Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.839
Filtrar
1.
J Photochem Photobiol B ; 201: 111653, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31710929

RESUMO

Autophagy is an important process for maintaining intracellular homeostasis. Our previous study demonstrated that autophagy was down-regulated in ultraviolet B (UVB)-irradiated keratinocytes. Raffinose is a natural oligosaccharide that serves as a novel activator of autophagy and as a balancing agent to regulate the diversity of environmental stress. However, whether raffinose balances ultraviolet stress through the autophagy activation pathway has yet to be established. In this study, we found that raffinose treatment inhibited the LDH release and trypan blue staining in UVB-challenged human keratinocytes cell line HaCaT but did not affect the cleavage of apoptotic markers Caspase-3 and PARP, as well as translocation into nucleus of other cell death markers Endonuclease G and AIF. Moreover, we confirmed that raffinose treatment enhanced autophagy flux in an MTOR-independent manner in HaCaT cells. Importantly, decrease of LC3-II turnover in UVB-irradiated keratinocytes could be rescued by raffinose treatment, indicating that raffinose treatment increased autophagy in UVB-irradiated HaCaT cells. Furthermore, the effect on cell death by raffinose was inhibited when autophagy was suppressed with either a small interfering RNA targeting ATG5 (siATG5) or autophagic inhibitor wortmannin. In conclusion, we demonstrated that raffinose increases MTOR-independent autophagy and reduces cell death in UVB-irradiated keratinocytes. Our study indicated that the natural agent raffinose presents the potential value in opposing photodamage.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Rafinose/farmacologia , Raios Ultravioleta , Apoptose/efeitos da radiação , Autofagia/efeitos da radiação , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(5): 654-659, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31762233

RESUMO

OBJECTIVE: To investigate the expression of ß-catenin in the skin lesions of patients with systemic scleroderma (SSc) and its effect on epithelial-mesenchymal transition (EMT) of human epidermal keratinocytes. METHODS: The expression of ß-catenin, Snail1 and E-cadherin in the skin lesions sample of 45 SSc patients and normal skin sample from 20 healthy adults was detected with SP immunohistochemistry. HaCaT, the human epidermal keratinocytes, were treated with different concentrations of Wnt10b (0 ng/mL (control), 2 ng/mL and 4 ng/mL) for 48 h. then detected the localization of ß-catenin in HaCaT cells by immunofluorescence assay, determined the mRNA levels of Snail1 and Snail2 in HaCaT cells by real-time fluorescent quantitative PCR, detected the proteins expression of ß-catenin, Vimentin, N-cadherin and E-cadherin in HaCaT cells by Western blot. RESULTS: The positive rates of ß-catenin, Snail1 and E-cadherin in skin lesions of SSc patients were 100%, 88.89% and 2.22% respectively, while in healthy adult skin, the corresponding positive rates were 0%, 10.00%, and 95.00%. The difference between the two groups was significant. Compared with control group, treatment with different concentrations of Wnt10b (2 ng/mL and 4 ng/mL) induced up-regulation of ß-catenin expression and promoted translocation of ß-catenin from cytoplasm to nucleus, increased the mRNA levels of Snail1 and Snail2 (P < 0.05), and up-regulated the proteins expression of Vimentin, N-cadherin, down-regulated the E-cadherin protein expression in HaCaT cells (P < 0.05). CONCLUSIONS: Abnormally activated Wnt/ß-catenin signaling pathway and abnormally expressed EMT-related proteins are observed in SSc lesions. Activation of Wnt/ß-catenin signaling pathway may promote EMT in HaCaT cells.


Assuntos
Transição Epitelial-Mesenquimal , Queratinócitos/metabolismo , Escleroderma Sistêmico/metabolismo , Pele/metabolismo , beta Catenina/metabolismo , Adulto , Antígenos CD/metabolismo , Caderinas/metabolismo , Humanos , Queratinócitos/citologia , Escleroderma Sistêmico/patologia , Pele/patologia , Fatores de Transcrição da Família Snail/metabolismo , Vimentina/metabolismo , Via de Sinalização Wnt
3.
Int J Nanomedicine ; 14: 7123-7139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564869

RESUMO

Background: Poly(amidoamine) (PAMAM) dendrimers are of considerable interest when used as a carrier for topical drugs for the skin, although little is known about their possible side effects. Therefore, our study was about the impact of 2nd and 3rd generation PAMAM dendrimers on human keratinocytes and fibroblasts cells. Methods: The effect of the tested compounds on collagen biosynthesis was determined using 5[3H]-proline incorporation bioassay. Morphological changes accompanying cell growth inhibition were observed using a confocal microscope. To evaluate the percentage of apoptotic/necrotic cells and the cell growth dynamic of apoptotic features, we performed Annexin V/PI double staining assay, assessed caspase activity, and performed cell cycle analysis by flow cytometry. The flow cytometry method was also used to determine the effect of dendrimers on pro-inflammatory cytokines (IL-6, IL-8 IL-1ß). Results: The obtained results showed that as the concentration and the generation of dendrimers increased, collagen biosynthesis decreased. We also observed abnormalities in cell differentiation, which may have caused disturbed secretion of pro-inflammatory cytokines. We found that dendrimers cause chronic inflammation which may cause adverse changes in the skin, ultimately- leading to apoptosis in the case of dendrimers in lower concentrations or necrosis at higher concentrations (especially 3rd generation dendrimers). In addition, the inflammatory path induced by the tested compounds was caused by damage in the mitochondria, which we observed as a significant decrease in the mitochondrial membrane potential. Conclusion: The results of our study showed that PAMAM dendrimers can cause disorders of cell proliferation and differentiation and may be the cause of cell cycle deregulation and chronic adverse inflammation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Dendrímeros/farmacologia , Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Queratinócitos/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Colágeno/biossíntese , Dendrímeros/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fluorescência , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Necrose
4.
Cell Prolif ; 52(5): e12668, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31379046

RESUMO

OBJECTIVES: Reproducing human hair follicles in vitro is often limited by various reasons such as the lack of a systematic approach to culture distinct hair follicle cell types to reproduce their spatial relationship. Here, we reproduce hair follicle-like constructs resembling the spatial orientation of different cells in vivo, to study the role of keratinocytes in maintaining cellular compartmentalization among hair follicle-related cells. MATERIALS AND METHODS: Dermal papilla (DP) cells, HaCaT keratinocytes and human dermal fibroblast (HDF) cells were seeded sequentially into three-dimensional (3D) microwells fabricated from polyethylene glycol diacrylate hydrogels. Quantitative polymerase chain reaction was used to compare inductive gene expression of 3D and two-dimensional (2D) DP. DP and HaCaT cells were transfected with green fluorescent protein and red fluorescent protein lentivirus, respectively, to enable cell visualization using confocal microscopy. RESULTS: The 3D DP cultures showed significantly enhanced expression of essential DP genes as compared 2D cultures. Core-shell configurations containing keratinocytes forming the outer shell and DP forming the core were observed. Migratory polarization was mediated by cell-cell interaction between the keratinocytes and HDF cells, while preserving the aggregated state of the DP cells. CONCLUSIONS: Keratinocytes may play a role in maintaining compartmentalization between the DP and the surrounding HDF residing in the dermis, and therefore maintains the aggregative state of the DP cells, necessary for hair follicle development and function.


Assuntos
Técnicas de Cultura de Células/métodos , Derme/citologia , Fibroblastos/citologia , Queratinócitos/citologia , Células Cultivadas , Derme/metabolismo , Fibroblastos/metabolismo , Humanos , Hidrogéis/química , Queratinócitos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal
5.
Int J Nanomedicine ; 14: 5033-5050, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371945

RESUMO

Background: Repairs to deep skin wounds continue to be a difficult issue in clinical practice. A promising approach is to fabricate full-thickness skin substitutes with functions closely similar to those of the natural tissue. For many years, a three-dimensional (3D) collagen hydrogel has been considered to provide a physiological 3D environment for co-cultivation of skin fibroblasts and keratinocytes. This collagen hydrogel is frequently used for fabricating tissue-engineered skin analogues with fibroblasts embedded inside the hydrogel and keratinocytes cultivated on its surface. Despite its unique biological properties, the collagen hydrogel has insufficient stiffness, with a tendency to collapse under the traction forces generated by the embedded cells. Methods: The aim of our study was to develop a two-layer skin construct consisting of a collagen hydrogel reinforced by a nanofibrous poly-L-lactide (PLLA) membrane pre-seeded with fibroblasts. The attractiveness of the membrane for dermal fibroblasts was enhanced by coating it with a thin nanofibrous fibrin mesh. Results: The fibrin mesh promoted the adhesion, proliferation and migration of the fibroblasts upwards into the collagen hydrogel. Moreover, the fibroblasts spontaneously migrating into the collagen hydrogel showed a lower tendency to contract and shrink the hydrogel by their traction forces. The surface of the collagen was seeded with human dermal keratinocytes. The keratinocytes were able to form a basal layer of highly mitotically-active cells, and a suprabasal layer. Conclusion: The two-layer skin construct based on collagen hydrogel with spontaneously immigrated fibroblasts and reinforced by a fibrin-coated nanofibrous membrane seems to be promising for the construction of full-thickness skin substitute.


Assuntos
Colágeno/farmacologia , Fibrina/farmacologia , Hidrogéis/farmacologia , Membranas Artificiais , Nanofibras/química , Poliésteres/farmacologia , Pele Artificial , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Derme/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Recém-Nascido , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos
6.
Int J Nanomedicine ; 14: 5449-5475, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409998

RESUMO

Purpose: We created and evaluated an enhanced topical delivery system featuring a combination of highly skin-permeable growth factors (GFs), quercetin (QCN), and oxygen; these synergistically accelerated re-epithelialization and granulation tissue formation of/in diabetic wounds by increasing the levels of GFs and antioxidants, and the oxygen partial pressure, at the wound site. Methods: To enhance the therapeutic effects of exogenous administration of GFs for the treatment of diabetic wounds, we prepared highly skin-permeable GF complexes comprised of epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), platelet-derived growth factor-A (PDGF-A), and basic fibroblast growth factor (bFGF), genetically attached, via the N-termini, to a low-molecular-weight protamine (LMWP) to form LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, and LMWP-bFGF, respectively. Furthermore, quercetin (QCN)- and oxygen-carrying 1-bromoperfluorooctane (PFOB)-loaded nanoemulsions (QCN-NE and OXY-PFOB-NE) were developed to improve the topical delivery of QCN and oxygen, respectively. After confirming the enhanced penetration of LMWP-GFs, QCN-NE, and oxygen delivered from OXY-PFOB-NE across human epidermis, we evaluated the effects of combining LMWP-GFs, QCN-NE, and OXY-PFOB-NE on proliferation of keratinocytes and fibroblasts, and the chronic wound closure rate of a diabetic mouse model. Results: The optimal ratios of LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, LMWP-bFGF, QCN-NE, and OXY-PFOB-NE were 1, 1, 0.02, 0.02, 0.2, and 60, respectively. Moreover, a Carbopol hydrogel containing LMWP-GFs, QCN-NE, and OXY-PFOB-NE (LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL) significantly improved scratch-wound recovery of keratinocytes and fibroblasts in vitro compared to that afforded by hydrogels containing each component alone. LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL significantly accelerated wound-healing in a diabetic mouse model, decreasing wound size by 54 and 35% compared to the vehicle and LMWP-GFs, respectively. Conclusion: LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL synergistically accelerated the healing of chronic wounds, exerting both rapid and prolonged effects.


Assuntos
Diabetes Mellitus/patologia , Hidrogéis/química , Fator de Crescimento Insulin-Like I/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Oxigênio/metabolismo , Quercetina/farmacologia , Absorção Cutânea , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno/biossíntese , Modelos Animais de Doenças , Emulsões/química , Fator de Crescimento Epidérmico/farmacologia , Epiderme/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Peso Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Octanos/química , Fator de Crescimento Derivado de Plaquetas/farmacologia , Protaminas/química , Absorção Cutânea/efeitos dos fármacos
7.
Plast Reconstr Surg ; 144(2): 347-356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31348342

RESUMO

BACKGROUND: Hyperpigmentation following ultraviolet irradiation has cosmetic concerns. Botulinum toxin type A can favorably affect skin pigmentation. However, the mechanism of skin pigmentation is unclear. METHODS: In vitro, human epidermal melanocytes were co-cultured with human keratinocytes. After cells were treated with botulinum toxin type A, cell morphology, proliferation, and dendricity were analyzed, and immunofluorescence, tyrosinase activity, and melanin contents were determined. To evaluate the effect of botulinum toxin type A on ultraviolet B-irradiated mouse skin, ultraviolet B alone was applied to one side of the back of each mouse as a control, whereas ultraviolet B plus injection of botulinum toxin type A was applied to the contralateral side. Skin pigmentation, histology, and the number of dihydroxyphenylalanine-positive melanocytes were evaluated. The L* colorimeter value was measured. Enzyme-linked immunosorbent assay determinations of basic fibroblast growth factor, interleukin-1 alpha, and prostaglandin E2 were performed. RESULTS: Immunohistochemical staining revealed botulinum toxin type A in the cytoplasm of melanocytes and in the positive control. In vitro, melanocyte dendricity and melanin contents were decreased slightly but significantly (p < 0.05) after botulinum toxin type A treatment. In vivo, botulinum toxin type A suppressed skin pigmentation. The number of dihydroxyphenylalanine-positive melanocytes was also significantly lower than in the control side. Tyrosinase activity and melanin content were also significantly reduced (p < 0.05). Botulinum toxin type A also significantly reduced the amounts of basic fibroblast growth factor, interleukin-1 alpha, and prostaglandin E2 (all p < 0.05). CONCLUSION: Botulinum toxin type A can suppress epidermal melanogenesis through both direct and indirect mechanisms.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Hiperpigmentação/prevenção & controle , Protetores contra Radiação/farmacologia , Pigmentação da Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Animais , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Di-Hidroxifenilalanina/metabolismo , Epiderme/efeitos da radiação , Humanos , Injeções Intraperitoneais , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Masculino , Melaninas/metabolismo , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Camundongos Pelados , Monofenol Mono-Oxigenase/metabolismo , Fotometria , Pigmentação da Pele/efeitos da radiação
8.
Life Sci ; 233: 116703, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31356903

RESUMO

AIMS: The initiation of pressure ulcers is accompanied by inflammation. Sinomenine emerges as a potential anti-inflammation agent. The aim of this study was to corroborate its anti-inflammatory property in skin keratinocyte HaCaT cells. Long non-coding RNA colon cancer associated transcript-1 (CCAT1)-associated mechanisms were also investigated. MAIN METHODS: HaCaT cells were stimulated with lipopolysaccharide (LPS) for 6 h after sinomenine pre-administration. Transfection was carried out to induce CCAT1 overexpression or silence it in HaCaT cells. Viability and apoptosis of HaCaT cells were determined by MMT and observed using flow cytometry, respectively. Protein expression was quantified using Western blot or ELISA. CCAT1 was measured by qRT-PCR. KEY FINDINGS: LPS notably decreased cell viability and exaggerated apoptosis with the cleavage of caspase-3/-9. The secretion of inflammatory factors was promoted. Sinomenine pre-administration maintained cell viability, blocked apoptosis and relieved inflammation with the decrease in cleaved caspase-3/-9 and inflammatory factors. LPS-induced phosphorylation of p65, IκBα and p38MAPK and overexpression of CCAT1 were precluded by sinomenine. CCAT1 overexpression, which per se induced inflammatory lesions, negated the positive effects of sinomenine with the restored phosphorylation of p65, IκBα, and p38MAPK. SIGNIFICANCE: Sinomenine played a protective role against LPS-induced inflammation. The anti-inflammatory activity of sinomenine might be mediated by CCAT1 down-regulation.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Queratinócitos/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Morfinanos/farmacologia , RNA Longo não Codificante/genética , Pele/efeitos dos fármacos , Antirreumáticos/farmacologia , Células Cultivadas , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Queratinócitos/citologia , Queratinócitos/metabolismo , Pele/citologia , Pele/metabolismo
9.
Chem Biodivers ; 16(8): e1900252, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250551

RESUMO

Patrinia scabiosifolia (PS) has bioactivities such as antitumor and anti-inflammation effects. However, its effects on human skin physiological activities, such as skin regeneration and wound healing, remain unclear. In this study, we investigated the effects of absolute extracted from PS flower (PSF) on migration and proliferation of human dermal keratinocyte (HaCat). The yield of PSF absolute obtained by solvent extraction method was 0.105 % and its five constituents were found in GC/MS analysis. The PSF absolute induced the proliferation and migration of HaCats. The absolute increased the phosphorylation of serine/threonine-specific protein kinase (Akt) and extracellular signal-regulated kinase1/2 (Erk1/2) in HaCats. In addition, the absolute stimulated the outgrowth of collagen sprouting of HaCats. These results demonstrated, for the first time, that PSF absolute may have positive effects on skin regeneration and/or wound healing by inducing migration and proliferation of dermal keratinocytes via the Akt/Erk1/2 pathway. Therefore, PSF absolute may be a useful natural material for skin regeneration and/or wound healing.


Assuntos
Patrinia/química , Extratos Vegetais/química , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flores/química , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Patrinia/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Int J Nanomedicine ; 14: 3345-3360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190796

RESUMO

Background: Designing a wound dressing that effectively prevents multi-drug-resistant bacterial infection and promotes angiogenesis and re-epithelialization is of great significance for wound management. Methods and results: In this study, a biocompatible composite membrane comprising biomimetic polydopamine-modified eggshell membrane nano/microfibres coated with KR-12 antimicrobial peptide and hyaluronic acid (HA) was developed in an eco-friendly manner. The physicochemical properties of the composite membrane were thoroughly characterized, and the results showed that the surface hydrophilicity and water absorption ability of the composite membrane were improved after the successive conjugation of the HA and the KR-12 peptide. Furthermore, the in vitrobiological results revealed that the composite membrane had excellent antibacterial activity against Gram-positive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli, and it could prevent MRSA biofilm formation on its surface. Additionally, it promoted the proliferation of keratinocytes and human umbilical vein endothelial cells and increased the secretion of VEGF. Finally, an in vivo animal study indicated that the composite membrane could promote wound healing via accelerating angiogenesis and re-epithelialization, which were demonstrated by the enhanced expression of angiogenetic markers (CD31 and VEGF) and keratinocyte proliferation marker (PCNA), respectively. Conclusion: These results indicated that the composite membrane is a potential candidate of wound dressings.


Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Casca de Ovo/química , Ácido Hialurônico/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos/farmacologia , Reepitelização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Galinhas , Escherichia coli/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos/química , Porosidade , Staphylococcus aureus/efeitos dos fármacos
11.
J Photochem Photobiol B ; 197: 111518, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31202076

RESUMO

Disclosure of ultraviolet (UV) radiation is the key feature from environment to cause redness of the skin, inflammation, photoaging and skin cancer. 6-Shogaol, a spicy compound secluded from ginger, which shows anti-inflammatory effects. Present study was demonstrated the role of 6-Shogaol on UVB induced oxidative stress and photoaging signaling in human epidermal keratinocytes (HaCaT cells). In this study, UVB-irratiation (180 mJ/cm2) significantly elevated the intracellular ROS levels, depletion of antioxidants resulted in apoptotic HaCaT cells. MAPKs signaling are concerned in oxidative stress; these signaling events are measured as differentiation. We found that 6-shogaol prevents over expression of MAPKs (ERK1, JNK1 & p38), in disclosure of UVB in HaCaT cells. Moreover, 6-shogaol infringed Bax and Bcl-2 in which 20 µg 6-shogaol influenced apoptosis in HaCaT cells by investigating augmented appearance of Bax and condensed appearance of Bcl-2 in contrast to control HaCaT cells. These results suggest that 6-shogaol could be a successful healing agent provides fortification against UVB-induced provocative and oxidative skin reimbursement.


Assuntos
Catecóis/farmacologia , Gengibre/química , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta , Apoptose/efeitos dos fármacos , Catecóis/química , Catecóis/uso terapêutico , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Gengibre/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(5): 441-446, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31223113

RESUMO

Objective To investigate the effect of baicalin on the viability and cell cycle of psoriatic keratinocytes and its possible mechanism. Methods MTT assay was used to detect the viability of keratinocytes treated by 0, 10, 50, 100, 200, 300 µg/mL baicalin for 48 hours. The cell cycle and apoptotic rate were detected by flow cytometry. The mRNA expression levels of ki67, Fas, and caspase-3 were analyzed by real-time quantitative PCR and the protein expression of Notch 1, Jagged 1 and Hes l in the keratinocytes were observed by Western blot analysis. Results The viability of keratinocytes was inhibited by baicalin in a dose-dependent manner. Baicalin (200 µg/mL) significantly promoted the apoptosis of keratinocytes, arrested the S phase, inhibited the mRNA expression of ki67, increased the Fas and caspase-3 levels, down-regulated the protein expression of Jagged 1, and up-regulated the Notch 1 and Hes protein levels. Conclusion Baicalin can significantly inhibit the viability of keratinocytes and promote cell apoptosis, probably by activating Notch signaling pathway.


Assuntos
Flavonoides/farmacologia , Queratinócitos/efeitos dos fármacos , Psoríase/patologia , Receptores Notch/metabolismo , Transdução de Sinais , Apoptose , Células Cultivadas , Humanos , Queratinócitos/citologia
13.
BMC Cancer ; 19(1): 402, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035967

RESUMO

BACKGROUND: Different 3D-cell culture approaches with varying degrees of complexity have been developed to serve as melanoma models for drug testing or mechanistic studies. While these 3D-culture initiatives are already often superior to classical 2D approaches, they are either composed of only melanoma cells or they are so complex that the behavior of individual cell types is hard to understand, and often they are difficult to establish and expensive. METHODS: This study used low-attachment based generation of spheroids composed of up to three cell types. Characterization of cells and spheroids involved cryosectioning, immunofluorescence, FACS, and quantitative analyses. Statistical evaluation used one-way ANOVA with post-hoc Tukey test or Student's t-test. RESULTS: The tri-culture model allowed to track cellular behavior in a cell-type specific manner and recapitulated different characteristics of early melanoma stages. Cells arranged into a collagen-IV rich fibroblast core, a ring of keratinocytes, and groups of highly proliferating melanoma cells on the outside. Regularly, some melanoma cells were also found to invade the fibroblast core. In the absence of melanoma cells, the keratinocyte ring stratified into central basal-like and peripheral, more differentiated cells. Conversely, keratinocyte differentiation was clearly reduced upon addition of melanoma cells. Treatment with the cytostatic drug, docetaxel, restored keratinocyte differentiation and induced apoptosis of external melanoma cells. Remaining intact external melanoma cells showed a significantly increased amount of ABCB5-immunoreactivity. CONCLUSIONS: In the present work, a novel, simple spheroid-based melanoma tri-culture model composed of fibroblasts, keratinocytes, and melanoma cells was described. This model mimicked features observed in early melanoma stages, including loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced increase of ABCB5 expression in external melanoma cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura/métodos , Esferoides Celulares/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Docetaxel/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Esferoides Celulares/citologia
14.
J Photochem Photobiol B ; 194: 84-95, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30933875

RESUMO

Ultraviolet (UV)-B radiation is a major environmental risk factor that is responsible for the development and progression of many skin cancers. Apigenin, a type of bioflavonoid, has been reported to inhibit UVB-induced skin cancer. However, how apigenin functions in keratinocytes with UV damage remains unclear. In this study, by lactate dehydrogenase (LDH) release assay, we found that apigenin treatment increased cell death in the primary human epidermal keratinocytes (HEKs) and the cutaneous squamous cell carcinoma cell line COLO-16. Apigenin treatment reduced microtubule-associated protein 1 light chain 3 (LC3)-II turnover, acridine orange staining and GFP-LC3 puncta in both cell types, suggesting autophagy inhibition. However, apigenin treatment restored the inhibition of autophagy in UVB-challenged HEKs. Moreover, apigenin treatment restored the UVB-induced downregulation of ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia, Rad3-related (ATR) and the unfolded protein response (UPR) regulatory proteins, BiP, IRE1α and PERK in HEKs. Apigenin treatment also inhibited UVB-induced apoptosis and cell death in HEKs. In addition, autophagy inhibition by autophagy-related gene (ATG) 5 RNA interference interrupted apigenin-induced restoration of ATR, ATM and BiP, which were downregulated in HEKs exposed to UVB radiation. Our findings indicate that apigenin exhibits a novel protective effect in keratinocytes with UVB damage, suggesting potential application as a photoprotective agent.


Assuntos
Apigenina/farmacologia , Autofagia/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Autofagia/efeitos da radiação , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Células HEK293 , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Protetores contra Radiação/farmacologia , Resposta a Proteínas não Dobradas/efeitos da radiação
15.
Pesqui. vet. bras ; 39(4): 292-298, Apr. 2019. ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1002809

RESUMO

The importance of the hoof to the horse health is clear, and the current knowledge regarding the cellular aspects of hoof keratinocytes is poor. Studies on equine keratinocyte culture are scarce. Developing keratinocyte cultures in vitro is a condition for studies on molecular biology, cell growth and differentiation. Some methods have already been established, such as those for skin keratinocyte culture. However, few methodologies are found for lamellar keratinocytes. The objective of this study was to standardize the equine hoof keratinocyte isolation and cultivation, and then characterize the cell immunophenotype. For this, the primary culture method used was through explants obtained from three regions of the equine hoof (medial dorsal, dorsal, and lateral dorsal). After the cell isolation and cultivation, the cell culture and its explants were stained with anti-pan cytokeratin (pan-CK) (AE1/AE3), vimentin (V9), p63 (4A4), and Ki-67 (MIB-1) antibodies. Cells were grown to third passage, were positive for pan-CK, p63 and Ki-67, and few cells had vimentin positive expression. As for the explants, the epidermal laminae were not stained for vimentin or Ki-67. However, some cells presented positive pan-CK and p63 expression. This study demonstrated the viability of lamellar explants of equine hooves as a form of isolating keratinocytes in primary cultures, as well as characterized the proliferation ability of such keratinocytes in monolayers.(AU)


É notória a importância do casco na saúde dos equinos, mas o conhecimento em nível celular é pouco entendido. Estudos envolvendo o cultivo de queratinócitos equinos são escassos. Sabe-se que o desenvolvimento de cultivos de queratinócitos in vitro é uma condição para estudos sobre a biologia molecular, crescimento e diferenciação celular. Alguns métodos já estão estabelecidos, como para cultivo de queratinócitos de pele, mas poucas metodologias são encontradas para queratinócitos lamelares. O objetivo desse estudo foi padronizar o cultivo de queratinócitos provenientes de casco equino visando futuramente associar ao estudo da medicina regenerativa para assim estabelecer um modelo experimental in vitro e indicar o uso criterioso de terapias regenerativas para a laminite equina. Desta forma, o cultivo em monocamada e a caracterização de queratinócitos lamelares foram realizados. Para isso, o método de cultura primária utilizado foi através de explantes obtidos de três regiões do casco (dorso-medial, dorsal e dorso-lateral). As células foram caracterizadas para os marcadores anti pan-cytokeratin (AE1/AE3), vimentin (V9), p63 (4A4) e Ki-67 (MIB-1) nos cultivos e nos explantes. As células foram cultivadas até terceira passagem, tendo marcação positiva para pan-CK, p63 e Ki-67 e fraca marcação para vimentina. Já as lâminas epidermais não tiveram marcação de vimentin e Ki-67, porém marcaram acentuadamente para pan-CK e p63. Este estudo demonstrou a exiquibilidade do uso de explantes lamelares do casco de equinos, como forma de isolamento de queratinócitos em cultivos primários, bem como caracterizou a habilidade de proliferação desses queratinócitos em monocamada.(AU)


Assuntos
Animais , Cultura Primária de Células/veterinária , Doenças do Pé/veterinária , Casco e Garras/patologia , Doenças dos Cavalos/patologia , Doenças dos Cavalos/terapia , Queratinócitos/citologia
16.
Biofouling ; 35(2): 129-142, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30950296

RESUMO

The present study investigated the antimicrobial, anti-adhesion and anti-biofilm activity of the modified synthetic molecules nitrochalcone (NC-E05) and pentyl caffeate (C5) against microorganisms which have a high incidence in hospital-acquired infections. The compounds were further tested for their preliminary systemic toxicity in vivo. NC-E05 and C5 showed antimicrobial activity, with minimum inhibitory concentrations (MICs) ranging between 15.62 and 31.25 µg ml-1. Treatment with NC-E05 and C5 at 1 × MIC and/or 10 × MIC significantly reduced mono or mixed-species biofilm formation and viability. At MIC/2, the compounds decreased microbial adhesion to HaCaT keratinocytes from 1 to 3 h (p < 0.0001). In addition, NC-E05 and C5 demonstrated low toxicity in vivo in the Galleria mellonella model at anti-biofilm concentrations. Thus, the chemical modification of these molecules proved to be effective in the proposed anti-biofilm activity, opening opportunities for the development of new antimicrobials.


Assuntos
Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Chalconas/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Anti-Infecciosos/toxicidade , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Biofilmes/crescimento & desenvolvimento , Ácidos Cafeicos/toxicidade , Candida albicans/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chalconas/toxicidade , Infecção Hospitalar/prevenção & controle , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
18.
Molecules ; 24(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018484

RESUMO

Cutaneous wound healing is a well-orchestrated event in which many types of cells and growth factors are involved in restoring the barrier function of skin. In order to identify whether ginsenosides, the main active components of Panax ginseng, promote wound healing, the proliferation and migration activities of 15 different ginsenosides were tested by MTT assay and scratched wound closure assay. Among ginsenosides, gypenoside LXXV (G75) showed the most potent wound healing effects. Thus, this study aimed to investigate the effects of G75 on wound healing in vivo and characterize associated molecular changes. G75 significantly increased proliferation and migration of keratinocytes and fibroblasts, and promoted wound closure in an excision wound mouse model compared with madecassoside (MA), which has been used to treat wounds. Additionally, RNA sequencing data revealed G75-mediated significant upregulation of connective tissue growth factor (CTGF), which is known to be produced via the glucocorticoid receptor (GR) pathway. Consistently, the increase in production of CTGF was confirmed by western blot and ELISA. In addition, GR-competitive binding assay and GR translocation assay results demonstrated that G75 can be bound to GR and translocated into the nucleus. These results demonstrated that G75 is a newly identified effective component in wound healing.


Assuntos
Anti-Inflamatórios/farmacologia , Fator de Crescimento do Tecido Conjuntivo/genética , Fármacos Dermatológicos/farmacologia , Receptores de Glucocorticoides/genética , Ferida Cirúrgica/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fármacos Dermatológicos/química , Fármacos Dermatológicos/isolamento & purificação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Ginsenosídeos/farmacologia , Gynostemma/química , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Panax/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Transporte Proteico , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/lesões , Pele/metabolismo , Ferida Cirúrgica/genética , Ferida Cirúrgica/metabolismo , Ferida Cirúrgica/patologia , Cicatrização/fisiologia
19.
Mater Sci Eng C Mater Biol Appl ; 100: 665-675, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948103

RESUMO

The wound healing process in the soft tissues adjacent to percutaneous implants induces "epithelial downgrowth", and subsequently, a sinus tract around the device. This provides an optimal environment for bacterial colonization and proliferation. In an attempt to arrest downgrowth and achieve epithelial attachment to a device surface, we have sought to mimic the most common and successful percutaneous organ, the tooth. Since teeth are composed of partially and fully fluoridated forms of hydroxyapatite (HA), it was hypothesized that the surface properties of fluoridated apatites, fluorohydroxyapatite (FHA) and fluorapatite (FA), would improve epithelial cellular adhesion and differentiation when compared to HA and titanium (Ti) surfaces. In this study, the apatites (HA, FHA, and FA) were synthesized and characterized. Following a high-temperature sintering treatment of these apatites, keratinocyte and fibroblast adhesion and differentiation properties were analyzed in vitro, revealing a statistically significant increase in keratinocyte adhesion and terminal differentiation on FA surfaces sintered at 1050-1150 °C as compared to Ti or HA. Moreover, fibroblasts displayed enhanced adhesion on FHA surfaces. This data suggests that percutaneous devices coated with, or fabricated from, fluoridated apatites may induce improved epithelial cellular adhesion and differentiation, potentially limiting deeply penetrating epithelial downgrowth and resultant bacterial ingress.


Assuntos
Apatitas/farmacologia , Fluoretos/farmacologia , Próteses e Implantes , Animais , Aderência Bacteriana/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Eletricidade Estática , Difração de Raios X
20.
Cell Mol Life Sci ; 76(17): 3465-3476, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30949721

RESUMO

Plakophilins (Pkp) are desmosomal plaque proteins crucial for desmosomal adhesion and participate in the regulation of desmosomal turnover and signaling. However, direct evidence that Pkps regulate clustering and molecular binding properties of desmosomal cadherins is missing. Here, keratinocytes lacking either Pkp1 or 3 in comparison to wild type (wt) keratinocytes were characterized with regard to their desmoglein (Dsg) 1- and 3-binding properties and their capability to induce Dsg3 clustering. As revealed by atomic force microscopy (AFM), both Pkp-deficient keratinocyte cell lines showed reduced membrane availability and binding frequency of Dsg1 and 3 at cell borders. Extracellular crosslinking and AFM cluster mapping demonstrated that Pkp1 but not Pkp3 is required for Dsg3 clustering. Accordingly, Dsg3 overexpression reconstituted cluster formation in Pkp3- but not Pkp1-deficient keratinocytes as shown by AFM and STED experiments. Taken together, these data demonstrate that both Pkp1 and 3 regulate Dsg membrane availability, whereas Pkp1 but not Pkp3 is required for Dsg3 clustering.


Assuntos
Adesão Celular , Desmogleína 1/metabolismo , Desmogleína 3/metabolismo , Placofilinas/genética , Animais , Anisomicina/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Desmogleína 1/genética , Desmogleína 3/genética , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Microscopia de Força Atômica , Placofilinas/deficiência , Placofilinas/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA