Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.284
Filtrar
1.
Ecotoxicol Environ Saf ; 204: 111072, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32758694

RESUMO

Zearalenone (ZEN) is a mycotoxin that causes serious health problems in humans and animals. However, few studies have focused on the destruction of the intestinal barrier caused by ZEN. In this study, rats were exposed to different dosages of ZEN (0, 0.2, 1.0 and 5.0 mg/kg bw) by gavage for 4 weeks. The results showed that 1.0 and 5.0 mg/kg ZEN impaired gut morphology, induced the inflammatory response, reduced mucin expression, increased intestinal permeability, decreased the expression of TJ proteins and activated the RhoA/ROCK pathway. However, 0.2 mg/kg ZEN had no significant effect on intestinal barrier except for reducing the expression of some TJ proteins and mucins. Moreover, exposure to ZEN led to slight imbalance in microbiota. In conclusion, ZEN exposure resulted in intestinal barrier dysfunction by inducing intestinal microbiota dysbiosis, decreasing the expression of TJ proteins, activating the RhoA/ROCK pathway, and inducing the inflammatory response.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Zearalenona/toxicidade , Animais , Relação Dose-Resposta a Droga , Disbiose/induzido quimicamente , Feminino , Microbioma Gastrointestinal/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Jejuno/microbiologia , Jejuno/patologia , Masculino , Mucinas/metabolismo , Permeabilidade , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
2.
PLoS One ; 15(7): e0236175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32697798

RESUMO

Adenoviruses cause upper respiratory infections, conjunctivitis, keratitis, and gastrointestinal illness. These can be fatal in immunocompromised individuals. Adenoviruses have also been engineered into viral vectors to deliver therapeutic genes or induce immunity as vaccine carriers. The success of ocular gene therapy is driven partly by the immunologic and biochemical influences of the intraocular environment. We have shown that versican and hyaluronan modulate adenoviral vector transgene expression through CD44 signaling. Herein we explored the role of these pathways on virus replication and viral protein expression of wild type adenovirus. We report that the addition of vitreous humor (which contains both versican and hyaluronan) increases viral hexon protein levels. Vitreous humor also increased wild type adenovirus DNA replication in vitro. Metalloproteinase and γ-secretase inhibitors, which inhibit CD44 proteolytic activation, blocked adenoviral replication in vitro. Similarly, protein kinase C and RhoA kinase inhibitors, both proteins associated with CD44 mediated pathways, also inhibited wild type adenoviral replication in vitro. Application of metalloproteinase and γ-secretase inhibitors to human conjunctival explants sharply decreased adenoviral vector gene expression. Our results demonstrate that pharmacologic delivery of these inhibitors is easily achievable. The inhibition of these enzymes should be explored as potential therapies of wild type adenoviral infections.


Assuntos
Infecções por Adenoviridae/tratamento farmacológico , Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Vetores Genéticos/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Adenoviridae/fisiologia , Infecções por Adenoviridae/virologia , Administração Oftálmica , Amidas/farmacologia , Amidas/uso terapêutico , Antivirais/uso terapêutico , Túnica Conjuntiva/metabolismo , DNA Viral/genética , DNA Viral/isolamento & purificação , Diaminas/farmacologia , Diaminas/uso terapêutico , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/fisiologia , Células HeLa , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Maleimidas/farmacologia , Maleimidas/uso terapêutico , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Permeabilidade , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteólise/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Versicanas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Corpo Vítreo/metabolismo , Quinases Associadas a rho/metabolismo
3.
Medicine (Baltimore) ; 99(28): e20060, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664054

RESUMO

OBJECTIVE: This study was designed to investigate the effects of leukocyte Rho kinase activity and serum Cystatin C (Cys C) on cardiovascular events in patients with acute coronary syndrome (ACS). METHODS: A total of 48 patients with ST-segment elevation myocardial infarction (STEMI), 23 patients with non-ST-segment elevation myocardial infarction (NSTEMI), 25 patients with unstable angina (UA) and 20 patients with no-acute coronary syndrome as control from January 2017 to June 2018 in Tianyou Hospital affiliated to Wuhan University of Science and Technology were selected in this study. Western blot was used to detect the leukocyte Rho kinase activity and Elisa kit was used to measure serum Cys C. Univariate and multivariate analysis were used to analyze the influencing factors of cardiovascular events in ACS patients. RESULTS: The activity of leukocyte Rho kinase and serum Cys C were gradually reduced in the STEMI, NSTEMI and UA patients, but all significantly higher than that in No-ASC patients, and there was a positive correlation between leukocyte Rho kinase activity and serum Cys C in ACS patients (r = 0.516, P < .001). The activity of leukocyte Rho kinase was positively correlated with the levels of serum TNF-α (r = 0.634, P < .001), IL-6 (r = 0.578, P < .001), IL-8 (r = 0.582, P < .001) in ACS patients, and the level of Cys C was positively correlated with the levels of serum TNF-α (r = 0.634, P < .001), IL-6 (r = 0.578, P < .001), IL-8 (r = 0.582, P < .001) in ACS patients. Univariate and multivariate analysis showed that the leukocyte Rho kinase activity (HR = 2.994, 95%CI = 1.328-6.054, P < .0001) and the levels of serum Cys C (HR = 1.692, 95%CI = 1.028-2.124, P < .0001) were independent influencing factors of cardiovascular events in ACS patients. CONCLUSION: The leukocyte Rho kinase activity and serum Cystatin C are high in acute coronary syndrome patients, and are the independent influencing factors of cardiovascular events in ACS patients.


Assuntos
Cistatina C/sangue , Isquemia Miocárdica/sangue , Quinases Associadas a rho/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Leucócitos/enzimologia , Masculino , Pessoa de Meia-Idade
4.
Clin Sci (Lond) ; 134(12): 1357-1376, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32490513

RESUMO

Non-specific inhibition of Rho-associated kinases (ROCKs) alleviated renal fibrosis in the unilateral ureteral obstruction (UUO) model, while genetic deletion of ROCK1 did not affect renal pathology in mice. Thus, whether ROCK2 plays a role in renal tubulointerstitial fibrosis needs to be clarified. In the present study, a selective inhibitor against ROCK2 or genetic approach was used to investigate the role of ROCK2 in renal tubulointerstitial fibrosis. In the fibrotic kidneys of chronic kidney diseases (CKDs) patients, we observed an enhanced expression of ROCK2 with a positive correlation with interstitial fibrosis. In mice, the ROCK2 protein level was time-dependently increased in the UUO model. By treating CKD animals with KD025 at the dosage of 50 mg/kg/day via intraperitoneal injection, the renal fibrosis shown by Masson's trichrome staining was significantly alleviated along with the reduced expression of fibrotic genes. In vitro, inhibiting ROCK2 by KD025 or ROCK2 knockdown/knockout significantly blunted the pro-fibrotic response in transforming growth factor-ß1 (TGF-ß1)-stimulated mouse renal proximal tubular epithelial cells (mPTCs). Moreover, impaired cellular metabolism was reported as a crucial pathogenic factor in CKD. By metabolomics analysis, we found that KD025 restored the metabolic disturbance, including the impaired glutathione metabolism in TGF-ß1-stimulated tubular epithelial cells. Consistently, KD025 increased antioxidative stress enzymes and nuclear erythroid 2-related factor 2 (Nrf2) in fibrotic models. In addition, KD025 decreased the infiltration of macrophages and inflammatory response in fibrotic kidneys and blunted the activation of macrophages in vitro. In conclusion, inhibition of ROCK2 may serve as a potential novel therapy for renal tubulointerstitial fibrosis in CKD.


Assuntos
Células Epiteliais/enzimologia , Túbulos Renais Proximais/patologia , Doenças Metabólicas/enzimologia , Quinases Associadas a rho/antagonistas & inibidores , Adolescente , Animais , Anti-Inflamatórios/farmacologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Feminino , Fibrose , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Lactente , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Doenças Metabólicas/patologia , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Células RAW 264.7 , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Obstrução Ureteral/enzimologia , Obstrução Ureteral/patologia , Quinases Associadas a rho/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 319(2): H377-H391, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32559140

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal progressive disease characterized by an increased blood pressure in the pulmonary arteries. RhoA/Rho-kinase (RhoA/ROCK) signaling activation is often associated with PAH. The purpose of this study is to investigate the role and mechanisms of long noncoding RNA (lncRNA) smooth muscle-induced lncRNA (SMILR) to activate the RhoA/ROCK pathway in PAH. SMILR, microRNA-141 (miR-141), and RhoA were identified by qRT-PCR in PAH patients' serum. 3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), wound-healing assay, cell counting kit-8 (CCK-8) assay, and flow cytometry were performed to determine cell viability, migration, proliferation, and cell cycle in human pulmonary arterial smooth muscle cells (hPASMCs) and primary PASMCs from PAH patients. We also performed bioinformatical prediction, luciferase reporter assay, and RNA-binding protein immunoprecipitation (RIP) to assess the interaction among SMILR, miR-141, and RhoA. The RhoA/ROCK pathway and proliferation-related proteins were measured by Western blotting. Finally, we introduced the small hairpin (sh)SMILR to monocrotaline-induced PAH rat model and used the hemodynamic measurement, qRT-PCR, and immunohistochemistry to examine the therapeutic effects of shSMILR. SMILR and RhoA expression were upregulated, while miR-141 expression was downregulated in PAH patients. SMILR directly interacted with miR-141 and negatively regulated its expression. Knockdown of SMILR suppressed PASMC proliferation and migration induced by hypoxia. Furthermore, overexpression of miR-141 could inhibit the RhoA/ROCK pathway by binding to RhoA, thereby repressing cell proliferation-related signals. Knockdown of SMILR significantly inhibited the Rho/ROCK activation and vascular remodeling in monocrotaline-induced rats. Knockdown of SMILR effectively elevated miR-141 expression and in turn inhibited the RhoA/ROCK pathway to regulate vascular remodeling and reduce blood pressure in PAH.NEW & NOTEWORTHY Smooth muscle enriched long noncoding RNA (SMILR), as a long noncoding RNA (lncRNA), was increased in pulmonary arterial hypertension (PAH) patients and in vitro and in vivo models. SMILR activated RhoA/ROCK signaling by targeting miR-141 to disinhibit its downstream target RhoA. SMILR knockdown or miR-141 overexpression inhibited hypoxia-induced cell proliferation and migration via repressing RhoA/ROCK signaling in pulmonary arterial smooth muscle cells (PASMCs), which was confirmed in vivo experiments that knockdown of SMILR inhibited vascular remodeling and alleviated PAH in rats. SMILR may be a promising and novel therapeutic target for the treatment and drug development of PAH.


Assuntos
MicroRNAs/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Hipertensão Arterial Pulmonar/enzimologia , RNA Longo não Codificante/metabolismo , Remodelação Vascular , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , RNA Longo não Codificante/genética , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética
6.
Nat Cell Biol ; 22(7): 791-802, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483386

RESUMO

Tissue remodelling during Drosophila embryogenesis is notably driven by epithelial cell contractility. This behaviour arises from the Rho1-Rok-induced pulsatile accumulation of non-muscle myosin II pulling on actin filaments of the medioapical cortex. While recent studies have highlighted the mechanisms governing the emergence of Rho1-Rok-myosin II pulsatility, little is known about how F-actin organization influences this process. Here, we show that the medioapical cortex consists of two entangled F-actin subpopulations. One exhibits pulsatile dynamics of actin polymerization in a Rho1-dependent manner. The other forms a persistent and homogeneous network independent of Rho1. We identify the formin Frl (also known as Fmnl) as a critical nucleator of the persistent network, since modulating its level in mutants or by overexpression decreases or increases the network density. Absence of this network yields sparse connectivity affecting the homogeneous force transmission to the cell boundaries. This reduces the propagation range of contractile forces and results in tissue-scale morphogenetic defects.


Assuntos
Citoesqueleto de Actina/fisiologia , Drosophila melanogaster/metabolismo , Células Epiteliais/patologia , Forminas/fisiologia , Miosina Tipo II/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Polaridade Celular , Drosophila melanogaster/genética , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Morfogênese , Miosina Tipo II/genética , Proteínas rho de Ligação ao GTP/genética , Quinases Associadas a rho/genética
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(3): 193-197, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32389165

RESUMO

Objective To investigate the role of Ras homolog gene (Rho) A/Rho-associated coiled-coil containing protein kinase (ROCK) signaling pathway in tumor necrosis factor α (TNF-α) promoting hyper-permeability of vascular endothelial cells infected by Listeria monocytogenes (Lm) . Methods The cultured human umbilical vein endothelial cells (HUVECs) were divided into a control group (uninfected cells), TNF-α treatment group (100 ng/mL TNF-α, for 2 hours), Lm infection group (infected with MOI=10 Lm for 2 hours, then added gentamicin for 0.5 hour), Lm infection and TNF-α treatment group (infected with Lm and then treated with 100 ng/mL TNF-α for 2 hours), and Y-27632 inhibitor group combined with Lm infection and TNF-α treatment (treated with 50 µmol/L ROCK inhibitor Y-27632 for 30 minutes, and then Lm infection and TNF-α treatment as above). The protein levels of RhoA, zonula occluden-1 (ZO-1), occludin and ROCK in HUVECs were detected by Western blot analysis; the permeability of HUVECs was analyzed by the horseradish peroxidase (HRP) leakage; and the distribution of F-actin in HUVECs was detected by fluorescein isothiocyanate (FITC)-labeled phalloidine staining. Results TNF-α reduced the expression of tight junction protein ZO-1 and occludin in Lm-infected HUVECs, promoted its hyper-permeability and cytoskeletal rearrangement, and up-regulated the expression of RhoA and ROCK. ROCK inhibitor Y-27632 obviously inhibited the cytoskeleton rearrangement and hyper-permeability of HUVECs induced by TNF-α. Conclusion TNF-α can enhance hyper-permeability of HUVECs infected by Lm, which may be regulated by RhoA/Rock signaling pathway.


Assuntos
Células Endoteliais da Veia Umbilical Humana/microbiologia , Listeria monocytogenes , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Permeabilidade
8.
Nat Cell Biol ; 22(7): 882-895, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451439

RESUMO

It is well accepted that cancers co-opt the microenvironment for their growth. However, the molecular mechanisms that underlie cancer-microenvironment interactions are still poorly defined. Here, we show that Rho-associated kinase (ROCK) in the mammary tumour epithelium selectively actuates protein-kinase-R-like endoplasmic reticulum kinase (PERK), causing the recruitment and persistent education of tumour-promoting cancer-associated fibroblasts (CAFs), which are part of the cancer microenvironment. An analysis of tumours from patients and mice reveals that cysteine-rich with EGF-like domains 2 (CRELD2) is the paracrine factor that underlies PERK-mediated CAF education downstream of ROCK. We find that CRELD2 is regulated by PERK-regulated ATF4, and depleting CRELD2 suppressed tumour progression, demonstrating that the paracrine ROCK-PERK-ATF4-CRELD2 axis promotes the progression of breast cancer, with implications for cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Moléculas de Adesão Celular/metabolismo , Reprogramação Celular , Proteínas da Matriz Extracelular/metabolismo , eIF-2 Quinase/metabolismo , Quinases Associadas a rho/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Moléculas de Adesão Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Camundongos , Comunicação Parácrina , eIF-2 Quinase/genética , Quinases Associadas a rho/genética
9.
Life Sci ; 255: 117779, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417374

RESUMO

OBJECTIVE: Kidney is the most common location of microangiopathy in diabetic patients, and we designed this study to investigate the effects of hirudin on renal microangiopathy in STZ-induced diabetes rats and in vitro. METHODS: We established a diabetes model by intraperitoneal injection of STZ and administered hirudin daily by subcutaneous injection. HE staining was used to assess kidney pathological changes. Western blot and immunochemistry was used to detect the protein expression. Glomerular endothelial cells (GEC) in normal rats were assessed by cell scratch test for migration ability and tubule formation experiment for angiogenesis ability. RESULTS: Compared with DN rats without any treatment, the serum creatinine, serum Cys C, 24-hour urine protein of DN rats with hirudin treatment were significantly decrease, the kidney/body weight and glomerular area of DN rats with hirudin treatment were all significantly decrease, and also significant improvement in renal pathology revealed by HE staining in DN rats after treating with hirudin. Moreover, we also found that hirudin coun not only significantly increase the prothrombin time and aivated partial thromboplastin time in DN rats, but also significantly decrease the expression of VEGF and TM-1 protein in kidney tissues of DN rats. In vitro, we found that high glucose could promote the migration and angiogensis of GEC, and significantly increased the expression of VEGF and Ang protein, but significantly decreased the expression of THBS1 and Arg1 protein. More importantly was that hirudin could inhibit the migration and angiogensis of GEC, and reversed HG-induced the expression of VEGF, Ang, THBS1 and Arg1 protein in GEC. In addition, we also found that hirudin could not only decrease HG-enhanced the activity of RhoA in GEC, but also decrease HG-enhanced the expression of p-MYPT1/MYPT1, p-p38/p38 protein in GEC. CONCLUSION: Hirudin reduces nephropathy microangiopathy in STZ-induced diabetes, and might be related to hirudin inhibiting glomerular endothelial cell migration and angiogenesis through Rho-kinase and subsequent p38MAPK/NF-kB signaling pathway.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/prevenção & controle , Hirudinas/farmacologia , Neovascularização Patológica/prevenção & controle , Animais , Movimento Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Glucose/metabolismo , Glomérulos Renais/metabolismo , Masculino , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases Associadas a rho/metabolismo
10.
PLoS One ; 15(5): e0232356, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32357159

RESUMO

Lymphatic systems play important roles in the maintenance of fluid homeostasis and undergo anatomical and physiological changes during inflammation and aging. While lymphatic endothelial cells (LECs) undergo mesenchymal transition in response to transforming growth factor-ß (TGF-ß), the molecular mechanisms underlying endothelial-to-mesenchymal transition (EndMT) of LECs remain largely unknown. In this study, we examined the effect of TGF-ß2 and tumor necrosis factor-α (TNF-α), an inflammatory cytokine, on EndMT using human skin-derived lymphatic endothelial cells (HDLECs). TGF-ß2-treated HDLECs showed increased expression of SM22α, a mesenchymal cell marker accompanied by increased cell motility and vascular permeability, suggesting HDLECs to undergo EndMT. Our data also revealed that TNF-α could enhance TGF-ß2-induced EndMT of HDLECs. Furthermore, both cytokines induced the production of Activin A while decreasing the expression of its inhibitory molecule Follistatin, and thus enhancing EndMT. Finally, we demonstrated that human dermal lymphatic vessels underwent EndMT during aging, characterized by double immunostaining for LYVE1 and SM22α. These results suggest that both TGF-ß and TNF-α signals play a central role in EndMT of LECs and could be potential targets for senile edema.


Assuntos
Ativinas/metabolismo , Células Endoteliais/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/fisiologia , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Vasos Linfáticos/citologia , Proteína Smad2/fisiologia , Transativadores/fisiologia , Quinases Associadas a rho/metabolismo
11.
Toxicol Appl Pharmacol ; 399: 115053, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417439

RESUMO

Acute promyelocytic leukemia (APL) is a form of acute myeloid leukemia with a unique chromosome translocation t (15;17), commonly complicated by a complex coagulopathy. 4-Amino-2-trifuoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative, was synthesized by our group and known to possess obvious biological anti-tumor activities. It has previously been shown that ATPR could induce differentiation and inhibit proliferation of APL cells, although the mechanism responsible for this effect was not well understood. In this study, we demonstrated that ATPR remarkably inhibited the expression and activity of SHP2. Further experiments showed silencing SHP2 or using SHP2 inhibition (SHP099) enhanced the effect of ATPR on cell proliferation and maturation. In addition, we also demonstrated that Rho/ROCK1 might be regulated by SHP2. Using Y-27632, a ROCK inhibitor, further proved that ROCK1 played an important role in ATPR-induced differentiation and proliferation suppression. In conclusion, the results from this study revealed that ATPR induced APL cells terminal differentiation and growth arrest by blockade of SHP2/Rho/ ROCK1 pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Leucemia Promielocítica Aguda/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Retinoides/farmacologia , Quinases Associadas a rho/metabolismo , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Phytomedicine ; 69: 153193, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32120245

RESUMO

BACKGROUND: Although mechanical barriers and modern surgical techniques have been developed to prevent postoperative adhesion formation, high incidence of adhesions still represents an important challenge in abdominal surgery. So far, there has been no available therapeutic drug in clinical practice. PURPOSE: In this study, we explored the efficacy of sodium aescinate (AESS) treatment against postoperative peritoneal adhesions, the potential molecular mechanism was also investigated. STUDY DESIGN AND METHODS: Sixty male Sprague-Dawley rats were randomly divided into 6 groups for the study: the blank, vehicle, positive control and three AESS administration groups (0.5, 1 and 2 mg/kg/d, intravenous administration for 7 days). Adhesions were induced by discretely ligating peritoneal sidewall. An IL-1ß-induced HMrSV5 cell model was also performed to explore possible functional mechanism. RESULTS: The results indicated that the incidence and severity of peritoneal adhesions were significantly lower in the AESS-treated groups than that in the vehicle and positive control group. AESS-treated groups showed that the secretion, activity, and expression of tPA in rat peritoneum were notably increased. The FIB levels in rat plasma were decreased. The immunohistochemical staining analysis demonstrated that collagen I and α-SMA deposition were significantly attenuated in AESS-treated peritoneal tissues. Besides, we found that AESS treatment reduced the protein levels of p-MYPT1. To further explore the mechanisms of AESS, both activator and inhibitors of RhoA/ROCK pathway were employed in this study. It was found that AESS-induced up-regulation of tPA was reversed by activator of ROCK, but the effects of ROCK inhibitors were consistent with AESS. CONCLUSION: Taken together, the findings of in vivo and in vitro experiments proved that AESS could significantly suppress postoperative peritoneal adhesion formation through inhibiting the RhoA/ROCK signaling pathway. Our researches provide important pharmacological basis for AESS development as a potential therapeutic agent on peritoneal adhesions.


Assuntos
Doenças Peritoneais/tratamento farmacológico , Complicações Pós-Operatórias/tratamento farmacológico , Saponinas/farmacologia , Triterpenos/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Linhagem Celular , Colágeno Tipo I/metabolismo , Fibrinogênio/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Masculino , Doenças Peritoneais/patologia , Doenças Peritoneais/prevenção & controle , Peritônio/citologia , Peritônio/cirurgia , Complicações Pós-Operatórias/patologia , Complicações Pós-Operatórias/prevenção & controle , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Aderências Teciduais
13.
PLoS Biol ; 18(3): e3000646, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203518

RESUMO

Interleukin 23 (IL-23) triggers pathogenic features in pro-inflammatory, IL-17-secreting T cells (Th17 and Tγδ17) that play a key role in the development of inflammatory diseases. However, the IL-23 signaling cascade remains largely undefined. Here, we used quantitative phosphoproteomics to characterize IL-23 signaling in primary murine Th17 cells. We quantified 6,888 phosphorylation sites in Th17 cells and found 168 phosphorylations regulated upon IL-23 stimulation. IL-23 increased the phosphorylation of the myosin regulatory light chain (RLC), an actomyosin contractibility marker, in Th17 and Tγδ17 cells. IL-23-induced RLC phosphorylation required Janus kinase 2 (JAK2) and Rho-associated protein kinase (ROCK) catalytic activity, and further study of the IL-23/ROCK connection revealed an unexpected role of IL-23 in the migration of Tγδ17 and Th17 cells through ROCK activation. In addition, pharmacological inhibition of ROCK reduced Tγδ17 recruitment to inflamed skin upon challenge with inflammatory agent Imiquimod. This work (i) provides new insights into phosphorylation networks that control Th17 cells, (ii) widely expands the current knowledge on IL-23 signaling, and (iii) contributes to the increasing list of immune cells subsets characterized by global phosphoproteomic approaches.


Assuntos
Inflamação/metabolismo , Subunidade p19 da Interleucina-23/metabolismo , Células Th17/metabolismo , Animais , Movimento Celular , Imiquimode/farmacologia , Inflamação/patologia , Subunidade p19 da Interleucina-23/genética , Janus Quinase 2 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cadeias Leves de Miosina/metabolismo , Fosforilação , Proteômica/métodos , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Serina/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo
14.
Int J Oncol ; 56(3): 772-782, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32124958

RESUMO

Cofilin is associated with cell differentiation; however, to the best of our knowledge, no data have indicated an association between the cofilin 1 pathway and leukemia cell differentiation. The present study investigated the involvement of the cofilin 1 signaling pathway in diallyl disulfide (DADS)­induced differentiation and the inhibitory effects on the proliferation, migration, and invasion of human leukemia HL­60 cells. First, it was identified that 8 µM DADS suppressed cell proliferation, migration and invasion, and induced differentiation based on the reduced nitroblue tetrazolium ability and increased CD11b and CD33 expression. DADS significantly downregulated the expression of cofilin 1 and phosphorylated cofilin 1 in HL­60 leukemia cells. Second, it was verified that silencing cofilin 1 markedly promoted 8 µM DADS­induced differentiation and the inhibitory effect on cell proliferation and invasion. Overexpression of cofilin 1 obviously suppressed 8 µM DADS­induced differentiation and the inhibitory effect on cell proliferation and invasion. Third, the present study examined the mechanisms by which 8 µM DADS decreases cofilin 1 expression and activation. The results revealed that 8 µM DADS inhibited the mRNA and protein expression of Rac1, Rho­associated protein kinase 1 (ROCK1) and LIM domain kinase 1 (LIMK1) as well as the phosphorylation of LIMK1 in HL­60 cells, while 8 µM DADS enhanced the effects of the Rac1­ROCK1­LIMK1 pathway in cells overexpressing cofilin 1 compared with that in control HL­60 cells. These results suggest that the anticancer function of DADS on HL­60 leukemia cells is regulated by the Rac1­ROCK1­LIMK1­cofilin 1 pathway, indicating that DADS could be a promising anti­leukemia therapeutic compound.


Assuntos
Compostos Alílicos/farmacologia , Antineoplásicos/farmacologia , Cofilina 1/genética , Cofilina 1/metabolismo , Dissulfetos/farmacologia , Leucemia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia/tratamento farmacológico , Leucemia/genética , Quinases Lim/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
15.
J Vasc Res ; 57(3): 126-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32106116

RESUMO

Uterine artery myogenic tone (MT) develops during pregnancy in hemochorial placentates such as rats and humans. The physiological reason for its appearance is not clear, and we reasoned that it may be a late pregnancy (LP) event in preparation for controlling hemorrhage during parturition. We also hypothesized that gestational increases in RhoA-induced vascular smooth muscle (VSM) calcium sensitivity are contributory and occur under the tonic influence of nitric oxide (NO). Second-order pre-placental radial arteries from early-pregnant (day 12, n = 5), mid-pregnant (day 16, n = 5) and LP (day 20, n = 20) rats were used in combination with arteriography, VSM calcium measurements, pharmacological RHO/Rho-associated protein kinase (ROCK) and nitric oxide synthase (NOS) inhibition, and Western blotting. A subgroup of LP animals (LP + LN; n = 5) treated with L-NAME from gestational days 10 to 20 were used to determine the effects of NOS inhibition on MT and RhoA expression. MT was evident throughout pregnancy, but its expression in pressurized vessels was masked by endothelial NO-induced vasodilation during early gestation. RhoA protein expression was upregulated in LP and attenuated by in vivo NOS inhibition (as was MT). In vitro RHO/ROCK inhibition decreased MT in a concentration-dependent manner without reducing VSM calcium. In summary, pressure-dependent uterine artery tone increases with gestational age due to a combination of RhoA-mediated increases in VSM calcium sensitivity and a loss of endothelial NO influence.


Assuntos
Sinalização do Cálcio , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Vasoconstrição , Animais , Feminino , Idade Gestacional , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Gravidez , Ratos Sprague-Dawley , Artéria Uterina/metabolismo , Vasodilatação , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
16.
J Exp Clin Cancer Res ; 39(1): 37, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075676

RESUMO

BACKGROUND: Arnidiol is a pentacyclic triterpene diol that has multiple pharmacological activities. However, the apoptotic activities of arnidiol in human cancer cells have not yet been explored, nor has the mechanism by which arnidiol induces apoptosis been examined in depth. METHODS: MDA-MB-231 cells and xenografted mice were treated with arnidiol. Mitochondrial fission and apoptosis were determined by immunofluorescence, flow cytometry and related molecular biological techniques. The interaction and colocalization of cofilin and Drp1 was determined by immunoprecipitation and immunofluorescence assays. RESULTS: Arnidiol induces mitochondrial fission and apoptosis through mitochondrial translocation of Drp1 and cofilin. Importantly, the interaction of Drp1 and cofilin in mitochondria is involved in arnidiol-induced mitochondrial fission and apoptosis. Knockdown of either Drp1 or cofilin abrogated arnidiol-induced mitochondrial translocation, interaction of Drp1 and cofilin, mitochondrial fission and apoptosis. Only dephosphorylated Drp1 (Ser637) and cofilin (Ser3) were translocated to the mitochondria. Mutants of Drp1 S637A and cofilin S3A, which mimic the dephosphorylated forms, enhanced mitochondrial fission and apoptosis induced by arnidiol, whereas mutants of Drp1 S637D and cofilin S3E, which mimic the phosphorylated forms, suppressed mitochondrial fission and apoptosis induced by arnidiol. A mechanistic study revealed that ROCK1 activation plays an important role in the arnidiol-mediated Drp1 and cofilin dephosphorylation and mitochondrial translocation, mitochondrial fission, and apoptosis. CONCLUSIONS: Our data reveal a novel role of both Drp1 and cofilin in the regulation of mitochondrial fission and apoptosis and suggest that arnidiol could be developed as a potential agent for the treatment of human cancer.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Apoptose/efeitos dos fármacos , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Esteróis/farmacologia , Triterpenos/farmacologia , Quinases Associadas a rho/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Estrutura Molecular , Mutação , Fosforilação , Transporte Proteico , Esteróis/química , Triterpenos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Associadas a rho/genética
17.
Adv Exp Med Biol ; 1223: 99-127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32030687

RESUMO

The Rho-ROCK signaling network has a range of specialized functions of key biological importance, including control of essential developmental processes such as morphogenesis and physiological processes including homeostasis, immunity, and wound healing. Deregulation of Rho-ROCK signaling actively contributes to multiple pathological conditions, and plays a major role in cancer development and progression. This dynamic network is critical in modulating the intricate communication between tumor cells, surrounding diverse stromal cells and the matrix, shaping the ever-changing microenvironment of aggressive tumors. In this chapter, we overview the complex regulation of the Rho-ROCK signaling axis, its role in health and disease, and analyze progress made with key approaches targeting the Rho-ROCK pathway for therapeutic benefit. Finally, we conclude by outlining likely future trends and key questions in the field of Rho-ROCK research, in particular surrounding Rho-ROCK signaling within the tumor microenvironment.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Humanos , Neoplasias/enzimologia
18.
Biochim Biophys Acta Mol Cell Res ; 1867(5): 118676, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044386

RESUMO

In egress routes of malignancy, cancer cells are constantly subjected to shear stress imposed by blood/lymph flow. Increasing evidence points toward the regulatory roles of shear stress in tumor cell adhesion and motility. Although it is known that integrin endocytic trafficking governs focal adhesion (FA) turnover and cell migration, the effect and biological consequences of low shear stress (LSS) on integrin trafficking remain unclear. Here, we identified the critical role of integrin ß1 trafficking and caveolin-1 (Cav-1) mediated endocytosis in LSS-induced cell directional migration. LSS altered the distribution of integrin ß1 in MDA-MB-231 cells and significantly promoted its internalization and recycling, which in turn facilitated FA turnover and directional cell migration. Furthermore, LSS induced cytoskeleton remodeling, which was required for internalization of integrin ß1. LSS down-regulated the acetylation level of microtubules (MTs) via activating ROCK/HDAC6 pathway, resulting in elevation of MTs dynamics, Cav-1 motility, and Cav-1-dependent integrin ß1 recycling. We also showed that high HDAC6 expression was a ROCK-dependent prognostic factor, which was correlated with poor outcomes in breast cancer patients. Taken together, these results defined a novel mechanism by which LSS enhanced integrin ß1 trafficking via actin cytoskeleton remodeling and ROCK/HDAC6 mediated deacetylation of MTs, thereby promoting FAs turnover and directional cell migration.


Assuntos
Neoplasias da Mama/metabolismo , Desacetilase 6 de Histona/metabolismo , Integrina beta1/metabolismo , Microtúbulos/metabolismo , Quinases Associadas a rho/metabolismo , Acetilação , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Adesões Focais/metabolismo , Humanos , Transporte Proteico , Estresse Mecânico
19.
PLoS One ; 15(2): e0228195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053631

RESUMO

Tissue fibrosis is a pathological condition characterized by uncontrolled fibroblast activation that ultimately leads to organ failure. The TGFß1 pathway, one of the major players in establishment of the disease phenotype, is dependent on the transcriptional co-activators YAP/TAZ. We were interested whether fibroblasts can be sensitized to TGFß1 by activation of the GPCR/YAP/TAZ axis and whether this mechanism explains the profibrotic properties of diverse GPCR ligands. We found that LPA, S1P and thrombin cooperate in human dermal fibroblasts with TGFß1 to induce extracellular matrix synthesis, myofibroblast marker expression and cytokine secretion. Whole genome expression profiling identified a YAP/TAZ signature behind the synergistic profibrotic effects of LPA and TGFß1. LPA, S1P and thrombin stimulation led to activation of the Rho-YAP axis, an increase of nuclear YAP-Smad2 complexes and enhanced expression of profibrotic YAP/Smad2-target genes. More generally, dermal, cardiac and lung fibroblast responses to TGFß1 could be enhanced by increasing YAP nuclear levels (with GPCR ligands LPA, S1P, thrombin or Rho activator) and inhibited by decreasing nuclear YAP (with Rho inhibitor, forskolin, latrunculin B or 2-deoxy-glucose). Thus, we present here a conceptually interesting finding that fibroblast responses to TGFß1 can be predicted based on the nuclear levels of YAP and modulated by stimuli/treatments that change YAP nuclear levels. Our study contributes to better understanding of fibrosis as a complex interplay of signalling pathways and proposes YAP/TAZ as promising targets in the treatment of fibrosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patologia , Receptores Acoplados a Proteínas-G/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Ativação Enzimática , Fibroblastos/metabolismo , Fibrose , Humanos , Ligantes , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Trombina/metabolismo , Quinases Associadas a rho/metabolismo
20.
Cancer Cell ; 37(1): 85-103.e9, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31935375

RESUMO

Despite substantial clinical benefit of targeted and immune checkpoint blockade-based therapies in melanoma, resistance inevitably develops. We show cytoskeletal remodeling and changes in expression and activity of ROCK-myosin II pathway during acquisition of resistance to MAPK inhibitors. MAPK regulates myosin II activity, but after initial therapy response, drug-resistant clones restore myosin II activity to increase survival. High ROCK-myosin II activity correlates with aggressiveness, identifying targeted therapy- and immunotherapy-resistant melanomas. Survival of resistant cells is myosin II dependent, regardless of the therapy. ROCK-myosin II ablation specifically kills resistant cells via intrinsic lethal reactive oxygen species and unresolved DNA damage and limits extrinsic myeloid and lymphoid immunosuppression. Efficacy of targeted therapies and immunotherapies can be improved by combination with ROCK inhibitors.


Assuntos
Citoesqueleto/metabolismo , Resistencia a Medicamentos Antineoplásicos , Melanoma/metabolismo , Miosina Tipo II/metabolismo , Animais , Antígeno B7-H1/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA , Feminino , Humanos , Imunoterapia , Sistema de Sinalização das MAP Quinases , Masculino , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Estresse Oxidativo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Espécies Reativas de Oxigênio , Linfócitos T Reguladores/imunologia , Resultado do Tratamento , Microambiente Tumoral/imunologia , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA