Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.111
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675225

RESUMO

SDF-1α, the most common isoform of stromal cell-derived factor 1, has shown vital effects in regulating chondrocyte proliferation, maturation, and chondrogenesis. Autophagy is a highly conserved biological process to help chondrocytes survive in harsh environments. However, the effect of SDF-1α on chondrocyte autophagy is still unknown. This study aims to investigate the effect of SDF-1α on chondrocyte autophagy and the underlying biomechanism. Transmission electron microscope assays and mRFP-GFP-LC3 adenovirus double label transfection assays were performed to detect the autophagic flux of chondrocytes. Western blots and immunofluorescence staining assays were used to detect the expression of autophagy-related proteins in chondrocytes. RNA sequencing and qPCR were conducted to assess changes in autophagy-related mRNA expression. SDF-1α upregulated the number of autophagosomes and autolysosomes in chondrocytes. It also increased the expression of autophagy-related proteins including ULK-1, Beclin-1 and LC3B, and decreased the expression of p62, an autophagy substrate protein. SDF-1α-mediated autophagy of chondrocytes required the participation of receptor CXCR4. Moreover, SDF-1α-enhanced autophagy of chondrocytes was through the inhibition of phosphorylation of mTOR signaling on the upstream of autophagy. Knockdown by siRNA and inhibition by signaling inhibitor further confirmed the importance of the CXCR4/mTOR signaling axis in SDF-1α-induced autophagy of chondrocytes. For the first time, this study elucidated that SDF-1α promotes chondrocyte autophagy through the CXCR4/mTOR signaling axis.


Assuntos
Quimiocina CXCL12 , Condrócitos , Condrócitos/metabolismo , Quimiocina CXCL12/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Receptores CXCR4/metabolismo , Autofagia/genética
2.
J Neuroinflammation ; 20(1): 8, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631780

RESUMO

BACKGROUND: The innate lymphoid cell (ILC) family consists of NK cells, ILC type 1, 2, 3 and lymphoid tissue inducer cells. They have been shown to play important roles in homeostasis and immune responses and are generally considered tissue resident. Not much is known about the presence of ILC members within the central nervous system and whether they are tissue resident in this organ too. Therefore, we studied the presence of all ILC members within the central nervous system and after ischemic brain insult. METHODS: We used the photothrombotic ischemic lesion method to induce ischemic lesions within the mouse brain. Using whole-mount immunofluorescence imaging, we established that the ILCs were present at the rim of the lesion. We quantified the increase of all ILC members at different time-points after the ischemic lesion induction by flow cytometry. Their migration route via chemokine CXCL12 was studied by using different genetic mouse models, in which we induced deletion of Cxcl12 within the blood-brain barrier endothelium, or its receptor, Cxcr4, in the ILCs. The functional role of the ILCs was subsequently established using the beam-walk sensorimotor test. RESULTS: Here, we report that ILCs are not resident within the mouse brain parenchyma during steady-state conditions, but are attracted towards the ischemic stroke. Specifically, we identify NK cells, ILC1s, ILC2s and ILC3s within the lesion, the highest influx being observed for NK cells and ILC1s. We further show that CXCL12 expressed at the blood-brain barrier is essential for NK cells and NKp46+ ILC3s to migrate toward the lesion. Complementary, Cxcr4-deficiency in NK cells prevents NK cells from entering the infarct area. Lack of NK cell migration results in a higher neurological deficit in the beam-walk sensorimotor test. CONCLUSIONS: This study establishes the lack of ILCs in the mouse central nervous system at steady-state and their migration towards an ischemic brain lesion. Our data show a role for blood-brain barrier-derived CXCL12 in attracting protective NK cells to ischemic brain lesions and identifies a new CXCL12/CXCR4-mediated component of the innate immune response to stroke.


Assuntos
Imunidade Inata , AVC Isquêmico , Camundongos , Animais , Linfócitos , Quimiocina CXCL12/metabolismo , AVC Isquêmico/metabolismo , Células Matadoras Naturais , Encéfalo/metabolismo
3.
BMC Cancer ; 22(1): 1335, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539774

RESUMO

BACKGROUND: The chemokines, CXCL12 and CXCL11, are upregulated in tumors from many organs and control their progression. CXCL12 and CXCL11 affect tumor cell functions by either binding their prime receptors, CXCR4 and CXCR3, respectively, and/or CXCR7 as a common second chemokine receptor. In humans, CXCR3 exists in the functional splice variants, CXCR3A and CXCR3B, which either have pro- or anti-tumor activity, respectively. Despite the intimate crosstalk between the CXCL12- and CXCL11-system, the impact of a combination of CXCL12 and CXCL11 on tumor progression remains vague. METHODS: In the present work, we have analyzed CXCL12 and CXCL11 for combined effects on migration, invasion, proliferation, and cytostatic-induced apoptosis of the human tumor cells, A549, A767, A772, DLD-1, and MDA-MB-231. RESULTS: We demonstrate that the mode of interaction differs with respect to cell type and function and allows for either potentiation, attenuation or no changes of cellular responses. The divergent responses are not the result of the distinct use of different CXCL12- and CXCL11-receptors by the respective tumor cells, but in case of cell migration seem to be associated with the activation of p38 signaling pathways. CONCLUSIONS: Our findings point to therapeutic limitations of ongoing efforts to selectively target CXCR3, CXCR4, or CXCR7 in cancer patients, and rather favor individualized targeting strategies.


Assuntos
Neoplasias , Receptores CXCR , Humanos , Receptores CXCR/genética , Receptores CXCR/metabolismo , Neoplasias/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Transdução de Sinais , Movimento Celular , Apoptose , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo
4.
Stem Cell Res Ther ; 13(1): 516, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371197

RESUMO

OBJECTIVE: Endothelial progenitor cells (EPCs) contribute to the recovery of neurological function after ischemic stroke. Indirect revascularization has exhibited promising effects in the treatment of cerebral ischemia related to moyamoya disease and intracranial atherosclerotic disease. The role of EPCs in augmenting the revascularization effect is not clear. In this study, we investigated the therapeutic effects of indirect revascularization combined with EPC transplantation in rats with chronic cerebral ischemia. METHODS: Chronic cerebral ischemia was induced by bilateral internal carotid artery ligation (BICAL) in rats, and indirect revascularization by encephalo-myo-synangiosis (EMS) was performed 1 week later. During the EMS procedure, intramuscular injection of EPCs and the addition of stromal cell-derived factor 1 (SDF-1), and AMD3100, an SDF-1 inhibitor, were undertaken, respectively, to investigate their effects on indirect revascularization. Two weeks later, the cortical microcirculation, neuronal damage, and functional outcome were evaluated according to the microvasculature density and partial pressure of brain tissue oxygen (PbtO2), regional blood flow, expression of phosphorylated Tau (pTau), TUNEL staining and the rotarod performance test, respectively. RESULTS: The cortical microcirculation, according to PbtO2 and regional blood flow, was impaired 3 weeks after BICAL. These impairments were improved by the EMS procedure. The regional blood flow was further increased by the addition of SDF-1 and decreased by the addition of AMD3100. Intramuscular injection of EPCs further increased the regional blood flow as compared with the EMS group. The rotarod test results showed that the functional outcome was best in the EMS combined with EPC injection group. Western blot analysis showed that the EMS combined with EPC treatment group had significantly decreased expressions of phosphorylated Tau and phosphorylated glycogen synthase kinase 3 beta (Y216 of GSK-3ß). pTau and TUNEL-positive cells were markedly increased at 3 weeks after BICAL induction. Furthermore, the groups treated with EMS combined with SDF-1 or EPCs exhibited marked decreases in the pTau expression and TUNEL-positive cells, whereas AMD3100 treatment increased TUNEL-positive cells. CONCLUSION: The results of this study suggested that indirect revascularization ameliorated the cerebral ischemic changes. EPCs played a key role in augmenting the effect of indirect revascularization in the treatment of chronic cerebral ischemia.


Assuntos
Isquemia Encefálica , Células Progenitoras Endoteliais , Tauopatias , Ratos , Animais , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Quimiocina CXCL12/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Tauopatias/metabolismo , Circulação Cerebrovascular
5.
BMC Endocr Disord ; 22(1): 292, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419107

RESUMO

BACKGROUND: Tumor infiltration with cytotoxic CD8+ T-cells is associated with a favorable outcome in several neoplasms, including thyroid cancer. The chemokine axis CXCR4/SDF-1 correlates with more aggressive tumors, but little is known concerning the prognostic relevance in relation to the tumor immune microenvironment of differentiated thyroid cancer (DTC). METHODS: A tissue microarray (TMA) of 37 tumor specimens of primary DTC was analyzed by immunohistochemistry (IHC) for the expression of CD8+, CXCR4, phosphorylated CXCR4 and SDF-1. A survival analysis was performed on a larger collective (n = 456) at RNA level using data from The Cancer Genome Atlas (TCGA) papillary thyroid cancer cohort. RESULTS: Among the 37 patients in the TMA-cohort, the density of CD8+ was higher in patients with less advanced primary tumors (median cells/TMA-punch: 12.5 (IQR: 6.5, 12.5) in T1-2 tumors vs. 5 (IQR: 3, 8) in T3-4 tumors, p = 0.05). In the TCGA-cohort, CXCR4 expression was higher in patients with cervical lymph node metastasis compared to N0 or Nx stage (CXCR4high/low 116/78 vs. 97/116 vs. 14/35, respectively, p = 0.001). Spearman's correlation analysis of the TMA-cohort demonstrated that SDF-1 was significantly correlated with CXCR4 (r = 0.4, p = 0.01) and pCXCR4 (r = 0.5, p = 0.002). In the TCGA-cohort, density of CD8+ correlated with CXCR4 and SDF-1 expression (r = 0.58, p < 0.001; r = 0.4, p < 0.001). The combined marker analysis of the TCGA cohort demonstrated that high expression of both, CXCR4 and SDF-1 was associated with reduced overall survival in the CD8 negative TCGA cohort (p = 0.004). CONCLUSION: These findings suggest that the prognostic significance of CXCR4 and SDF-1 in differentiated thyroid cancer depends on the density of CD8 positive T-lymphocytes. Further studies with larger sample sizes are needed to support our findings and inform future investigations of new treatment and diagnostic options for a more personalized approach for patients with differentiated thyroid cancer.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Linfócitos T CD8-Positivos/metabolismo , Prognóstico , Receptores CXCR4/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Microambiente Tumoral , Quimiocina CXCL12/metabolismo
6.
Eur J Med Chem ; 244: 114797, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36270088

RESUMO

The human immunodeficiency virus type 1 (HIV-1) recognizes one of its principal coreceptors, the CXC chemokine receptor 4 (CXCR4) on the host cell via the third variable loop (V3 loop) of HIV-1 envelope glycoprotein gp120 during the viral entry process. Here, we investigated the stereochemical mechanism of the molecular recognition of HIV-1 gp120 V3 loop with coreceptor CXCR4 by using peptide probes containing important fragments of the V3 loop. The tip and base/stem fragments of the V3 loop critical for V3 loop function were linked individually with the fragment derived from another CXCR4's chemokine ligand, vMIP-II to generate nanomolar affinity peptide probes of the interactions of CXCR4-V3 loop fragments. When the amino acid residues of the V3 loop fragments in these combinational peptides were changed from L-to D-configurations, the resulting peptides remarkably retained or had even enhanced recognition by CXCR4 as shown by competitive ligand-receptor binding. The ability of these peptides, regardless of the different l- or d-amino acids used, in binding CXCR4 and antagonizing CXCR4 functions was demonstrated by their blockade of calcium influx, cell migration, and CXCR4 internalization triggered by the activation of CXCR4 signaling by its endogenous ligand SDF-1α. The structural mechanisms of CXCR4 interactions with these peptides were examined with site-directed mutagenesis and molecular modeling. These results indicate that CXCR4's interface with key segments of HIV-1 gp120 V3 loop is flexible in terms of stereospecificity of ligand-receptor interaction which may have implication on understanding the viral entry mechanism and how the virus evades immune detection with V3 loop mutations and retains effective recognition of the host cell's coreceptor.


Assuntos
Proteína gp120 do Envelope de HIV , HIV-1 , Sondas Moleculares , Fragmentos de Peptídeos , Receptores CXCR4 , Receptores Virais , Internalização do Vírus , Humanos , Quimiocina CXCL12/metabolismo , Proteína gp120 do Envelope de HIV/química , HIV-1/fisiologia , Ligantes , Fragmentos de Peptídeos/química , Receptores CCR5/metabolismo , Receptores CXCR4/análise , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores Virais/química , Receptores Virais/genética , Sondas Moleculares/química
7.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233192

RESUMO

A better understanding of the complex crosstalk among key receptors and signaling pathways involved in cancer progression is needed to improve current therapies. We have investigated in cell models representative of the major subtypes of breast cancer (BC) the interplay between the chemokine CXCL12/CXCR4/ACKR3 and EGF receptor (EGFR) family signaling cascades. These cell lines display a high heterogeneity in expression profiles of CXCR4/ACKR3 chemokine receptors, with a predominant intracellular localization and different proportions of cell surface CXCR4+, ACKR3+ or double-positive cell subpopulations, and display an overall modest activation of oncogenic pathways in response to exogenous CXCL12 alone. Interestingly, we find that in MDA-MB-361 (luminal B subtype, Her2-overexpressing), but not in MCF7 (luminal A) or MDA-MB-231 (triple negative) cells, CXCR4/ACKR3 and EGFR receptor families share signaling components and crosstalk mechanisms to concurrently promote ERK1/2 activation, with a key involvement of the G protein-coupled receptor kinase 2 (GRK2) signaling hub and the cytosolic tyrosine kinase Src. Our findings suggest that in certain BC subtypes, a relevant cooperation between CXCR4/ACKR3 and growth factor receptors takes place to integrate concurrent signals emanating from the tumor microenvironment and foster cancer progression.


Assuntos
Neoplasias da Mama , Receptores CXCR4 , Receptores CXCR , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Quimiocina CXCL12/metabolismo , Receptores ErbB/metabolismo , Feminino , Humanos , Proteínas Tirosina Quinases/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Microambiente Tumoral
8.
Acta Neurobiol Exp (Wars) ; 82(3): 398-407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36214722

RESUMO

Ischemic stroke is a severe threat to the health of older individuals. Bone marrow mesenchymal stem cells (BMSCs) have been implicated in ischemic stroke. Urokinase­type plasminogen activator (uPA) and its specific receptor (uPAR) are associated with the pathological process of ischemic stroke. However, the relationship between BMSCs and uPA/uPAR in ischemic stroke remains unclear. For simulating the occurrence of an ischemic stroke in vitro, human cerebral microvascular endothelial cells (HBMECs) were subjected to oxygen and glucose deprivation followed by re­oxygenation (OGD/R) and were then cocultured with BMSCs. 3,4,5­dimethylthiazol­2,5­diphenyltetrazolium bromide and bromodeoxyuridine staining were used for measuring cell viability and proliferation. Flow cytometry was performed for assessing cell apoptosis. Endothelial cell tube formation was determined using angiogenesis assays. Alterations in the protein and gene expression in HBMECs were evaluated using western blot analysis and quantitative reverse transcription­polymerase chain reaction, respectively. OGD/R considerably inhibited the viability and proliferation of HBMECs by inducing apoptosis, which was reversed by BMSCs. Consistently, OGD/R­induced inhibition of angiogenesis was attenuated by BMSCs. In addition, BMSCs could protect HBMECs against OGD/R­induced injury by positively regulating the uPA/uPAR/stromal cell­derived factor­1α (SDF­1α)/C­X­C chemokine receptor type 4 (CXCR4) pathway, and uPA/uPAR could mediate the SDF­1α/CXCR4 pathway in OGD/R­treated HBMECs. Therefore, this study provides novel strategies to investigate the specific role of BMSCs in ameliorating OGD/R­induced vascular endothelial cell injury.


Assuntos
AVC Isquêmico , Células-Tronco Mesenquimais , Apoptose , Encéfalo/metabolismo , Brometos/metabolismo , Bromodesoxiuridina/metabolismo , Quimiocina CXCL12/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Oxigênio , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
9.
Sci Rep ; 12(1): 17204, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229490

RESUMO

Chemokines form a family of proteins with critical roles in many biological processes in health and disease conditions, including cardiovascular, autoimmune diseases, infections, and cancer. Many chemokines engage in heterophilic interactions to form heterodimers, leading to synergistic activity enhancement or reduction dependent on the nature of heterodimer-forming chemokines. In mixtures, different chemokine species with diverse activities coexist in dynamic equilibrium, leading to the observation of their combined response in biological assays. To overcome this problem, we produced a non-dissociating CXCL4-CXCL12 chemokine heterodimer OHD4-12 as a new tool for studying the biological activities and mechanisms of chemokine heterodimers in biological environments. Using the OHD4-12, we show that the CXCL4-CXCL12 chemokine heterodimer inhibits the CXCL12-driven migration of triple-negative MDA-MB-231 breast cancer cells. We also show that the CXCL4-CXCL12 chemokine heterodimer binds and activates the CXCR4 receptor.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Quimiocina CXCL12/metabolismo , Quimiotaxia , Fator Plaquetário 4/metabolismo , Ligação Proteica , Receptores CXCR4/metabolismo , Transdução de Sinais
10.
J Theor Biol ; 555: 111294, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36195198

RESUMO

Cells process environmental cues by activating intracellular signaling pathways with numerous interconnections and opportunities for cross-regulation. We employed a systems biology approach to investigate intersections of kinase p38, a context-dependent tumor suppressor or promoter, with Akt and ERK, two kinases known to promote cell survival, proliferation, and drug resistance in cancer. Using live, single cell microscopy, multiplexed fluorescent reporters of p38, Akt, and ERK activities, and a custom automated image-processing pipeline, we detected marked heterogeneity of signaling outputs in breast cancer cells stimulated with chemokine CXCL12 or epidermal growth factor (EGF). Basal activity of p38 correlated inversely with amplitude of Akt and ERK activation in response to either ligand. Remarkably, small molecule inhibitors of p38 immediately decreased basal activities of Akt and ERK but increased the proportion of cells with high amplitude ligand-induced activation of Akt signaling. To identify mechanisms underlying cross-talk of p38 with Akt signaling, we developed a computational model incorporating subcellular compartmentalization of signaling molecules by scaffold proteins. Dynamics of this model revealed that subcellular scaffolding of Akt accounted for observed regulation by p38. The model also predicted that differences in the amount of scaffold protein in a subcellular compartment captured the observed single cell heterogeneity in signaling. Finally, our model predicted that reduction in kinase signaling can be accomplished by both scaffolding and direct kinase inhibition. However, scaffolding inhibition can potentiate future kinase activity by redistribution of pathway components, potentially amplifying oncogenic signaling. These studies reveal how computational modeling can decipher mechanisms of cross-talk between the p38 and Akt signaling pathways and point to scaffold proteins as central regulators of signaling dynamics and amplitude.


Assuntos
Fator de Crescimento Epidérmico , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Quimiocina CXCL12/metabolismo , Ligantes , Simulação por Computador , Sistema de Sinalização das MAP Quinases
11.
Biomed Res Int ; 2022: 2898729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225981

RESUMO

Background: The microenvironment of bone defects displayed that M2 polarization of macrophagocyte could promote the osteoblast growth and benefit the wound healing. Bone scaffold transplantation is considered to be one of the most promising methods for repairing bone defects. The present research was aimed at constructing a kind of novel bone scaffold nanomaterial of MSN@IL-4 for treating bone defects responding to the wound microenvironment of bone defects and elucidating the mechanics of MSN@IL-4 treating bone defect via controlling release of IL-4, inducing M2 polarization and active factor release of macrophagocyte, and eventually relieving osteoblast injury. Methods: MSN@IL-4 was firstly fabricated and its release of IL-4 was assessed in vitro. Following, the effects of MSN@IL-4 nanocomplex on the release of active factors of macrophage were examined using Elisa assay and promoting M2 polarization of the macrophage by immunofluorescence staining. And then, the effects of active factors from macrophage supernatant induced by MSN@IL-4 on osteoblast growth were examined by CCK-8, flow cytometry, and western blot assay. Results: The release curve of IL-4 in vitro displayed that there was more than 80% release ratio for 30th day with a sustained manner in pH 5.5. Elisa assay data showed that MSN@IL-4 nanocomplex could constantly promote the release of proproliferative cytokine IL-10, SDF-1α, and BMP-2 in macrophagocyte compared to only IL-4 treatment, and immunofluorescent image showed that MSN@IL-4 could promote M2 polarization of macrophagocytes via inducing CD206 expression and suppressing CD86 expression. Osteoblast injury data showed that the supernatant from macrophagocyte treated by MSN@IL-4 could promote the osteoblast proliferation by MTT assay. Flow cytometry data showed that the supernatant from macrophagocyte treated by MSN@IL-4 could suppress the osteoblast apoptosis from 22.1% to 14.6%, and apoptosis-related protein expression data showed that the supernatant from macrophagocyte treated by MSN@IL-4 could suppress the expression of Bax, cleaved caspase 3, and cleaved caspase 8. Furthermore, the immunofluorescent image showed that the supernatant from macrophagocyte treated by MSN@IL-4 could inhibit nucleus location of p65, and western blot data showed that the supernatant from macrophagocyte treated by MSN@IL-4 could suppress the phosphorylation of IKK and induce the expression of IκB. Conclusion: MSN@IL-4 could control the sustaining release of IL-4, and it exerts the protective effect on osteoblast injury via inducing M2 polarization and proproliferative cytokine of macrophagocyte and following inhibiting the apoptosis and NF-κB pathway-associated inflammation of osteoblast.


Assuntos
Interleucina-4 , NF-kappa B , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Quimiocina CXCL12/metabolismo , Citocinas/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , NF-kappa B/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Sincalida/metabolismo , Proteína X Associada a bcl-2/metabolismo
12.
Oncogene ; 41(41): 4633-4644, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088505

RESUMO

Obesity is associated with increased prostate cancer (PCa) progression and higher mortality, however, the mechanism(s) remain still unclear. Here, we investigated signaling by the ASC-secreted chemokine CXCL12 in a mouse allograft model of PCa and in HiMyc mice in the context of diet-induced obesity. Treatment of mice with CXCR4 antagonist inhibited CXCL12-induced signaling pathways, tumor growth and EMT in HMVP2 allograft tumors. Similar results were obtained following prostate epithelium-specific deletion of CXCR4 in HiMyc mice. We also show that CXCR4 signaling regulates expression of JMJD2A histone demethylase and histone methylation which is modulated by AMD3100. Importantly, treatment with a CXCR7 antagonist also inhibited allograft tumor growth and EMT. The current results demonstrate that both CXCR4 and CXCR7 play an important role in cancer progression and establish CXCL12 signaling pathways, activated in obesity, as potential targets for PCa intervention. In addition, other factors secreted by ASCs, may also contribute to cancer aggressiveness in obesity.


Assuntos
Neoplasias da Próstata , Receptores CXCR , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Transição Epitelial-Mesenquimal , Histona Desmetilases/metabolismo , Histonas , Masculino , Camundongos , Obesidade/genética , Próstata/patologia , Neoplasias da Próstata/patologia , Receptores CXCR4/metabolismo
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(8): 1191-1197, 2022 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-36073218

RESUMO

OBJECTIVE: To investigate whether miR-372-5p regulates PI3K/AKT/CXCL12 signaling pathway by targeting PTEN to promote metastasis of colorectal cancer cells. METHODS: We detected the differential expression of miR-372-5p using RT-qRCR in colorectal cancer and adjacent tissues, colorectal cancer cells and normal intestinal epithelial cells. Bioinformatic analysis and double luciferase assay were performed for verification of the targeting relationship between miR-372-5p and PTEN. Western blotting was used to assess the effects of transfection with miR-372-5p inhibitor and miR-372-5p mimics alone, co-transfection with miR-372-5p inhibitor and si-PTEN, and co-transfection with miR-372-5p mimics and PI3K inhibitor on the expressions of PTEN and CXCL12 and the activation of PI3K/AKT signal pathway; Transwell assay and scratch assay were used to examine the changes in the migration ability of the transfected cells, the cells co-transfected with miR-372-5p mimics and si-CXCL12, and the cells treated with conditioned medium from HCT116 cells transfected with miR-372-5p mimics. RESULTS: The expression of miR-372-5p was significantly higher in colorectal cancer tissues than in adjacent tissues, and higher in HCT116 and SW620 cells than in NCM460 cells (P < 0.01). Double luciferase assay confirmed that PTEN was a potential target gene of miR-372-5p (P < 0.05). Transfection of HCT116 cells with miR-372-5p mimics obviously decreased PTEN protein expression, increase CXCL12 expression and the phosphorylation level of AKT, and lowered the cell migration ability, while transfection with miR-372-5p inhibitor produced the opposite effects (P < 0.05); si-PTEN obviously neutralized the effect of miR-372-5p inhibitor (P < 0.01). PI3K inhibitor significantly decreased CXCL12 expression and inhibited the cell migration (P < 0.05), and this effect was mitigated by miR-372-5p mimics (P < 0.01). Treatment with the conditioned medium from HCT116 cells transfected with miR-372-5p mimics significantly enhanced the migration ability of NCM460 cells, and this effect was suppressed by transfection with si-CXCL12 (P < 0.01). CONCLUSION: MiR-372-5p activates PI3K/AKT signaling pathway by targeting PTEN and up-regulates CXCL12 expression to promoting metastasis of colorectal cancer cells.


Assuntos
Neoplasias Colorretais , MicroRNAs , Quimiocina CXCL12/metabolismo , Neoplasias Colorretais/patologia , Meios de Cultivo Condicionados , Humanos , MicroRNAs/metabolismo , Metástase Neoplásica , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
14.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188790, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36058380

RESUMO

The oncogenic chemokine duo CXCR4-CXCL12/SDF-1 (C-X-C Receptor 4-C-X-C Ligand 12/ Stromal-derived factor 1) has been the topic of intense scientific disquisitions since Muller et al., in her ground-breaking research, described this axis as a critical determinant of organ-specific metastasis in breast cancer. Elevated CXCR4 levels correlate with distant metastases, poor prognosis, and unfavourable outcomes in most solid tumors. Therapeutic impediment of the axis in clinics with Food and Drug Administration (FDA) approved inhibitors like AMD3100 or Plerixafor yield dubious results, contrary to pre-clinical developments. Clinical trials entailing inhibition of CXCR7 (C-X-C Receptor 7), another convicted chemokine receptor that exhibits affinity for CXCL12, reveal outcomes analogous to that of CXCR4-CXCL12 axis blockade. Of note, the cellular CXCR4 knockout phenotype varies largely from that of inhibitor treatments. These shaky findings pique great curiosity to delve further into the realm of this infamous chemokine receptor to provide a probable explanation. A multitude of recent reports suggests the presence of an increased intracellular CXCR4 pool in various cancers, both cytoplasmic and nuclear. This intracellular CXCR4 protein reserve seems active as it correlates with vital tumor attributes, viz. prognosis, aggressiveness, metastasis, and disease-free survival. Diminishing this entire intracellular CXCR4 load apart from the surface signals looks encouraging from a therapeutic point of view. Transcending beyond the classically accepted concept of ligand-mediated surface signaling, this review sheds new light on plausible associations of intracellularly compartmentalised CXCR4 with various aspects of tumorigenesis. Besides, this review also puts forward a comprehensive account of CXCR4 regulation in different cancers.


Assuntos
Neoplasias da Mama , Compostos Heterocíclicos , Receptores CXCR4 , Neoplasias da Mama/patologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Mobilização de Células-Tronco Hematopoéticas , Humanos , Ligantes , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
15.
J Med Chem ; 65(19): 13365-13384, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36150079

RESUMO

The atypical chemokine receptor 3 (ACKR3), formerly known as CXC-chemokine receptor 7 (CXCR7), has been postulated to regulate platelet function and thrombus formation. Herein, we report the discovery and development of first-in-class ACKR3 agonists, which demonstrated superagonistic properties with Emax values of up to 160% compared to the endogenous reference ligand CXCL12 in a ß-arrestin recruitment assay. Initial in silico screening using an ACKR3 homology model identified two hits, C10 (EC50 19.1 µM) and C11 (EC50 = 11.4 µM). Based on these hits, extensive structure-activity relationship studies were conducted by synthesis and testing of derivatives. It resulted in the identification of the novel thiadiazolopyrimidinone-based compounds 26 (LN5972, EC50 = 3.4 µM) and 27 (LN6023, EC50 = 3.5 µM). These compounds are selective for ACKR3 versus CXCR4 and show metabolic stability. In a platelet degranulation assay, these agonists effectively reduced P-selectin expression by up to 97%, suggesting potential candidates for the treatment of platelet-mediated thrombosis.


Assuntos
Selectina-P , Receptores CXCR , Arrestina/metabolismo , Quimiocina CXCL12/metabolismo , Ligantes , Selectina-P/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo
16.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077241

RESUMO

CXCR7 and CXCR4 are G protein-coupled receptors (GPCRs) that can be stimulated by CXCL12 in various human cancers. CXCR7/4-CXCL12 binding can initiate activation of multiple pathways including JAK/STAT and manganese superoxide dismutase (MnSOD) signaling, and initiate epithelial-mesenchymal transition (EMT) process. It is established that cancer cell invasion and migration are caused because of these events. In particular, the EMT process is an important process that can determine the prognosis for cancer. Since the antitumor effect of leelamine (LEE) has been reported in various previous studies, here, we have evaluated the influence of LEE on the CXCR7/4 signaling axis and EMT processes. We first found that LEE suppressed expression of CXCR7 and CXCR4 both at the protein and mRNA levels, and showed inhibitory effects on these chemokines even after stimulation by CXCL12 ligand. In addition, LEE also reduced the level of MnSOD and inhibited the EMT process to attenuate the invasion and migration of breast cancer cells. In addition, phosphorylation of the JAK/STAT pathway, which acts down-stream of these chemokines, was also abrogated by LEE. It was also confirmed that LEE can induce an imbalance of GSH/GSSG and increases ROS, thereby resulting in antitumor activity. Thus, we establish that targeting CXCR7/4 in breast cancer cells can not only inhibit the invasion and migration of cancer cells but also can affect JAK/STAT, EMT process, and production of ROS. Overall, the findings suggest that LEE can function as a novel agent affecting the breast cancer.


Assuntos
Neoplasias da Mama , Receptores CXCR , Abietanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Janus Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
17.
Immunol Invest ; 51(7): 2053-2065, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35912820

RESUMO

Miscarriage can cause significant physical and psychological harm to women. The stromal cell-derived factor 1 (SDF-1, also known as CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine receptor 7 (CXCR7) axis can promote the proliferation and invasion of trophoblast cells in early pregnancy, and maintain immune tolerance at the maternal-fetal interface to aid with pregnancy success. From our findings, the serum CXCL12 level of women who have miscarried (n = 25) was significantly lower than that of healthy early pregnancy women (n = 20) by ELISA (P < .001). Additionally, CXCL12 levels in normal non-pregnant women (n = 20) were significantly lower than those in early pregnancy women (P < .001) and women who have miscarried (P < .001). Quantitative real-time PCR detected no significant difference in the mRNA transcription levels of CXCR4 and CXCR7 in the decidua tissues of women with early pregnancy (n = 20) and miscarriage (n = 20) (P = .724, P = .281, respectively). However, Western blot and immunohistochemistry of CXCR4 and CXCR7 in decidual tissue of women who have miscarried (n = 20) were significantly lower than those in early pregnancy women (n = 20) (P < .05 for both). Therefore, we believe that the increased serum CXCL12 levels in pregnant offspring may benefit normal pregnancy maintenance. The low level of CXCL12 in peripheral blood and the low expression of CXCR4 and CXCR7 proteins in decidua may be associated with the occurrence of early spontaneous abortion, and the clinical application value of serum CXCL12 in predicting adverse pregnancy outcomes is worth further exploring.


Assuntos
Aborto Espontâneo , Quimiocina CXCL12 , Aborto Espontâneo/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Gravidez , RNA Mensageiro , Receptores CXCR , Receptores CXCR4/genética , Transdução de Sinais , Trofoblastos/metabolismo
18.
Oxid Med Cell Longev ; 2022: 4455183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982734

RESUMO

Stem cell-based therapeutic strategies have obtained a significant breakthrough in the treatment of cardiovascular diseases, particularly in myocardial infarction (MI). Nevertheless, limited retention and poor migration of stem cells are still problems for stem cell therapeutic development. Hence, there is an urgent need to develop new strategies that can mobilize stem cells to infarcted myocardial tissues effectively. Electroacupuncture (EA) intervention can improve cardiac function and alleviate myocardial injury after MI, but its molecular mechanism is still unclear. This study is aimed at observing the effects of EA treatment on the stem cell mobilization and revealing possible mechanisms in the MI model of mice. EA treatment at Neiguan (PC6) and Xinshu (BL15) acupoints was conducted on the second day after the ligation surgery. Then, the number of stem cells in peripheral blood after EA in MI mice and their cardiac function, infarct size, and collagen deposition was observed. We found that the number of CD34-, CD117-, Sca-1-, and CD90-positive cells increased at 6 h and declined at 24 h after EA intervention in the blood of MI mice. The expression of CXC chemokine receptor-4 (CXCR4) protein was upregulated at 6 h after EA treatment, while the ratio of LC3B II/I or p-ERK/ERK showed a reverse trend. In addition, there was obvious difference in EF and FS between wild-type mice and CXCR4+/- mice. The infarct size, collagen deposition, and apoptosis of the injured myocardium in CXCR4+/- mice increased but could be ameliorated by EA. In a word, our study demonstrates that EA alleviates myocardial injury via stem cell mobilization which may be regulated by the SDF-1/CXCR4 axis.


Assuntos
Quimiocina CXCL12 , Eletroacupuntura , Infarto do Miocárdio , Receptores CXCR4 , Animais , Quimiocina CXCL12/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Camundongos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptores CXCR4/metabolismo
19.
Protein Pept Lett ; 29(10): 851-858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996270

RESUMO

OBJECTIVE: This study aimed to evaluate the combination of SDF-1 and KLD-12 to form self-assembling polypeptide and its effect on osteogenic differentiation. METHODS: ELISA assay was performed to detect whether KLD-12 composite SDF-1 self-assembled polypeptide was successfully prepared. BMSCs were isolated and characterized by Flow cytometry. MTT assays, Calcein-AM/PI fluorescence staining, and Glycosaminoglycans (GAGs) measurement were carried out to detect cell viability after cells exposed to KLD-12 composite SDF-1 selfassembled polypeptide. The migration of cells induced by KLD-12 composite SDF-1 selfassembled polypeptide was also examined by transwell assay and Immunoblot. Osteogenic differentiation of cells stimulated with KLD-12 composite SDF-1 self-assembled polypeptide was analyzed by Immunoblot, Alizarin Red Staining, and Alkaline Phosphatase activity. Additionally, immunoblot and immunofluorescence assays were performed to investigate the effects of the polypeptide on the Wnt/ß-catenin pathway. RESULTS: KLD-12 composite SDF-1 self-assembled polypeptide was successfully prepared and identified. In addition, we isolated and characterized mouse mesenchymal stem BMSCs. Our data further revealed that KLD-12 combined with SDF-1 self-assembled polypeptide improved the survival of BMSCs and promoted cell migration. Moreover, the self-assembled polypeptide induced osteogenic differentiation of BMSCs. Mechanically, we found that the self-assembled polypeptide activated the Wnt/ß-catenin pathway, therefore promoting the differentiation and migration of BMSCs. CONCLUSION: Our proposed treatment can potentially be effective for bone defects.


Assuntos
Células-Tronco Mesenquimais , Via de Sinalização Wnt , Animais , Camundongos , beta Catenina/metabolismo , beta Catenina/farmacologia , Diferenciação Celular , Células Cultivadas , Osteogênese , Peptídeos/farmacologia , Peptídeos/metabolismo , Quimiocina CXCL12/metabolismo , Movimento Celular
20.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166521, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985448

RESUMO

Nonsmall cell lung cancer (NSCLC) is among the most prevalent malignant tumours threatening human health. In the tumour microenvironment (TME), cancer-associated fibroblasts (CAFs) induce M2-polarized macrophages, which strongly regulate tumour progression. However, little is known about the association between CAFs and M2 macrophages. CD248 is a transmembrane glycoprotein found in several cancer cells, tumour stromal cells, and pericytes. Here, we isolated CAFs from tumour tissues of NSCLC patients to detect the relationship between CD248 expression and patient prognosis. We knocked down the expression of CD248 on CAFs to detect CXCL12 secretion and macrophage polarization. We then examined the effects of CD248-expressing CAF-induced M2 macrophage polarization to promote NSCLC progression in vitro and in vivo. We found that CD248 is expressed mainly in NSCLC-derived CAFs and that the expression of CD248 correlates with poor patient prognosis. Blocking CXCL12 receptor (CXCR4) drastically decreased M2 macrophage chemotaxis. CD248 promotes CAFs secreting CXCL12 to mediate M2-polarized macrophages to promote NSCLC progression both in vitro and in vivo. Collectively, our data suggest that CD248-positive CAFs induce NSCLC progression by mediating M2-polarized macrophages.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Glicoproteínas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...