Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.668
Filtrar
1.
Dev Comp Immunol ; 138: 104525, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058383

RESUMO

Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.


Assuntos
Aves , Aves Domésticas , Animais , Antígenos de Superfície , Quimiocinas , Citocinas , Imunidade Inata , Imunoglobulinas
2.
Dev Comp Immunol ; 138: 104524, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067905

RESUMO

Intestinal inflammation in poultry is a complex response that involves immune and intestinal cells which is still not fully understood. Thus, to better understand the mechanisms that drive the chronic intestinal inflammation in fowl we conducted an experiment applying a previously established nutritional model of low-grade chronic intestinal inflammation to evaluate cytokine and chemokine profiles in the chicken intestine. For this, we placed 90 one-day chickens into two treatments: (1) a control group (CNT) fed a corn-soybean diet, and (2) a group fed a diet high in non-starch polysaccharides (NSP). At days 14, 22, 28 and 36 of age, 6 birds from each treatment were euthanized, jejunal and ileal samples were collected for histological examination and cytokine measurements. The cytokines interferon-alpha (IFN-α), IFN-γ, interleukin-16 (IL-16), IL-10, IL-21, IL-6, macrophage-colony stimulating factor (M-CSF), chemokine C-C motif ligand 20 (CCL20), CCL4, CCL5 and vascular endothelial growth factor (VEGF) were quantified in the intestinal tissue. Histologically, both jejunum and ileum of broilers fed NSP diet showed marked infiltration of mononuclear immune cells into the villi. Further, these birds exhibited a significant (P < 0.05) increase in CCL20 concentration in the jejunum at 14d, but a dramatic reduction of M-CSF at 14 and 21d. Later at 28d and 36d, birds fed the NSP diet exhibited increased IL-16 concentration in the jejunum. Since M-CSF is a monocyte stimulatory cytokine and CCL20 a chemokine of T-cells, the reduced M-CSF and increased production of CCL20 may indicate the involvement of the adaptive immune response, specifically driven by T-cells, occurring around the third week of age in the NSP model. Lastly, as a result of the mononuclear cell infiltration and activation of T-cells, IL-16, a pro-inflammatory T-cell cytokine, increased. Therefore, the current work indicates the importance of adaptive immune cells, especially T-cells, in the chronic intestinal inflammation in broiler chicken.


Assuntos
Galinhas , Interleucina-10 , Ração Animal/análise , Animais , Quimiocinas , Dieta/veterinária , Suplementos Nutricionais , Inflamação , Interferon-alfa , Interleucina-16 , Interleucina-6 , Intestinos , Ligantes , Fator Estimulador de Colônias de Macrófagos , Fator A de Crescimento do Endotélio Vascular
3.
J Exp Med ; 220(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36374225

RESUMO

Within the tumor microenvironment, tumor cells and endothelial cells regulate each other. While tumor cells induce angiogenic responses in endothelial cells, endothelial cells release angiocrine factors, which act on tumor cells and other stromal cells. We report that tumor cell-derived adrenomedullin has a pro-angiogenic as well as a direct tumor-promoting effect, and that endothelium-derived CC chemokine ligand 2 (CCL2) suppresses adrenomedullin-induced tumor cell proliferation. Loss of the endothelial adrenomedullin receptor CALCRL or of the G-protein Gs reduced endothelial proliferation. Surprisingly, tumor cell proliferation was also reduced after endothelial deletion of CALCRL or Gs. We identified CCL2 as a critical angiocrine factor whose formation is inhibited by adrenomedullin. Furthermore, CCL2 inhibited adrenomedullin formation in tumor cells through its receptor CCR2. Consistently, loss of endothelial CCL2 or tumor cell CCR2 normalized the reduced tumor growth seen in mice lacking endothelial CALCRL or Gs. Our findings show tumor-promoting roles of adrenomedullin and identify CCL2 as an angiocrine factor controlling adrenomedullin formation by tumor cells.


Assuntos
Adrenomedulina , Quimiocina CCL2 , Neoplasias , Animais , Camundongos , Adrenomedulina/farmacologia , Proliferação de Células , Quimiocina CCL2/genética , Quimiocinas , Células Endoteliais/patologia , Ligantes , Neoplasias/genética , Neoplasias/patologia , Receptores CCR2/genética , Microambiente Tumoral
4.
Methods Mol Biol ; 2597: 39-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374413

RESUMO

Chemokine-glycosaminoglycan (GAG) interactions direct immune cell activation and invasion, e.g., directing immune cells to sites of infection or injury, and are central to initiating immune responses. Acute innate and also adaptive or antibody-mediated immune cell responses both drive damage to kidney transplants. These immune responses are central to allograft rejection and transplant failure. While treatment for acute rejection has advanced greatly, ongoing or chronic immune damage from inflammation and antibody-mediated rejection remains a significant problem, leading to transplant loss. There are limited numbers of organs available for transplant, and preventing chronic graft damage will allow for longer graft stability and function, reducing the need for repeat transplantation. Chemokine-GAG interactions are the basis for initial immune responses, forming directional gradients that allow immune cells to traverse the vascular endothelium and enter engrafted organs. Targeting chemokine-GAG interactions thus has the potential to reduce immune damage to transplanted kidneys.Mouse models for renal transplant are available, but are complex and require extensive microsurgery expertise. Here we describe simplified subcapsular and subcutaneous renal allograft transplant models, for rapid assessment of the roles of chemokine-GAG interactions during allograft surgery and rejection. These models are described, together with treatment using a unique chemokine modulating protein (CMP) M-T7 that disrupts chemokine-GAG interactions.


Assuntos
Transplante de Rim , Camundongos , Animais , Transplante de Rim/efeitos adversos , Rejeição de Enxerto , Glicosaminoglicanos/metabolismo , Quimiocinas/metabolismo , Modelos Animais de Doenças , Complicações Pós-Operatórias , Aloenxertos
5.
Methods Mol Biol ; 2597: 25-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374412

RESUMO

Binding of chemokines to glycosaminoglycans (GAGs) is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct immune cell responses initiating local leukocyte chemotaxis into damaged or transplanted tissues. The interaction between chemokines and GAGs is an important factor affecting transplant rejection, and blocking the interactions between chemokines and GAGs can significantly reduce acute rejection after transplantation. Here, we investigated the interaction between chemokines and GAGs by establishing a mouse model of acute rejection after kidney transplantation.


Assuntos
Transplante de Rim , Camundongos , Animais , Humanos , Transplante de Rim/efeitos adversos , Quimiocinas/metabolismo , Doadores de Tecidos , Rejeição de Enxerto , Glicosaminoglicanos/metabolismo , Aloenxertos
6.
Methods Mol Biol ; 2597: 59-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374414

RESUMO

At the moment, many researchers are using in vitro techniques to investigate chemokine-driven leukocyte adhesion/recruitment, for example, by using a transwell or flow chamber system. Here we describe a more physiologically relevant, sophisticated, and highly flexible method to study leukocyte adhesion ex vivo in fresh murine carotid arteries under arterial flow conditions. This model mimics an in vivo situation and allows the combination of leukocytes and arteries isolated from different donors in one experiment, generating information on both vascular and leukocyte adhesive properties of both donors. This method provides a versatile, highly physiologically relevant model to investigate leukocyte adhesion.


Assuntos
Quimiocinas , Leucócitos , Camundongos , Animais , Adesão Celular/fisiologia , Leucócitos/fisiologia , Artérias Carótidas , Perfusão , Endotélio Vascular/fisiologia
7.
Methods Mol Biol ; 2597: 121-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374418

RESUMO

Viruses encode secreted proteins that bind chemokines to modulate their activity. Viral proteins may simultaneously interact with glycosaminoglycans allowing these proteins to be anchored at the cell surface to increase their anti-chemokine activity in the proximity of infection. Here we describe methodology to evaluate the interaction of viral secreted proteins with cell-surface glycosaminoglycans by immunofluorescence and detection by flow cytometry or microscopy. These methods could be equally applied to other chemokine binding proteins that do not have viral origin.


Assuntos
Proteínas de Transporte , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Proteínas de Transporte/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Citometria de Fluxo , Quimiocinas/metabolismo , Ligação Proteica , Proteínas Virais/metabolismo
8.
Methods Mol Biol ; 2597: 131-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374419

RESUMO

Protein microarrays are an important tool when analyzing multiple analytes simultaneously. As the human genome contains approximately 20,000 genes, examining the interactions of even just one representative protein for each gene requires a high-throughput technique. For instance, the interaction between glycosaminoglycans (GAGs), a form of polysaccharide, and chemokines, small chemoattractant proteins, is critical for local inflammation. GAGs present in the glycocalyx on the surface of the cell bind to chemokines, which are released in response to injury. These chemokines can then form concentration gradients that direct the migration and recruitment of leucocytes via leukocyte receptors which in turn leads to immune cell responses, inflammation, or innate immunity and cell or antibody-mediated immune responses. Discovering the novel interactions between the GAGs and chemokines can help in designing drugs which can alter cellular binding to organ tissues, thereby potentially reducing damaging innate immune (inflammation) or acquired immune (antibody-mediated) responses.


Assuntos
Quimiocinas , Análise Serial de Proteínas , Humanos , Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Inflamação/metabolismo , Imunidade Inata , Ligação Proteica
9.
Methods Mol Biol ; 2597: 143-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374420

RESUMO

Humans express around 50 chemokines that play crucial roles in human pathophysiology from combating infection to immune surveillance by directing and trafficking leukocytes to the target tissue. Glycosaminoglycans (GAGs) regulate chemokine function by tuning monomer/dimer levels, chemotactic/haptotactic gradients, and how they are presented to their receptors. Knowledge of the structural features of the chemokine-GAG complexes and GAG properties that define chemokine interactions is essential not only to understand chemokine function, but also for developing drugs that disrupt chemokine-GAG crosstalk and thereby impart protection against dysregulated host defense. Nuclear magnetic resonance (NMR) spectroscopy has proven to be quite useful for providing residue-specific interactions, binding geometry and models, specificity, and affinity. Multiple NMR methods have been used including (1) chemical shift perturbation (CSP), (2) saturation transfer difference (STD), and (3) paramagnetic relaxation enhancement (PRE) techniques. In this chapter, we describe how NMR CSP, STD, and PRE can be best used for characterizing chemokine-GAG interactions.


Assuntos
Quimiocinas , Glicosaminoglicanos , Humanos , Glicosaminoglicanos/química , Ligação Proteica , Espectroscopia de Ressonância Magnética/métodos , Quimiocinas/metabolismo
10.
Methods Mol Biol ; 2597: 251-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374426

RESUMO

Structural discovery of viral chemokine binding proteins can provide valuable information on the binding domains and protein-protein interfaces (PPI) of these immunologically relevant proteins. Protein expression in mammalian cells produces high-quality protein compared to other expression methods; however, because structural discovery methods such as cryo-EM-based single particle analysis (SPA) and x-ray crystallography use methods which combine data from many individual proteins, these demand a highly monodispersed sample composed of protein with ordered structure. These techniques are often incompatible with flexible glycosyl groups commonly present on proteins produced by mammalian cells and require deglycosylation to enable observation of the conserved tertiary structure beneath these variable, flexible, glycans. Using the Myxoma viral protein M-T7 as a test case, we discuss considerations and preliminary bioinformatic analysis for approaching structural discovery using freely accessible sequence and structure databases to maximize success and guide experiments. We describe a simple deglycosylation optimization protocol utilizing Endo H followed by size exclusion chromatography (SEC) based purification to produce and validate protein suitable for structural discovery. Considerations such as protein concentration and volumes required for crystallography and negative stain electron microscopy are discussed as well as grid blotting techniques for negative stain experiments to validate protein quality.


Assuntos
Quimiocinas , Proteínas Virais , Animais , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Cromatografia em Gel , Mamíferos
11.
Methods Mol Biol ; 2597: 217-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374424

RESUMO

Chemokines are key instigators of inflammatory and immune responses. Viruses can suppress these responses by secreting proteins that interfere with chemokine action. These proteins bind to chemokines and block the host's ability to recruit immune cells to sites of infection, thus facilitating virus replication and spread. When produced recombinantly, chemokine binding proteins provide a formidable resource to deploy against human disease. Here, we describe an enzyme-linked immunosorbent inhibition assay and a chemotaxis inhibition assay that are employed to assess the chemokine binding strength and anti-chemotactic activity of viral proteins. These assays are quick and reproducible, and are thus ideal for screening putative or modified chemokine binding proteins as the first step in their development as therapeutics.


Assuntos
Quimiocinas , Proteínas Virais , Humanos , Quimiocinas/metabolismo , Proteínas Virais/metabolismo , Ligação Proteica , Quimiotaxia , Transdução de Sinais , Proteínas de Transporte/metabolismo
12.
Methods Mol Biol ; 2597: 77-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374415

RESUMO

Transmigration assays, and the use of the Boyden chamber, became one of the most used tools to assess cell motility, invasion, and chemotaxis. The classical Boyden chamber consists of two compartments separated by a membrane representing a physical barrier, which cells have to overcome by active migration. A large variety of Boyden chambers are available and can be customized to fit the experiment by choosing pore size, density, and membrane type. The method described in this chapter intends to measure the migration of mouse T cells towards the chemoattractant CCL25, as a practical example of such (trans)migration experiment that can be further adopted to individual needs and requirements.


Assuntos
Quimiocinas , Animais , Camundongos , Movimento Celular , Quimiocinas/metabolismo , Fatores Quimiotáticos , Quimiotaxia
13.
Immunohorizons ; 6(11): 743-759, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426967

RESUMO

Dendritic cells form clusters in vivo, but the mechanism behind this has not been determined. In this article, we demonstrate that monocytes from mice deficient in the chemokine receptors CCR1, CCR2, CCR3, and CCR5 display reduced clustering in vitro, which is associated with impaired dendritic cell and macrophage differentiation. We further show that the differentiating cells themselves produce ligands for these receptors that function, in a redundant manner, to regulate cell clustering. Deletion of, or pharmacological blockade of, more than one of these receptors is required to impair clustering and differentiation. Our data show that chemokines and their receptors support clustering by increasing expression of, and activating, cell-surface integrins, which are associated with cell-cell interactions and, in the context of monocyte differentiation, with reduced expression of Foxp1, a known transcriptional suppressor of monocyte differentiation. Our data therefore provide a mechanism whereby chemokines and their receptors typically found in inflammatory environments can interact to promote murine monocyte differentiation to macrophages and dendritic cells.


Assuntos
Macrófagos , Receptores de Quimiocinas , Camundongos , Animais , Receptores de Quimiocinas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Quimiocinas/metabolismo , Células Dendríticas/metabolismo
14.
BMC Immunol ; 23(1): 53, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324077

RESUMO

BACKGROUND: Macrophages are mononuclear CD34+ antigen-presenting cells of defense mechanism and play dual roles in tumor burden. The immunomodulatory and their antitumor function of ß-defensin 2 is still unclear, despite the accumulating evidence of the response in infection. So, the aim of present study is to elucidate the role of ß-defensin 2 on the level of ROS, cytokines, chemokine expression in macrophages and antitumor function in breast cancer. METHOD: Swiss albino mice were used to harvest PEC macrophages and C127i breast cancer cells line for tumor model was used in this study. Macrophages were harvested and characterized by flow-cytometry using F4/80 and CD11c antibodies. MTT was performed to estimate cytotoxicity and dose optimization of ß-defensin 2. Oxidative stress was analyzed by H2O2 and NO estimation followed by iNOS quantified by q-PCR. Cytokines and chemokines estimation was done using q-PCR. Co-culture experiment was performed to study anti-tumor function using PI for cell cycle, Annexin -V and CFSE analysis for cell proliferation. RESULTS: PEC harvested macrophages were characterized by flow-cytometry using F4/80 and CD11c antibodies with the purity of 8% pure population of macrophages. It was found that 99% of cells viable at the maximum dose of 100 ng/ml of ß-defensin 2 in MTT. Levels of NO and H2O2 were found to be decreased in ß-defensin 2 as compared to control. Expression of cytokines of IFN-γ, IL-1α, TNF-α, TGF-ßwas found to be increased while IL-3 was decreased in ß-defensin 2 group as compared to control. Levels of chemokines CXCL-1, CXCL-5 and CCL5 increased in treated macrophages while CCL24 and CXCL-15 expression decreased. Adhesion receptor (CD32) and fusion receptor (CD204) were decreased in the ß-defensin 2 group as compared to control. Anti-tumor experiment was performed using co-culture experiment apoptosis (Annexin-V) was induced, cell cycle arrest in phage and cell proliferation of C127i cells was decreased. CONCLUSION: This is the first report of ß-defensin 2 modulates macrophage immunomodulatory and their antitumor function in breast cancer. ß-defensin 2 as a new therapeutic target for immunotherapy as an adjuvant in vaccines.


Assuntos
Neoplasias , beta-Defensinas , Animais , Camundongos , beta-Defensinas/metabolismo , beta-Defensinas/farmacologia , Peróxido de Hidrogênio , Macrófagos , Citocinas/metabolismo , Quimiocinas/metabolismo , Quimiocinas/farmacologia , Anexinas/metabolismo , Anexinas/farmacologia , Neoplasias/metabolismo
15.
Sci Rep ; 12(1): 19026, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347994

RESUMO

Kruppel like factor 15 (KLF15), a transcriptional factor belonging to the Kruppel-like factor (KLF) family of genes, has recently been reported as a tumor suppressor gene in breast cancer. However, the specific mechanisms by which KLF15 inhibits BrCa have not been elucidated. Here we investigated the role and mechanism of KLF15 in triple-negative breast cancer (TNBC). KLF15 expression and methylation were detected by RT-qPCR, RT-PCR and methylation-specific PCR in breast cancer cell lines and tissues. The effects of KLF15 on TNBC cell functions were examined via various cellular function assays. The specific anti-tumor mechanisms of KLF15 were further investigated by RNA sequence, RT-qPCR, Western blotting, luciferase assay, ChIP, and bioinformatics analysis. As the results showed that KLF15 is significantly downregulated in breast cancer cell lines and tissues, which promoter methylation of KLF15 partially contributes to. Exogenous expression of KLF15 induced apoptosis and G2/M phase cell cycle arrest, suppressed cell proliferation, metastasis and in vivo tumorigenesis of TNBC cells. Mechanism studies revealed that KLF15 targeted and downregulated C-C motif chemokine ligand 2 (CCL2) and CCL7. Moreover, transcriptome and metabolome analysis revealed that KLF15 is involved in key anti-tumor regulatory and metabolic pathways in TNBC. In conclusion, KLF15 suppresses cell growth and metastasis in TNBC by downregulating CCL2 and CCL7. KLF15 may be a prognostic biomarker in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Ligantes , Proliferação de Células/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Quimiocinas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Quimiocina CCL7/metabolismo , Quimiocina CCL2/metabolismo
16.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362116

RESUMO

Psoriasis (PsO) is a chronic, immune-mediated, inflammatory skin disease associated in most cases with pruritus. Chemokines seem to play a significant role in PsO pathogenesis. The aim of the study was to analyse serum concentrations of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CCL5/RANTES, CCL17/TARC, CCL18/PARC, CCL22/MDC and CXCL8/IL-8, and their correlation with PsO severity and pruritus intensity. The study included 60 PsO patients and 40 healthy volunteers. Serum concentrations of six (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CCL17/TARC, CCL18/PARC and CCL22/MDC) out of eight analysed chemokines were significantly elevated in PsO patients; however, they did not correlate with disease severity. The serum level of CCL5/RANTES was significantly higher in patients with the psoriasis area and severity index (PASI) ≥ 15 (p = 0.01). The serum concentration of CCL17/TARC correlated positively with pruritus assessed using the visual analogue scale (VAS) (R = 0.47; p = 0.05). The study indicated CCL17/TARC as a potential biomarker of pruritus intensity in PsO patients. Chemokines appear to be involved in the development of PsO systemic inflammation. Further detailed studies on the interactions between chemokines, proinflammatory cytokines and immune system cells in PsO are required to search for new targeted therapies.


Assuntos
Quimiocina CCL5 , Psoríase , Humanos , Quimiocina CCL3 , Quimiocina CCL2 , Quimiocinas , Índice de Gravidade de Doença , Psoríase/complicações , Prurido
17.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362117

RESUMO

The caterpillar of the Premolis semirufa moth, commonly called Pararama, is found in the Brazilian Amazon region. Contact with the hairs can cause a chronic inflammatory reaction, termed "pararamosis". To date, there is still no specific treatment for pararamosis. In this study, we used a whole human blood model to evaluate the involvement of the complement in the proinflammatory effects of P. semirufa hair extract, as well as the anti-inflammatory potential of complement inhibitors in this process. After treatment of blood samples with the P. semirufa hair extract, there was a significant increase in the generation of soluble terminal complement complex (sTCC) and anaphylatoxins (C3a, C4a, and C5a), as well as the production of the cytokines TNF-α and IL-17 and the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10. The inhibition of C3 with compstatin significantly decreased IL-17, IL-8, RANTES, and MCP-1 production. However, the use of the C5aR1 antagonist PMX205 promoted a reduction in the production of IL-8 and RANTES. Moreover, compstatin decreased CD11b, C5aR1, and TLR2 expression induced by P. semirufa hair extract in granulocytes and CD11b, TLR4, and TLR2 in monocytes. When we incubated vascular endothelial cells with extract-treated human plasma, there was an increase in IL-8 and MCP-1 production, and compstatin was able to decrease the production of these chemokines. C5aR1 antagonism also decreased the production of MCP-1 in endothelial cells. Thus, these results indicate that the extract of the Pararama bristles activates the complement system and that this action contributes to the production of cytokines and chemokines, modulation of the expression of surface markers in leukocytes, and activation of endothelial cells.


Assuntos
Mariposas , Animais , Humanos , Mariposas/metabolismo , Interleucina-17/efeitos adversos , Peçonhas , Interleucina-8 , Células Endoteliais/metabolismo , Floresta Úmida , Receptor 2 Toll-Like , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Proteínas do Sistema Complemento , Quimiocinas
18.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362348

RESUMO

Cases of pancreatic neuroendocrine tumors (PNETs) are growing in number, and new treatment options are needed in order to improve patient outcomes. The mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a crucial regulator of cytokine/chemokine production. The significance of MK2 expression and signaling pathway mediated by MK2 in PNETs has not been investigated. To characterize the impact of MK2 on PNET growth, we used the RipTag2 transgenic murine model of PNETs, and we developed a primary PNET cell line for both in vitro and in vivo studies. In the transgenic murine model of PNETs, we found that MK2 inhibition improves survival of mice and prevents PNET progression. MK2 blockade abolished cytokine/chemokine production, which was related to macrophage function. A role for MK2 in the regulation of metabolic factor secretion in PNETs was identified, making this the first study to identify a potential role for the MK2 pathway in regulation of tumor metabolism. Moreover, using an in vitro approach and allograft model of PNETs, we were able to show that macrophages with MK2 depletion exhibit increased cytotoxicity against PNET cells and substantially decreased production of pro-inflammatory cytokines and chemokines, as well as metabolic factors. Taken together, our work identifies MK2 as a potent driver of immune response and metabolic effectors in PNETs, suggesting it is a potential therapeutic target for patients with PNETs.


Assuntos
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Animais , Camundongos , Tumores Neuroendócrinos/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Tumores Neuroectodérmicos Primitivos/metabolismo
19.
Biomolecules ; 12(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358937

RESUMO

Human C-C motif ligand 16 (CCL16) is a chemokine that is distinguished by a large cleavable C-terminal extension of unknown significance. Conflicting data have been reported concerning its tissue distribution and modulation of expression, rendering the biological function of CCL16 enigmatic. Here, we report an integrated approach to the characterisation of this chemokine, including a re-assessment of its expression characteristics as well as a biophysical investigation with respect to its structure and dynamics. Our data indicate that CCL16 is chiefly synthesised by hepatocytes, without an appreciable response to mediators of inflammation, and circulates in the blood as a full-length protein. While the crystal structure of CCL16 confirms the presence of a canonical chemokine domain, molecular dynamics simulations support the view that the C-terminal extension impairs the accessibility of the glycosaminoglycan binding sites and may thus serve as an intrinsic modulator of biological activity.


Assuntos
Quimiocinas CC , Quimiocinas , Humanos , Quimiocinas CC/metabolismo , Ligantes , Glicosaminoglicanos
20.
Oncoimmunology ; 11(1): 2144669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387055

RESUMO

Combining immunogenic cell death-inducing chemotherapies and PD-1 blockade can generate remarkable tumor responses. It is now well established that TGF-ß1 signaling is a major component of treatment resistance and contributes to the cancer-related immunosuppressive microenvironment. However, whether TGF-ß1 remains an obstacle to immune checkpoint inhibitor efficacy when immunotherapy is combined with chemotherapy is still to be determined. Several syngeneic murine models were used to investigate the role of TGF-ß1 neutralization on the combinations of immunogenic chemotherapy (FOLFOX: 5-fluorouracil and oxaliplatin) and anti-PD-1. Cancer-associated fibroblasts (CAF) and immune cells were isolated from CT26 and PancOH7 tumor-bearing mice treated with FOLFOX, anti-PD-1 ± anti-TGF-ß1 for bulk and single cell RNA sequencing and characterization. We showed that TGF-ß1 neutralization promotes the therapeutic efficacy of FOLFOX and anti-PD-1 combination and induces the recruitment of antigen-specific CD8+ T cells into the tumor. TGF-ß1 neutralization is required in addition to chemo-immunotherapy to promote inflammatory CAF infiltration, a chemokine production switch in CAF leading to decreased CXCL14 and increased CXCL9/10 production and subsequent antigen-specific T cell recruitment. The immune-suppressive effect of TGF-ß1 involves an epigenetic mechanism with chromatin remodeling of CXCL9 and CXCL10 promoters within CAF DNA in a G9a and EZH2-dependent fashion. Our results strengthen the role of TGF-ß1 in the organization of a tumor microenvironment enriched in myofibroblasts where chromatin remodeling prevents CXCL9/10 production and limits the efficacy of chemo-immunotherapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Camundongos , Animais , Fibroblastos Associados a Câncer/patologia , Linfócitos T CD8-Positivos , Imunoterapia/métodos , Quimiocinas/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...