RESUMO
BLAST searches against the human genome showed that of the 93 keratin-associated proteins (KRTAPs) of Homo sapiens, 53 can be linked by sequence similarity to an H. sapiens metallothionein and 16 others can be linked similarly to occludin, while the remaining KRTAPs can themselves be linked to one or other of those 69 directly-linked proteins. The metallothionein-linked KRTAPs comprise the high-sulphur and ultrahigh-sulphur KRTAPs and are larger than the occludin-linked set, which includes the tyrosine- and glycine-containing KRTAPs. KRTAPs linked to metallothionein appeared in increasing numbers as evolution advanced from the deuterostomia, where KRTAP-like proteins with strong sequence similarity to their mammalian congeners were found in a sea anemone and a starfish. Those linked to occludins arose only with the later-evolved mollusca, where a KRTAP homologous with its mammalian congener was found in snails. The presence of antecedents of the mammalian KRTAPs in a starfish, a sea anemone, snails, fish, amphibia, reptiles and birds, all of them animals that lack hair, suggests that some KRTAPs may have a physiological role beyond that of determining the characteristics of hair fibres. We suggest that homologues of these KRTAPs found in non-hairy animals were co-opted by placodes, formed by the ectodysplasin pathway, to produce the first hair-producing cells, the trichocytes of the hair follicles.
Assuntos
Folículo Piloso , Queratinas , Animais , Humanos , Queratinas/genética , Queratinas/metabolismo , Ocludina/metabolismo , Cabelo/metabolismo , Mamíferos/genéticaRESUMO
Controlling infection-driven inflammation is a major clinical dilemma because of limited therapeutic options and possible adverse effects on microbial clearance. Compounding this difficulty is the continued emergence of drug-resistant bacteria, where experimental strategies aiming to augment inflammatory responses for enhanced microbial killing are not applicable treatment options for infections of vulnerable organs. As with corneal infections, severe or prolonged inflammation jeopardizes corneal transparency, leading to devastating vision loss. We hypothesized that keratin 6a-derived antimicrobial peptides (KAMPs) may be a two-pronged remedy capable of tackling bacterial infection and inflammation at once. We used murine peritoneal neutrophils and macrophages, together with an in vivo model of sterile corneal inflammation, to find that nontoxic and prohealing KAMPs with natural 10- and 18-amino acid sequences suppressed lipoteichoic acid (LTA)- and lipopolysaccharide (LPS)-induced NFκB and IRF3 activation, proinflammatory cytokine production, and phagocyte recruitment independently of their bactericidal function. Mechanistically, KAMPs not only competed with bacterial ligands for cell surface Toll-like receptor (TLR) and co-receptors (MD2, CD14, and TLR2) but also reduced cell surface availability of TLR2 and TLR4 through promotion of receptor endocytosis. Topical KAMP treatment effectively alleviated experimental bacterial keratitis, as evidenced by substantial reductions of corneal opacification, inflammatory cell infiltration, and bacterial burden. These findings reveal the TLR-targeting activities of KAMPs and demonstrate their therapeutic potential as a multifunctional drug for managing infectious inflammatory disease.
Assuntos
Queratinas , Receptor 2 Toll-Like , Camundongos , Animais , Receptor 2 Toll-Like/metabolismo , Queratinas/metabolismo , Inflamação/tratamento farmacológico , Peptídeos/metabolismo , Proteínas de Transporte , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Receptores de Lipopolissacarídeos/metabolismoRESUMO
Keratins are key structural proteins found in skin and other epithelial tissues. Keratins also protect epithelial cells from damage or stress. Fifty-four human keratins were identified and classified into two families, type I and type II. Accumulating studies showed that keratin expression is highly tissue-specific and used as a diagnostic marker for human diseases. Notably, keratin 79 (KRT79) is type II cytokeratin that was identified as regulator of hair canal morphogenesis and regeneration in skin, but its role in liver remains unclear. KRT79 is undetectable in normal mouse but its expression is significantly increased by the PPARA agonist WY-14643 and fenofibrate, and completely abolished in Ppara-null mice. The Krt79 gene has functional PPARA binding element between exon 1 and exon 2. Hepatic Krt79 is regulated by HNF4A and HER2. Moreover, hepatic KRT79 is also significantly elevated by fasting- and high-fat diet-induced stress, and these increases are completely abolished in Ppara-null mice. These findings suggest that hepatic KRT79 is controlled by PPARA and is highly associated with liver damage. Thus, KRT79 may be considered as a diagnostic marker for human liver diseases.
Assuntos
Hepatopatias , Fígado , Humanos , Camundongos , Animais , Fígado/metabolismo , Queratinas/metabolismo , Hepatopatias/metabolismo , Cabelo/metabolismo , Jejum/metabolismo , Camundongos KnockoutRESUMO
Sarcoptes scabiei (S. scabiei) is an ectoparasite that can infest humans and 150 mammalian host species, primarily causing pruritus, crust, and alopecia. However, neither the pathological process of host skin under S. scabiei infection nor the mechanism of S. scabiei infection in regulating apoptosis and keratinization of host skin has been studied yet. In this study, a total of 56 rabbits were artificially infested with S. scabiei, and the skin samples were collected at seven different time points, including 6 h, 12 h, day 1, day 3, 1 week, 4 weeks, and 8 weeks, whereas a group of eight rabbits served as controls. We measured epidermal thickness by H&E staining, observed the skin ultrastructure by electron microscopy, and detected the degree of skin apoptosis by TUNEL staining. The level of transcription of genes related to apoptosis and keratinization was detected by quantitative real-time PCR (qRT-PCR), and the level of Bcl-2 protein expression was further detected using immunohistochemistry. Our results showed that, with increased infestation time, the epidermal layer of the rabbit skin exhibited significant thickening and keratinization, swollen mitochondria in the epidermal cells, and increased skin apoptosis. The level of caspase-1, 3, 8, 10, 14, and Bcl-2 mRNA expression was increased, whereas the level of keratin 1 and 5 was decreased after S. scabiei infestation. In conclusion, S. scabiei infestation causes thickening of the epidermis, which may be related to apoptosis-induced proliferation and skin keratinization.
Assuntos
Ácaros e Carrapatos , Sarcoptidae , Escabiose , Pele , Animais , Humanos , Coelhos , Apoptose , Mamíferos , Sarcoptes scabiei/genética , Escabiose/patologia , Queratinas/metabolismo , Pele/metabolismoRESUMO
Keratin is regarded as the main component of feathers and is difficult to be degraded by conventional proteases, leading to substantial abandonment. Keratinase is the only enzyme with the most formidable potential for degrading feathers. Although there have been in-depth studies in recent years, the large-scale application of keratinase is still associated with many problems. It is relatively challenging to find keratinase not only with high activity but could also meet the industrial application environment, so it is urgent to exploit keratinase with high acid and temperature resistance, strong activity, and low price. Therefore, researchers have been keen to explore the degradation mechanism of keratinases and the modification of existing keratinases for decades. This review critically introduces the basic properties and mechanism of keratinase, and focuses on the current situation of keratinase modification and the direction and strategy of its future application and modification. KEY POINTS: â¢The research status and mechanism of keratinase were reviewed. â¢The new direction of keratinase application and modification is discussed. â¢The existing modification methods and future modification strategies of keratinases are reviewed.
Assuntos
Endopeptidases , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Queratinas/metabolismo , Plumas/metabolismo , Concentração de Íons de HidrogênioRESUMO
AIMS: Feathers are keratin-rich byproducts of poultry processing, but those are often frequently abandoned as garbage and thus polluting the environment. Therefore, the study focused on the efficient biodegradation, bioactivity, and high-value application of feather keratin. METHODS AND RESULTS: Feather-degrading bacteria were identified, and the degradation properties were characterized. DPPH (1,1-Diphenyl-2-picrylhydrazyl radical) and ABTS (2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid))radical scavenging assays, cytotoxicity assays, intracellular reactive oxygen scavenging assays, and cell migration assays were used to examine the biological activities of the feather keratin hydrolysis peptides (FKHPs). The results showed that we screened a feather-degrading strain of Bacillus licheniformis 8-4, which achieved complete degradation of 2% (w/v) feathers within 48 h. Notably, the feather fermentation broth was particularly high in FKHPs, which exhibited good DPPH and ABTS radical scavenging ability. Further studies revealed that FKHPs had both the ability to scavenge H2O2-induced ROS from HaCat cells and the ability to promote HaCat cell migration, while remaining non-toxic. CONCLUSIONS: The effective feather-degrading ability of B. licheniformis 8-4 allowed for the fermentation of feather medium to yield active peptides that were both antioxidants and cell-migration enhancers.
Assuntos
Bacillus licheniformis , Animais , Antioxidantes/química , Plumas/química , Plumas/metabolismo , Plumas/microbiologia , Queratinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Galinhas , Peptídeos/farmacologia , Peptídeos/química , Peptídeo Hidrolases/metabolismoRESUMO
Abstract Poultry industry is expanding rapidly and producing million tons of feather waste annually. Massive production of keratinaceous byproducts in the form of industrial wastes throughout the world necessitates its justified utilization. Chemical treatment of keratin waste is proclaimed as an eco-destructive approach by various researchers since it generates secondary pollutants. Keratinase released by a variety of microbes (bacteria and fungi) can be used for the effective treatment of keratin waste. Microbial degradation of keratin waste is an emerging and eco-friendly approach and offers dual benefits, i.e., treatment of recalcitrant pollutant (keratin) and procurement of a commercially important enzyme (keratinase). This study involves the isolation, characterization, and potential utility of fungal species for the degradation of chicken-feather waste through submerged and solid-state fermentation. The isolated fungus was identified and characterized as Aspergillus (A.) flavus. In a trial of 30 days, it was appeared that 74 and 8% feather weight was reduced through sub-merged and solid-state fermentation, respectively by A. flavus. The pH of the growth media in submerged fermentation was changed from 4.8 to 8.35. The exploited application of keratinolytic microbes is, therefore, recommended for the treatment of keratinaceous wastes to achieve dual benefits of remediation.
Resumo A indústria avícola está se expandindo rapidamente e produzindo milhões de toneladas de resíduos de penas anualmente. A produção massiva de subprodutos queratinosos na forma de resíduos agrícolas e industriais em todo o mundo exige sua utilização justificada. O tratamento químico de resíduos de queratina é proclamado como uma abordagem ecodestrutiva por vários pesquisadores, uma vez que gera poluentes secundários. A queratinase liberada por uma variedade de micróbios (bactérias e fungos) pode ser usada para o tratamento eficaz de resíduos de queratina. A degradação microbiana de resíduos de queratina é uma abordagem emergente e ecológica e oferece benefícios duplos, ou seja, tratamento de poluente recalcitrante (queratina) e obtenção de uma enzima comercialmente importante (queratinase). Este estudo envolve o isolamento, caracterização e utilidade potencial de espécies de fungos para a degradação de resíduos de penas de frango por meio da fermentação submersa e em estado sólido. O fungo isolado foi identificado e caracterizado como Aspergillus (A.) flavus. Em um ensaio de 30 dias, constatou-se que 74% e 8% do peso das penas foram reduzidos por A. flavus, respectivamente, por meio da fermentação submersa e em estado sólido. O pH do meio de crescimento em fermentação submersa foi alterado de 4,8 para 8,35. A aplicação explorada de micróbios queratinolíticos é, portanto, recomendada para o tratamento de resíduos ceratinosos para obter benefícios duplos de remediação.
Assuntos
Animais , Galinhas , Plumas , Fermentação , Fungos , Resíduos Industriais , Queratinas/metabolismoRESUMO
Molecular dynamics simulations are performed to investigate the molecular picture of water sorption in gecko keratin and the influence of relative humidity (RH) on the local structure and dynamics in water-swollen keratin. At low RHs, water sorption occurs through hydrogen bonding of water with the hydrophilic groups of keratin. At high RHs (>80%), additional water molecules connect to the first "layer" of amide-connected water molecules (multimolecular sorption) through hydrogen bonds, giving rise to a sigmoidal shape of the sorption isotherm. This causes the formation of large chain-like clusters surrounding the hydrophilic groups of keratin, which upon a further increase of the RH form a percolating water network. An examination of the dynamics of water molecules sorbed in keratin demonstrates that there are two states, bound and free, for water. The dynamics of water in these states depends on the RH. At low RHs, large-scale translational motions of tightly bound water molecules to keratin are needed to remake the entire hydration shell of the keratin. At high RHs (>80%), the water molecules more quickly exchange between the two states. The center-of-mass mean-square displacement of water molecules indicates a hopping motion of water molecules in the keratin solvation shell. The hopping mechanism is more pronounced at RHs < 80%. At higher RHs, water translation through water clusters (water network) dominates. We have observed two regimes for the dependence of dynamical properties on the RH: a regime of gradual increase of the dynamics over 10% < RH < 80% and a regime of drastic dynamic acceleration at RH > 80%. The latter regime begins exactly where the water uptake and the volume swelling also increase much more and where a drastic change in the elastic properties of gecko keratin has been observed. A nearly linear relation between the relaxation times for all dynamical processes and the water content of gecko keratin is observed.
Assuntos
Lagartos , beta-Queratinas , Animais , Estrutura Molecular , beta-Queratinas/metabolismo , Água/química , Água/metabolismo , Queratinas/metabolismo , Lagartos/metabolismoRESUMO
Keratin-rich wastes, mainly in the form of feathers, are recalcitrant residues generated in high amounts as by-products in chicken farms and food industry. Polylactic acid (PLA) is the second most common biodegradable polymer found in commercial plastics, which is not easily degraded by microbial activity. This work reports the 3.8-Mb genome of Bacillus altitudinis B12, a highly efficient PLA- and keratin-degrading bacterium, with potential for environmental friendly biotechnological applications in the feed, fertilizer, detergent, leather, and pharmaceutical industries. The whole genome sequence of B. altitudinis B12 revealed that this strain (which had been previously misclassified as Bacillus pumilus B12) is closely related to the B. altitudinis strains ER5, W3, and GR-8. A total of 4056 coding sequences were annotated using the RAST server, of which 2484 are core genes of the pan genome of B. altitudinis and 171 are unique to this strain. According to the sequence analysis, B. pumilus B12 has a predicted secretome of 353 proteins, among which a keratinase and a PLA depolymerase were identified by sequence analysis. The presence of these two enzymes could explain the characterized PLA and keratin biodegradation capability of the strain.
Assuntos
Bactérias , Queratinas , Animais , Queratinas/genética , Queratinas/metabolismo , Poliésteres/metabolismo , Análise de SequênciaRESUMO
The high demand for keratinolytic enzymes and the modest presentation of fungal keratinase diversity studies in scientific sources cause a significant interest in identifying new fungal strains of keratinase producers, isolating new enzymes and studying their properties. Four out of the 32 cultures showed a promising target activity on protein-containing agar plates-Aspergillus amstelodami A6, A. clavatus VKPM F-1593, A. ochraceus 247, and Cladosporium sphaerospermum 1779. The highest values of keratinolytic activity were demonstrated by extracellular proteins synthesized by Aspergillus clavatus VKPM F-1593 cultivated under submerged conditions on a medium containing milled chicken feathers. The enzyme complex preparation was obtained by protein precipitation from the culture liquid with ammonium sulfate, subsequent dialysis, and lyophilization. The fraction of a pure enzyme with keratinolytic activity (pI 9.3) was isolated by separating the extracellular proteins of A. clavatus VKPM F-1593 via isoelectric focusing. The studied keratinase was an alkaline subtilisin-like non-glycosylated protease active over a wide pH range with optimum keratinolysis at pH 8 and 50 °C.
Assuntos
Plumas , Queratinas , Animais , Queratinas/metabolismo , Biodegradação Ambiental , Fungos/metabolismo , Concentração de Íons de Hidrogênio , TemperaturaRESUMO
BACKGROUND/AIM: Clear cell sarcoma of soft tissue (CCSST) and conventional malignant melanoma (MM) are rare and aggressive tumours with similarities in morphology and the expression of melanocytic markers. MATERIALS AND METHODS: We established two CCSST cell lines (FU-CCSST-1 and FU-CCSST-2) from soft tissues of the patella and supraclavicular. A MM cell line (FU-MM-1) was established from lymph node metastases of subungual malignant melanoma. RESULTS: FU-CCSST-2 cells were transplantable to immunodeficient mice. Immunohistochemical studies demonstrated tumour cells were negative for cytokeratin AE1/AE3 and positive for S100 protein, HMB45, Melan-A, CD146 and SOX10 in all specimens. FU-CCSST-1 and FU-CCSST-2 harboured t(12;22)(q13;q12) translocations with expression of the EWSR1/ATF1 fusion gene. FU-MM-1 demonstrated loss of the short arm of chromosome 9 and harboured wild-type BRAF (codon 469 and 600) and NRAS (codon 12, 13 and 61). CONCLUSION: We report the establishment and characterisation of CCSST and MM cell lines that may have utility in the study of pathogenic mechanisms and development of novel therapeutic reagents.
Assuntos
Melanoma , Sarcoma de Células Claras , Humanos , Camundongos , Animais , Sarcoma de Células Claras/patologia , Antígeno MART-1/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Antígeno CD146 , Melanoma/genética , Melanoma/metabolismo , Proteínas S100/metabolismo , Queratinas/metabolismo , Linhagem CelularRESUMO
Griseofulvin is an antifungal polyketide metabolite produced mainly by ascomycetes. Since it was commercially introduced in 1959, griseofulvin has been used in treating dermatophyte infections. This fungistatic has gained increasing interest for multifunctional applications in the last decades due to its potential to disrupt mitosis and cell division in human cancer cells and arrest hepatitis C virus replication. In addition to these inhibitory effects, we and others found griseofulvin may enhance ACE2 function, contribute to vascular vasodilation, and improve capillary blood flow. Furthermore, molecular docking analysis revealed that griseofulvin and its derivatives have good binding potential with SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), and spike protein receptor-binding domain (RBD), suggesting its inhibitory effects on SARS-CoV-2 entry and viral replication. These findings imply the repurposing potentials of the FDA-approved drug griseofulvin in designing and developing novel therapeutic interventions. In this review, we have summarized the available information from its discovery to recent progress in this growing field. Additionally, explored is the possible mechanism leading to rare hepatitis induced by griseofulvin. We found that griseofulvin and its metabolites, including 6-desmethylgriseofulvin (6-DMG) and 4- desmethylgriseofulvin (4-DMG), have favorable interactions with cytokeratin intermediate filament proteins (K8 and K18), ranging from -3.34 to -5.61 kcal mol-1. Therefore, they could be responsible for liver injury and Mallory body (MB) formation in hepatocytes of human, mouse, and rat treated with griseofulvin. Moreover, the stronger binding of griseofulvin to K18 in rodents than in human may explain the observed difference in the severity of hepatitis between rodents and human.
Assuntos
COVID-19 , Policetídeos , Camundongos , Humanos , Ratos , Animais , Griseofulvina/farmacologia , Antifúngicos/farmacologia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus , Queratinas/metabolismo , RNA Polimerase Dependente de RNARESUMO
Keratoconus (KC) is a multifactorial progressive ectatic disorder characterized by local thinning of the cornea, leading to decreased visual acuity due to irregular astigmatism and opacities. Despite the evolution of advanced imaging methods, the exact etiology of KC remains unknown. Our aim was to investigate the involvement of corneal epithelium in the pathophysiology of the disease. Corneal epithelial samples were collected from 23 controls and from 2 cohorts of patients with KC: 22 undergoing corneal crosslinking (early KC) and 6 patients before penetrating keratoplasty (advanced KC). The expression of genes involved in the epidermal terminal differentiation program and of the oxidative stress pathway was assessed by real time PCR analysis. Presence of some of the differentially expressed transcripts was confirmed at protein level using immunofluorescence on controls and advanced KC additional corneal samples. We found statistically significant under-expression in early KC samples of some genes known to be involved in the mechanical resistance of the epidermis (KRT16, KRT14, SPRR1A, SPRR2A, SPRR3, TGM1 and TGM5) and in oxidative stress pathways (NRF2, HMOX1 and HMOX2), as compared to controls. In advanced KC samples, expression of SPRR2A and HMOX1 was reduced. Decreased expression of keratin (KRT)16 and KRT14 proteins was observed. Moreover, differential localization was noted for involucrin, another protein involved in the epidermis mechanical properties. Finally, we observed an immunofluorescence staining for the active form of NRF2 in control epithelia that was reduced in KC epithelia. These results suggest a defect in the mechanical resistance and the oxidative stress defense possibly mediated via the NRF2 pathway in the corneal keratoconic epithelium.
Assuntos
Epitélio Corneano , Ceratocone , Córnea/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Epitélio Corneano/metabolismo , Humanos , Queratinas/metabolismo , Ceratocone/genética , Ceratocone/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genéticaRESUMO
A large group of keratin genes (n=54 in the human genome) code for intermediate filament (IF)-forming proteins and show differential regulation in epithelial cells and tissues. Keratin expression can be highly informative about the type of epithelial tissue, differentiation status of constituent cells and biological context (e.g. normal versus diseased settings). The foundational principles underlying the use of keratin expression to gain insight about epithelial cells and tissues primarily originated in pioneering studies conducted in the 1980s. The recent emergence of single cell transcriptomics provides an opportunity to revisit these principles and gain new insight into epithelial biology. Re-analysis of single-cell RNAseq data collected from human and mouse skin has confirmed long-held views regarding the quantitative importance and pairwise regulation of specific keratin genes in keratinocytes of surface epithelia. Furthermore, such analyses confirm and extend the notion that changes in keratin gene expression occur gradually as progenitor keratinocytes commit to and undergo differentiation, and challenge the prevailing assumption that specific keratin combinations reflect a mitotic versus a post-mitotic differentiating state. Our findings provide a blueprint for similar analyses in other tissues, and warrant a more nuanced approach in the use of keratin genes as biomarkers in epithelia.
Assuntos
Queratinócitos , Queratinas , Camundongos , Animais , Humanos , Queratinas/genética , Queratinas/metabolismo , Epitélio/metabolismo , Queratinócitos/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/genéticaRESUMO
Since the dawn of century, tons of keratin bio-waste is generated by the poultry industry annually, and they end up causing environmental havoc. Keratins are highly flexible fibrous proteins which exist in α- and ß- forms and provide mechanical strength and stability to structural appendages. The finding of broad-spectrum protease, keratinase, from thermophilic bacteria and fungi, has provided an eco-friendly solution to hydrolyze the peptide bonds in highly recalcitrant keratinous substances such as nails, feathers, claws, and horns into valuable amino acids. Microorganisms produce these proteolytic enzymes by techniques of solid-state and submerged fermentation. However, solid-state fermentation is considered as a yielding approach for the production of thermostable keratinases. This review prioritized the molecular and biochemical properties of microbial keratinases, and the role of keratinases in bringing prodigious impact for the sustainable progress of the economy. It also emphasizes on the current development in keratinase production with the focus to improve the biochemical properties related to enzyme's catalytic activity and stability, and production of mutant and cloned microbial strains to improve the yield of keratinases. Recently, multitude molecular approaches have been employed to enhance enzyme's productivity, activity, and thermostability which makes them suitable for pharmaceutical industry and for the production of animal feed, organic fertilizers, biogas, clearing of animal hides, and detergent formulation. Hence, it can be surmised that microbial keratinolytic enzymes are the conceivable candidates for numerous commercial and industrial applications.
Assuntos
Queratinas , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Queratinas/metabolismo , Biotecnologia/métodos , Plumas/metabolismo , Responsabilidade Social , Concentração de Íons de HidrogênioRESUMO
Enormous amounts of keratinaceous waste make a significant and unexploited protein reserve that can be utilized through bioconversion into high-value products using microbial keratinases. This study was intended to assess the keratinase production from a newly isolated B. velezensis NCIM 5802 that can proficiently hydrolyze chicken feathers. Incubation parameters used to produce keratinase enzyme were optimized through the Response Surface Methodology (RSM) with chicken feathers as substrate. Optimization elevated the keratinase production and feather degradation by 4.92-folds (109.7 U/mL) and 2.5 folds (95.8%), respectively. Time-course profile revealed a direct correlation among bacterial growth, feather degradation, keratinase production and amino acid generation. Biochemical properties of the keratinase were evaluated, where it showed optimal activity at 60 °C and pH 10.0. The keratinase was inhibited by EDTA and PMSF, indicating it to be a serine-metalloprotease. Zymography revealed the presence of four distinct keratinases (Mr ~ 100, 62.5, 36.5 and 25 kDa) indicating its multiple forms. NMR and mass spectroscopic studies confirmed the presence of 18 free amino acids in the feather hydrolysates. Changes in feather keratin brought about by the keratinase action were studied by X-ray diffraction (XRD) and spectroscopic (FTIR, Raman) analyses, which showed a decrease in the total crystallinity index (TCI) (1.00-0.63) and confirmed the degradation of its crystalline domain. Scanning electron microscopy (SEM) revealed the sequential structural changes occurring in the feather keratin during degradation. Present study explored the use of keratinolytic potential of the newly isolated B. velezensis NCIM 5802 in chicken feather degradation and also, unraveled the underlying keratin hydrolysis mechanism through various analyses.
Assuntos
Plumas , Gerenciamento de Resíduos , Aminoácidos/metabolismo , Animais , Bacillus , Galinhas/metabolismo , Ácido Edético/metabolismo , Plumas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Aves Domésticas/metabolismo , Serina/metabolismoRESUMO
We recently determined the RNA sequencing-based microRNA (miRNA) expression signature of colorectal cancer (CRC). Analysis of the signature showed that the expression of both strands of pre-miR-139 (miR-139-5p, the guide strand, and miR-139-3p, the passenger strand) was significantly reduced in CRC tissues. Transient transfection assays revealed that expression of miR-139-3p blocked cancer cell malignant transformation (e.g., cell proliferation, migration, and invasion). Notably, expression of miR-139-3p markedly blocked RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation in CRC cells. A combination of in silico database and gene expression analyses of miR-139-3p-transfected cells revealed 29 putative targets regulated by miR-139-3p in CRC cells. RNA immunoprecipitation analysis using an Argonaute2 (AGO2) antibody revealed that KRT80 was efficiently incorporated into the RNA-induced silencing complex. Aberrant expression of Keratin 80 (KRT80) was detected in CRC clinical specimens by immunostaining. A knockdown assay using small interfering RNA (siRNA) targeting KRT80 showed that reducing KRT80 expression suppressed the malignant transformation (cancer cell migration and invasion) of CRC cells. Importantly, inhibiting KRT80 expression reduced AKT phosphorylation in CRC cells. Moreover, hexokinase-2 (HK2) expression was reduced in cells transfected with the KRT80 siRNAs or miR-139-3p. The involvement of miRNA passenger strands (e.g., miR-139-3p) in CRC cells is a new concept in miRNA studies. Our tumor-suppressive miRNA-based approach helps elucidate the molecular pathogenesis of CRC.
Assuntos
Neoplasias Colorretais , MicroRNAs , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Hexoquinase/metabolismo , Humanos , Queratinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Complexo de Inativação Induzido por RNA/genética , Serina/metabolismo , Treonina/metabolismoRESUMO
Among the 33 human adhesion G-protein-coupled receptors (aGPCRs), a unique subfamily of GPCRs, only ADGRF4, encoding GPR115, shows an obvious skin-dominated transcriptomic profile, but its expression and function in skin is largely unknown. Here, we report that GPR115 is present in a small subset of basal and in most suprabasal, noncornified keratinocytes of the stratified epidermis, supporting epidermal transcriptomic data. In psoriatic skin, characterized by hyperproliferation and delayed differentiation, the expression of GPR115 and KRT1/10, the fundamental suprabasal keratin dimer, is delayed. The deletion of ADGRF4 in HaCaT keratinocytes grown in an organotypic mode abrogates KRT1 and reduces keratinocyte stratification, indicating a role of GPR115 in epidermal differentiation. Unexpectedly, endogenous GPR115, which is not glycosylated and is likely not proteolytically processed, localizes intracellularly along KRT1/10-positive keratin filaments in a regular pattern. Our data demonstrate a hitherto unknown function of GPR115 in the regulation of epidermal differentiation and KRT1.
Assuntos
Células Epidérmicas , Queratinócitos , Criança , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Humanos , Queratina-1/genética , Queratina-1/metabolismo , Queratinócitos/metabolismo , Queratinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMO
BACKGROUND: With the growing concern for the environment, there are trends that bio-utilization of keratinous waste by keratinases could ease the heavy burden of keratinous waste from the poultry processing and leather industry. Especially surfactant-stable keratinases are beneficial for the detergent industry. Therefore, the production of keratinase by Bacillus cereus YQ15 was improved; the characterization and use of keratinase in detergent were also studied. RESULTS: A novel alkaline keratinase-producing bacterium YQ15 was isolated from feather keratin-rich soil and was identified as Bacillus cereus. Based on the improvement of medium components and culture conditions, the maximum keratinase activity (925 U/mL) was obtained after 36 h of cultivation under conditions of 35 °C and 160 rpm. Moreover, it was observed that the optimal reacting temperature and pH of the keratinase are 60 °C and 10.0, respectively; the activity was severely inhibited by PMSF and EDTA. On the contrary, the keratinase showed remarkable stability in the existence of the various surfactants, including SDS, Tween 20, Tween 60, Tween 80, and Triton X-100. Especially, 5% of Tween 20 and Tween 60 increased the activity by 100% and 60%, respectively. Furtherly, the keratinase revealed high efficiency in removing blood stains. CONCLUSION: The excellent compatibility with commercial detergents and the high washing efficiency of removing blood stains suggested its suitability for potential application as a bio-detergent additive.
Assuntos
Bacillus cereus , Detergentes , Animais , Bacillus cereus/metabolismo , Detergentes/química , Estabilidade Enzimática , Plumas/metabolismo , Concentração de Íons de Hidrogênio , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Polissorbatos , Tensoativos , TemperaturaRESUMO
Transforming growth factor ß (TGF-ß) increases epithelial cancer cell migration and metastasis by inducing epithelial-mesenchymal transition (EMT). TGF-ß also inhibits cell proliferation by inducing G1 phase cell-cycle arrest. However, the correlation between these tumor-promoting and -suppressing effects remains unclear. Here, we show that TGF-ß confers higher motility and metastatic ability to oral cancer cells in G1 phase. Mechanistically, keratin-associated protein 2-3 (KRTAP2-3) is a regulator of these dual effects of TGF-ß, and its expression is correlated with tumor progression in patients with head and neck cancer and migratory and metastatic potentials of oral cancer cells. Furthermore, single-cell RNA sequencing reveals that TGF-ß generates two populations of mesenchymal cancer cells with differential cell-cycle status through two distinctive EMT pathways mediated by Slug/HMGA2 and KRTAP2-3. Thus, TGF-ß-induced KRTAP2-3 orchestrates cancer cell proliferation and migration by inducing EMT, suggesting motile cancer cells arrested in G1 phase as a target to suppress metastasis.