonyl-CoA availability is primarily determined by competition of the production pathway with downstream fatty acid synthesis, while supply reactions are of secondary importance for compounds that derive directly from malonyl-CoA in Pseudomonas.
Assuntos
Malonil Coenzima A , Policetídeos , Resveratrol , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Policetídeos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Ácidos Graxos/metabolismoRESUMO
Polar regions tend to support simple food webs, which are vulnerable to phage-induced gene transfer or microbial death. To further investigate phage-host interactions in polar regions and the potential linkage of phage communities between the two poles, we induced the release of a lysogenic phage, vB_PaeM-G11, from Pseudomonas sp. D3 isolated from the Antarctic, which formed clear phage plaques on the lawn of Pseudomonas sp. G11 isolated from the Arctic. From permafrost metagenomic data of the Arctic tundra, we found the genome with high-similarity to that of vB_PaeM-G11, demonstrating that vB_PaeM-G11 may have a distribution in both the Antarctic and Arctic. Phylogenetic analysis indicated that vB_PaeM-G11 is homologous to five uncultured viruses, and that they may represent a new genus in the Autographiviridae family, named Fildesvirus here. vB_PaeM-G11 was stable in a temperature range (4-40 °C) and pH (4-11), with latent and rise periods of about 40 and 10 min, respectively. This study is the first isolation and characterization study of a Pseudomonas phage distributed in both the Antarctic and Arctic, identifying its lysogenic host and lysis host, and thus provides essential information for further understanding the interaction between polar phages and their hosts and the ecological functions of phages in polar regions.
Assuntos
Bacteriófagos , Fagos de Pseudomonas , Regiões Antárticas , Filogenia , Pseudomonas/genética , Genoma ViralRESUMO
Biological nitrogen removal has received increasing attention in wastewater treatment. A bacterium with excellent nitrogen removal performance was isolated from biofilters of recirculating aquaculture systems (RAS) and identified as Pseudomonas chengduensis BF6. It was indicated that inorganic nitrogen is transformed into gaseous and biological nitrogen by the metabolic pathways of denitrification, anammox, and assimilation, which is the main nitrogen removal pathway of strain BF6. The strain BF6 could effectively remove nitrogen within 24 h under the conditions of ammonia, nitrate, nitrite, and mixed nitrogen sources with maximum total nitrogen removal efficiencies reaching 97.00 %, 61.40 %, 79.10 %, and 84.98 %, respectively. The strain BF6 exhibited total nitrogen removal efficiency of 91.14 %, altered the microbial diversity and enhanced the relative abundance of Pseudomonas in the RAS biofilter. These findings demonstrate that Pseudomonas sp. BF6 is a highly efficient nitrogen-removing bacterium with great potential for application in aquaculture wastewater remediation.
Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/metabolismo , Pseudomonas/metabolismo , Nitritos/metabolismo , Nitratos/metabolismo , Bactérias/metabolismo , Aquicultura , NitrificaçãoRESUMO
In this study, two new cyclic lipopeptides (CLPs) pseudophomins C (3) and D (4) and two known CLPs pseudophomins A (1) and B (2) were produced and characterized from the bacterial supernatant of Pseudomonas sp. HN8-3 by an OSMAC (one strain-many compounds) approach. OSMAC is a strategy that involves feeding of a single microorganism with divergent substrates to stimulate the production of new secondary metabolites. These pseudophomins were purified and identified via chromatographic methods, droplet collapse assay, genome mining, spectroscopic and spectrometric analyses, and single-crystal X-ray diffraction (XRD). Moreover, bioactivity tests showed that pseudophomins could lyse the zoospores of Phytophthora capsici in vitro, and coapplication of pseudophomins with zoospores of P. capsici further reduced the incidence of P. capsici on cucumber leaves. Collectively, these results indicated that pseudophomins have the potential to be developed as biopesticides for controlling P. capsici in cucumber.
Assuntos
Cucumis sativus , Phytophthora , Pseudomonas , Bactérias , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologiaRESUMO
BACKGROUND: Long term outcomes of lung transplantation are impacted by the occurrence of chronic lung allograft dysfunction (CLAD). Recent evidence suggests a role for the lung microbiome in the occurrence of CLAD, but the exact mechanisms are not well defined. We hypothesize that the lung microbiome inhibits epithelial autophagic clearance of pro-fibrotic proteins in an IL-33 dependent manner, thereby augmenting fibrogenesis and risk for CLAD. METHODS: Autopsy derived CLAD and non-CLAD lungs were collected. IL-33, P62 and LC3 immunofluorescence was performed and assessed using confocal microscopy. Pseudomonas aeruginosa (PsA), Streptococcus Pneumoniae (SP), Prevotella Melaninogenica (PM), recombinant IL-33 or PsA-lipopolysaccharide was co-cultured with primary human bronchial epithelial cells (PBEC) and lung fibroblasts in the presence or absence of IL-33 blockade. Western blot analysis and quantitative reverse transcription (qRT) PCR was performed to evaluate IL-33 expression, autophagy, cytokines and fibroblast differentiation markers. These experiments were repeated after siRNA silencing and upregulation (plasmid vector) of Beclin-1. RESULTS: Human CLAD lungs demonstrated markedly increased expression of IL-33 and reduced basal autophagy compared to non-CLAD lungs. Exposure of co-cultured PBECs to PsA, SP induced IL-33, and inhibited PBEC autophagy, while PM elicited no significant response. Further, PsA exposure increased myofibroblast differentiation and collagen formation. IL-33 blockade in these co-cultures recovered Beclin-1, cellular autophagy and attenuated myofibroblast activation in a Beclin-1 dependent manner. CONCLUSION: CLAD is associated with increased airway IL-33 expression and reduced basal autophagy. PsA induces a fibrogenic response by inhibiting airway epithelial autophagy in an IL-33 dependent manner.
Assuntos
Artrite Psoriásica , Pseudomonas , Humanos , Proteína Beclina-1/metabolismo , Interleucina-33/metabolismo , Artrite Psoriásica/metabolismo , Pulmão/metabolismo , Autofagia/fisiologiaRESUMO
Efficient transcriptional terminators are essential for the performance of genetic circuitry in microbial SynBio hosts. In recent years, several libraries of characterized strong terminators have become available for model organisms such as Escherichia coli. Conversely, terminator libraries for nonmodel species remain scarce, and individual terminators are often ported over from model systems, leading to unpredictable performance in their new hosts. In this work, we mined the genomes of Pseudomonas infecting phages LUZ7 and LUZ100 for transcriptional terminators utilizing the full-length RNA sequencing technique "ONT-cappable-seq" and validated these terminators in three Gram-negative hosts using a terminator trap assay. Based on these results, we present nine terminators for E. coli, Pseudomonas putida, and Pseudomonas aeruginosa, which outperform current reference terminators. Among these, terminator LUZ7 T50 displays potent bidirectional activity. These data further support that bacteriophages, as evolutionary-adapted natural predators of the targeted bacteria, provide a valuable source of microbial SynBio parts.
Assuntos
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Bacteriófagos/genética , Regiões Terminadoras Genéticas/genética , Transcrição Gênica , Pseudomonas/genéticaRESUMO
Rhizoctonia solani compromises the production of lima bean, an alternative and low-input food source in many tropical regions. Inoculation of bacterial strains has been used, but research on their biocontrol and growth promotion potential on lima bean is scarce. The objective of this study was to evaluate the effects of inoculation with rhizobacterial strains of the genera Bacillus, Brevibacillus, Paenibacillus, Burkholderia, Pseudomonas, and Rhizobium in combination or not with N2-fixing Rhizobium tropici on the control of damping-off disease and growth promotion in lima bean plants. Greenhouse experiments were conducted to evaluate the inoculation with bacterial strains with biocontrol potential in combination or not with R. tropici in substrate infected with R. solani CML 1846. Growth promotion of these strains was also assessed. Strains of Brevibacillus (UFLA 02-286), Pseudomonas (UFLA 02-281 and UFLA 04-885), Rhizobium (UFLA 04-195), and Burkholderia (UFLA 04-227) co-inoculated with the strain CIAT 899 (Rhizobium tropici) were the most effective in controlling R. solani, reducing the disease incidence in 47-60% on lima bean. The promising strains used in the biocontrol assays were also responsive in promoting growth of lima bean under disease and sterile conditions. A positive synergistic effect of co-inoculation of different genera contributed to plant growth, and these outcomes are important first steps to improve lima bean production.
Assuntos
Bacillus , Phaseolus , Rhizobium tropici , Rhizobium , Phaseolus/microbiologia , Plantas , PseudomonasRESUMO
The phage T7 RNA polymerase (RNAP) and lysozyme form the basis of the widely used pET expression system for recombinant expression in the biotechnology field and as a tool in microbial synthetic biology. Attempts to transfer this genetic circuitry from Escherichia coli to non-model bacterial organisms with high potential have been restricted by the cytotoxicity of the T7 RNAP in the receiving hosts. We here explore the diversity of T7-like RNAPs mined directly from Pseudomonas phages for implementation in Pseudomonas species, thus relying on the co-evolution and natural adaptation of the system towards its host. By screening and characterizing different viral transcription machinery using a vector-based system in P. putida., we identified a set of four non-toxic phage RNAPs from phages phi15, PPPL-1, Pf-10, and 67PfluR64PP, showing a broad activity range and orthogonality to each other and the T7 RNAP. In addition, we confirmed the transcription start sites of their predicted promoters and improved the stringency of the phage RNAP expression systems by introducing and optimizing phage lysozymes for RNAP inhibition. This set of viral RNAPs expands the adaption of T7-inspired circuitry towards Pseudomonas species and highlights the potential of mining tailored genetic parts and tools from phages for their non-model host.
Assuntos
Bacteriófagos , Bacteriófagos/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Biologia Sintética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição GênicaRESUMO
Bio-based polymers have better salt and temperature tolerance than most synthetic polymers. The biopolymer solutions have high viscosity, which can lead to reducing the fingering effect and soaring the oil recovery rate. This work aims to produce and characterize a biopolymer from Pseudomonas Atacamensis M7D1 strain, modify the biopolymer yield using Printed Circuit Boards (PCBs) powder as an outer tension in the growth medium, and finally, evaluate the produced biopolymer function for Enhanced Oil Recovery (EOR) purposes. Using PCBs powder to trigger bacteria for higher production yield increases the biopolymer production rate eleven times higher than pure growth medium without additives. Different analyses were performed on the biopolymer to characterize its properties; Gel Permeation Chromatography (GPC) indicated that the produced biopolymer has an average molecular weight of 3.6 × 105 g/mol. This macromolecule has high thermal resistivity and can tolerate high temperatures. Thermal analysis (TGA/DSC) shows only 69.27 % mass lost from 25 °C to 500 °C. The viscosity of 0.5 wt% biopolymer solution equals 3cp, 3 times higher than water. The glass micromodel flooding result shows that biopolymer solution with 0.5 wt% concentration has a 42 % recovery rate which is 24 % higher than water flooding.
Assuntos
Nylons , Pseudomonas , Pós , Biopolímeros/química , Polímeros/química , Polissacarídeos , Água/químicaRESUMO
This study investigated the pathogenic potential of Pseudomonas protegens on mosquito larvae of the two species Culex pipiens and Aedes albopictus, representing major threats for disease transmission in the Mediterranean area and worldwide. The bacterium achieved to kill over 90% of the mosquito larvae within 72 h after exposition to a bacterial concentration of 100 million CFU/ml. These lethal effects were concentration dependent and a significantly higher susceptibility was associated with younger larvae of both mosquito species. Significant slowdown of immature (larval and pupal) development and decrease in adult emergence rate after treatment with sub-lethal doses of the bacterium were also detected. This study reports for the first time the insecticidal activity of a root-associated biocontrol bacterium against aquatic mosquito larvae.
Assuntos
Agentes de Controle Biológico , Culicidae , Larva , Pseudomonas , Animais , Aedes/crescimento & desenvolvimento , Aedes/microbiologia , Culex/crescimento & desenvolvimento , Culex/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Pseudomonas/patogenicidade , Culicidae/crescimento & desenvolvimento , Culicidae/microbiologiaRESUMO
BACKGROUND: Bacterial siderophores are chelating compounds with the potential of application in agriculture, due to their plant growth-promoting (PGP) properties, however, high production and purification costs are limiting factors for their wider application. Cost-efficiency of the production could be increased by omitting purification processes, especially since siderophores accompanying metabolites (SAM) often also possess PGP traits. In this study, the metabolism versatility of Pseudomonas sp. ANT_H12B was used for the optimization of siderophores production and the potential of these metabolites and SAM was characterized in the context of PGP properties. RESULTS: The metabolic diversity of ANT_H12B was examined through genomic analysis and phenotype microarrays. The strain was found to be able to use numerous C, N, P, and S sources, which allowed for the design of novel media suitable for efficient production of siderophores in the form of pyoverdine (223.50-512.60 µM). Moreover, depending on the culture medium, the pH of the siderophores and SAM solutions varied from acidic (pH < 5) to alkaline (pH > 8). In a germination test, siderophores and SAM were shown to have a positive effect on plants, with a significant increase in germination percentage observed in beetroot, pea, and tobacco. The PGP potential of SAM was further elucidated through GC/MS analysis, which revealed other compounds with PGP potential, such as indolic acetic acids, organic acids, fatty acids, sugars and alcohols. These compounds not only improved seed germination but could also potentially be beneficial for plant fitness and soil quality. CONCLUSIONS: Pseudomonas sp. ANT_H12B was presented as an efficient producer of siderophores and SAM which exhibit PGP potential. It was also shown that omitting downstream processes could not only limit the costs of siderophores production but also improve their agricultural potential.
Assuntos
Pseudomonas , Sideróforos , Sideróforos/química , Sideróforos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Bactérias/metabolismo , Germinação , Plantas , Agricultura , Microbiologia do SoloRESUMO
Hydrophobic organic compounds, either natural or introduced through anthropogenic activities, pose a serious threat to all spheres of life, including humankind. These hydrophobic compounds are recalcitrant and difficult to degrade by the microbial system; however, microbes have also evolved their metabolic and degradative potential. Pseudomonas species have been reported to have a multipotential role in the biodegradation of aromatic hydrocarbons through aromatic ring-hydroxylating dioxygenases (ARHDs). The structural complexity of different hydrophobic substrates and their chemically inert nature demands the explicit role of evolutionary conserved multicomponent enzyme ARHDs. These enzymes catalyze ring activation and subsequent oxidation by adding two molecular oxygen atoms onto the vicinal carbon of the aromatic nucleus. This critical metabolic step in the aerobic mode of degradation of polycyclic aromatic hydrocarbons (PAHs) catalyzed by ARHDs can also be explored through protein molecular docking studies. Protein data analysis enables an understanding of molecular processes and monitoring complex biodegradation reactions. This review summarizes the molecular characterization of five ARHDs from Pseudomonas species already reported for PAH degradation. Homology modeling for the amino acid sequences encoding the catalytic α-subunit of ARHDs and their docking analyses with PAHs suggested that the enzyme active sites show flexibility around the catalytic pocket for binding of low molecular weight (LMW) and high molecular weight (HMW) PAH substrates (naphthalene, phenanthrene, pyrene, benzo[α]pyrene). The alpha subunit harbours variable catalytic pockets and broader channels, allowing relaxed enzyme specificity toward PAHs. ARHD's ability to accommodate different LMW and HMW PAHs demonstrates its 'plasticity', meeting the catabolic demand of the PAH degraders.
Assuntos
Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Simulação de Acoplamento Molecular , Pseudomonas/genética , Pseudomonas/metabolismo , Catálise , Biodegradação AmbientalRESUMO
Some Pseudomonas species are common meat spoilage bacteria that are often associated with the spoilage of fresh meat. The recently reported ability of these bacteria to also spoil cooked and vacuum packaged meat products has created the need to investigate all potential routes of spoilage they may be able to utilize. The objective of this experiment was to determine if spoilage Pseudomonas spp. survive thermal processing and grow during refrigerated storage under vacuum. Pseudomonas spp. isolates collected from spoiled turkey products were inoculated into a salted and seasoned meat emulsion that was vacuum sealed and thermally treated to final temperatures of 54.4 and 71.1°C to mimic thermal processes commonly used in the meat industry. Samples were stored for a total of 294 days at 4 and 10°C and plated using Pseudomonas spp. specific agar plates. Pseudomonas spp. concentrations were below the detection limit (0.18 log10 CFU/g) immediately after thermal processing and were first recovered from thermally processed samples after 14 days of storage. The final concentration was greater than 2 log10 CFU/g (p < 0.05 compared to post-thermal processing) in thermally processed treatment groups at the end of storage, indicating that these Pseudomonas spp. isolates were able to survive thermal processing and grow during extended vacuum storage. This raises concerns about the ability of spoilage bacteria to survive the thermal processing schedules commonly used in the meat industry and confirms that some Pseudomonas spp. are capable of thriving in products other than aerobically stored fresh meat. Practical Application: Spoilage Pseudomonas spp. can survive traditional thermal processing schedules. Heat resistance should be evaluated for commensal and spoilage bacteria to better understand possible ways spoilage of food products may occur.
Assuntos
Microbiologia de Alimentos , Pseudomonas , Conservação de Alimentos , Vácuo , Carne/microbiologia , Bactérias , Embalagem de Alimentos , Contagem de Colônia MicrobianaRESUMO
Biodesulfurization (BDS) was employed in this study to degrade dibenzothiophene (DBT) which accounts for 70% of the sulfur compounds in diesel using a synthetic and typical South African diesel in the aqueous and biphasic medium. Two Pseudomonas sp. bacteria namely Pseudomonas aeruginosa and Pseudomonas putida were used as biocatalysts. The desulfurization pathways of DBT by the two bacteria were determined by gas chromatography (GC)/mass spectrometry (MS) and High-Performance Liquid Chromatography (HPLC). Both organisms were found to produce 2-hydroxy biphenyl, the desulfurized product of DBT. Results showed BDS performance of 67.53% and 50.02%, by Pseudomonas aeruginosa and Pseudomonas putida, respectively for 500 ppm initial DBT concentration. In order to study the desulfurization of diesel oils obtained from an oil refinery, resting cells studies by Pseudomonas aeruginosa were carried out which showed a decrease of about 30% and 70.54% DBT removal for 5200 ppm in hydrodesulfurization (HDS) feed diesel and 120 ppm in HDS outlet diesel, respectively. Pseudomonas aeruginosa and Pseudomonas putida selectively degraded DBT to form 2-HBP. Application of these bacteria for the desulfurization of diesel showed promising potential for decreasing the sulfur content of South African diesel oil.
Assuntos
Petróleo , Pseudomonas putida , Pseudomonas/metabolismo , Petróleo/metabolismo , Tiofenos/metabolismo , Compostos de Enxofre/metabolismo , Gasolina/microbiologia , Pseudomonas putida/metabolismo , Pseudomonas aeruginosa/metabolismo , Biodegradação AmbientalRESUMO
BACKGROUND: Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) also known as tobacco caterpillar, is one of the most serious polyphagous pests that cause economic losses to a variety of commercially important agricultural crops. Over the past few years, many conventional insecticides have been used to control this pest. However, the indiscriminate use of these chemicals has led to development of insecticide resistant populations of S. litura in addition to harmful effects on environment. Due to these ill effects, the emphasis is being laid on alternative eco-friendly control measures. Microbial control is one of the important components of integrated pest management. Thus, in search for novel biocontrol agents, the current work was carried out with the aim to evaluate the insecticidal potential of soil bacteria against S. litura. RESULTS: Among the tested soil bacterial isolates (EN1, EN2, AA5, EN4 and R1), maximum mortality (74%) was exhibited by Pseudomonas sp. (EN4). The larval mortality rate increased in a dose-dependent manner. Bacterial infection also significantly delayed the larval development, reduced adult emergence, and induced morphological deformities in adults of S. litura. Adverse effects were also detected on various nutritional parameters. The infected larvae showed a significant decrease in relative growth and consumption rate as well as efficiency of conversion of ingested and digested food to biomass. Histopathological studies indicated damage to the midgut epithelial layer of larvae due to the consumption of bacteria treated diet. The infected larvae also showed a significantly decreased level of various digestive enzymes. Furthermore, exposure to Pseudomonas sp. also caused DNA damage in the hemocytes of S. litura larvae. CONCLUSION: Adverse effects of Pseudomonas sp. EN4 on various biological parameters of S. litura indicate that this soil bacterial strain may be used as an effective biocontrol agent against insect pests.