Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Nat Commun ; 11(1): 5393, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106491

RESUMO

Wildlife diseases are contributing to the current Earth's sixth mass extinction; one disease, chytridiomycosis, has caused mass amphibian die-offs. While global spread of a hypervirulent lineage of the fungus Batrachochytrium dendrobatidis (BdGPL) causes unprecedented loss of vertebrate diversity by decimating amphibian populations, its impact on amphibian communities is highly variable across regions. Here, we combine field data with in vitro and in vivo trials that demonstrate the presence of a markedly diverse variety of low virulence isolates of BdGPL in northern European amphibian communities. Pre-exposure to some of these low virulence isolates protects against disease following subsequent exposure to highly virulent BdGPL in midwife toads (Alytes obstetricans) and alters infection dynamics of its sister species B. salamandrivorans in newts (Triturus marmoratus), but not in salamanders (Salamandra salamandra). The key role of pathogen virulence in the complex host-pathogen-environment interaction supports efforts to limit pathogen pollution in a globalized world.


Assuntos
Anuros/microbiologia , Quitridiomicetos/patogenicidade , Micoses/veterinária , Salamandridae/microbiologia , Urodelos/microbiologia , Animais , Quitridiomicetos/classificação , Quitridiomicetos/fisiologia , Micoses/microbiologia , Virulência
2.
PLoS One ; 15(9): e0235370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915779

RESUMO

Controlled experiments are one approach to understanding the pathogenicity of etiologic agents to susceptible hosts. The recently discovered fungal pathogen, Batrachochytrium salamandrivorans (Bsal), has resulted in a surge of experimental investigations because of its potential to impact global salamander biodiversity. However, variation in experimental methodologies could thwart knowledge advancement by introducing confounding factors that make comparisons difficult among studies. Thus, our objective was to evaluate if variation in experimental methods changed inferences made on the pathogenicity of Bsal. We tested whether passage duration of Bsal culture, exposure method of the host to Bsal (water bath vs. skin inoculation), Bsal culturing method (liquid vs. plated), host husbandry conditions (aquatic vs. terrestrial), and skin swabbing frequency influenced diseased-induced mortality in a susceptible host species, the eastern newt (Notophthalmus viridescens). We found that disease-induced mortality was faster for eastern newts when exposed to a low passage isolate, when newts were housed in terrestrial environments, and if exposure to zoospores occurred via water bath. We did not detect differences in disease-induced mortality between culturing methods or swabbing frequencies. Our results illustrate the need to standardize methods among Bsal experiments. We provide suggestions for future Bsal experiments in the context of hypothesis testing and discuss the ecological implications of our results.


Assuntos
Quitridiomicetos/patogenicidade , Micoses/veterinária , Urodelos/microbiologia , Animais , Técnicas de Cultura de Células , Quitridiomicetos/isolamento & purificação , Quitridiomicetos/fisiologia , Micoses/microbiologia , Micoses/patologia , Pele/microbiologia , Pele/patologia , Coloração e Rotulagem , Urodelos/fisiologia
3.
Nat Rev Microbiol ; 18(6): 332-343, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32099078

RESUMO

Discovering that chytrid fungi cause chytridiomycosis in amphibians represented a paradigm shift in our understanding of how emerging infectious diseases contribute to global patterns of biodiversity loss. In this Review we describe how the use of multidisciplinary biological approaches has been essential to pinpointing the origins of amphibian-parasitizing chytrid fungi, including Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, as well as to timing their emergence, tracking their cycles of expansion and identifying the core mechanisms that underpin their pathogenicity. We discuss the development of the experimental methods and bioinformatics toolkits that have provided a fuller understanding of batrachochytrid biology and informed policy and control measures.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos/genética , Animais , Biodiversidade , Quitridiomicetos/classificação , Quitridiomicetos/patogenicidade , Genótipo , Dinâmica Populacional , Recombinação Genética , Fatores de Tempo , Virulência
4.
Science ; 367(6479): 814-816, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32054766

RESUMO

Biodiversity is declining at unprecedented rates worldwide. Yet cascading effects of biodiversity loss on other taxa are largely unknown because baseline data are often unavailable. We document the collapse of a Neotropical snake community after the invasive fungal pathogen Batrachochytrium dendrobatidis caused a chytridiomycosis epizootic leading to the catastrophic loss of amphibians, a food source for snakes. After mass mortality of amphibians, the snake community contained fewer species and was more homogeneous across the study site, with several species in poorer body condition, despite no other systematic changes in the environment. The demise of the snake community after amphibian loss demonstrates the repercussive and often unnoticed consequences of the biodiversity crisis and calls attention to the invisible declines of rare and data-deficient species.


Assuntos
Anfíbios/microbiologia , Biodiversidade , Quitridiomicetos/patogenicidade , Espécies em Perigo de Extinção , Extinção Biológica , Serpentes , Animais
5.
Genes (Basel) ; 11(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963231

RESUMO

Hybridization is increasingly recognized as an important force impacting adaptation and evolution in many lineages of fungi. During hybridization, divergent genomes and alleles are brought together into the same cell, potentiating adaptation by increasing genomic plasticity. Here, we review hybridization in fungi by focusing on two fungal pathogens of animals. Hybridization is common between the basidiomycete yeast species Cryptococcus neoformans × Cryptococcus deneoformans, and hybrid genotypes are frequently found in both environmental and clinical settings. The two species show 10-15% nucleotide divergence at the genome level, and their hybrids are highly heterozygous. Though largely sterile and unable to mate, these hybrids can propagate asexually and generate diverse genotypes by nondisjunction, aberrant meiosis, mitotic recombination, and gene conversion. Under stress conditions, the rate of such genetic changes can increase, leading to rapid adaptation. Conversely, in hybrids formed between lineages of the chytridiomycete frog pathogen Batrachochytrium dendrobatidis (Bd), the parental genotypes are considerably less diverged (0.2% divergent). Bd hybrids are formed from crosses between lineages that rarely undergo sex. A common theme in both species is that hybrids show genome plasticity via aneuploidy or loss of heterozygosity and leverage these mechanisms as a rapid way to generate genotypic/phenotypic diversity. Some hybrids show greater fitness and survival in both virulence and virulence-associated phenotypes than parental lineages under certain conditions. These studies showcase how experimentation in model species such as Cryptococcus can be a powerful tool in elucidating the genotypic and phenotypic consequences of hybridization.


Assuntos
Quitridiomicetos , Criptococose , Cryptococcus neoformans , Genoma Fúngico , Hibridização Genética , Animais , Quitridiomicetos/genética , Quitridiomicetos/metabolismo , Quitridiomicetos/patogenicidade , Criptococose/genética , Criptococose/metabolismo , Criptococose/patologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Humanos
6.
J Therm Biol ; 87: 102472, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31999604

RESUMO

1. The course and outcome of many wildlife diseases are context-dependent, and therefore change depending on the behaviour of hosts and environmental response of the pathogen. 2. Contemporary declines in amphibian populations are widely attributed to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis. Despite the thermal sensitivity of the pathogen and its amphibian hosts, we do not understand how host thermal regimes experienced by frogs in the wild directly influence pathogen growth. 3. We tested how thermal regimes experienced by the rainforest frog Litoria rheocola in the wild influence pathogen growth in the laboratory, and whether these responses differ from pathogen growth under available environmental thermal regimes. 4. Frog thermal regimes mimicked in the laboratory accelerated pathogen growth during conditions representative of winter at high elevations more so than if temperatures matched air or stream water temperatures. By contrast, winter frog thermal regimes at low elevations slowed pathogen growth relative to air temperatures, but not water temperatures. 5. The growth pattern of the fungus under frog thermal regimes matches field prevalence and intensity of infections for this species (high elevation winter > high elevation summer > low elevation winter > low elevation summer), whereas pathogen growth trajectories under environmental temperatures did not match these patterns. 6. If these laboratory results translate into field responses, tropical frogs may be able to reduce disease impacts by regulating their body temperatures to limit pathogen growth (e.g., by using microhabitats that facilitate basking to reach high temperatures); in other cases, the environment may limit the ability of frogs to thermoregulate such that individuals are more vulnerable to this pathogen (e.g., in dense forests at high elevations). 7. Species-specific thermoregulatory behaviour, and interactions with and constraints imposed by the environment, are therefore essential to understanding and predicting the spatial and temporal impacts of this global disease.


Assuntos
Anuros/microbiologia , Biomassa , Temperatura Corporal , Quitridiomicetos/patogenicidade , Adaptação Fisiológica , Animais , Anuros/fisiologia , Comportamento Animal , Quitridiomicetos/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno
7.
PLoS One ; 14(12): e0208969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31821326

RESUMO

Emerging infectious diseases are a growing threat to biodiversity worldwide. Outbreaks of the infectious disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), are implicated in the decline and extinction of numerous amphibian species. In Costa Rica, a major decline event occurred in 1987, more than two decades before this pathogen was discovered. The loss of many species in Costa Rica is assumed to be due to Bd-epizootics, but there are few studies that provide data from amphibians in the time leading up to the proposed epizootics. In this study, we provide new data on Bd infection rates of amphibians collected throughout Costa Rica, in the decades prior to the epizootics. We used a quantitative PCR assay to test for Bd presence in 1016 anuran museum specimens collected throughout Costa Rica. The earliest specimen that tested positive for Bd was collected in 1964. Across all time periods, we found an overall infection rate (defined as the proportion of Bd-positive individuals) of 4%. The number of infected individuals remained relatively low across all species tested and the range of Bd-positive specimens was shown to be geographically constrained up until the 1980s; when epizootics are hypothesized to have occurred. After that time, infection rate increased three-fold, and the range of specimens tested positive for Bd increased, with Bd-positive specimens collected across the entire country. Our results suggest that Bd dynamics in Costa Rica are more complicated than previously thought. The discovery of Bd's presence in the country preceding massive declines leads to a number of different hypotheses: 1) Bd invaded Costa Rica earlier than previously known, and spread more slowly than previously reported; 2) Bd invaded multiple times and faded out; 3) an endemic Bd lineage existed; 4) an earlier Bd lineage evolved into the current Bd lineage or hybridized with an invasive lineage; or 5) an earlier Bd lineage went extinct and a new invasion event occurred causing epizootics. To help visualize areas where future studies should take place, we provide a Bd habitat suitability model trained with local data. Studies that provide information on genetic lineages of Bd are needed to determine the most plausible spatial-temporal, host-pathogen dynamics that could best explain the epizootics resulting in amphibian declines in Costa Rica and throughout Central America.


Assuntos
Anfíbios/microbiologia , Doenças dos Animais/epidemiologia , Doenças dos Animais/microbiologia , Quitridiomicetos/patogenicidade , Doenças Transmissíveis Emergentes/história , Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças/veterinária , Doenças dos Animais/história , Animais , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Costa Rica/epidemiologia , História do Século XX , História do Século XXI , Interações Hospedeiro-Patógeno
8.
PLoS One ; 14(10): e0222718, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618214

RESUMO

Outbreaks of emerging infectious diseases are becoming more frequent as climate changes wildlife communities at unprecedented rates, driving population declines and raising concerns for species conservation. One critical disease is the global pandemic of chytridiomycosis in frogs, which can be caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although there is clear evidence for Bd-induced mortality across high-elevation frog communities, little attention is given to the role of lowlands in Bd's persistence and spread because low elevations are assumed to be too warm to harbor significant levels of Bd. Here, we report widespread Bd infection across 80 frog species from three sites in the lowland Peruvian Amazon, an area with no documented Bd-related amphibian declines. Despite observing no clinical signs of infection in the field, we found that 24-46% of individuals were infected per site (up to ≈105,000 zoospore equivalents per frog) by three Bd strains from the global pandemic lineage (Bd-GPL). We also found collection site and seasonal effects to be only weak predictors of Bd prevalence and load, with lower elevation and drier habitats marginally decreasing both prevalence and load. We found no further effect of host phylogeny, ecotype, or body size. Our results showing high and widespread prevalence across a lowland tropical ecosystem contradict the expectations based on the global pattern of pathogenicity of Bd that is largely restricted to higher elevations and colder temperatures. These findings imply that the lowlands may play a critical role in the spread and persistence of Bd over time and space.


Assuntos
Altitude , Anuros/microbiologia , Quitridiomicetos/patogenicidade , Micoses/veterinária , Animais , Anuros/genética , Quitridiomicetos/isolamento & purificação , Mudança Climática , Feminino , Masculino , Micoses/epidemiologia , Micoses/microbiologia , Peru , Filogenia , Prevalência , Fatores Sexuais
9.
PLoS One ; 14(9): e0222237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536533

RESUMO

Many climate change models predict increases in frequency and magnitude of temperature fluctuations that might impact how ectotherms are affected by disease. Shifts in temperature might especially affect amphibians, a group with populations that have been challenged by several pathogens. Because amphibian hosts invest more in immunity at warmer than cooler temperatures and parasites might acclimate to temperature shifts faster than hosts (creating lags in optimal host immunity), researchers have hypothesized that a temperature shift from cold-to-warm might result in increased amphibian sensitivity to pathogens, whereas a shift from warm-to-cold might result in decreased sensitivity. Support for components of this climate-variability based hypothesis have been provided by prior studies of the fungus Batrachochytrium dendrobatidis (Bd) that causes the disease chytridiomycosis in amphibians. We experimentally tested whether temperature shifts before exposure to Batrachochytrium dendrobatidis (Bd) alters susceptibility to the disease chytridiomycosis in the larval stage of two amphibian species-western toads (Anaxyrus boreas) and northern red legged frogs (Rana aurora). Both host species harbored elevated Bd infection intensities under constant cold (15° C) temperature in comparison to constant warm (20° C) temperature. Additionally, both species experienced an increase in Bd infection abundance after shifted from 15° C to 20° C, compared to a constant 20° C but they experienced a decrease in Bd after shifted from 20° C to 15° C, compared to a constant 15° C. These results are in contrast to prior studies of adult amphibians highlighting the potential for species and stage differences in the temperature-dependence of chytridiomycosis.


Assuntos
Bufonidae/microbiologia , Quitridiomicetos/patogenicidade , Micoses/veterinária , Ranidae/microbiologia , Animais , Larva/microbiologia , Micoses/microbiologia , Temperatura
10.
PLoS One ; 14(9): e0223020, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31560707

RESUMO

The fungal pathogen Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis and has been a key driver in the catastrophic decline of amphibians globally. While many strategies have been proposed to mitigate Bd outbreaks, few have been successful. In recent years, the use of probiotic formulations that protect an amphibian host by killing or inhibiting Bd have shown promise as an effective chytridiomycosis control strategy. The North American bullfrog (Lithobates catesbeianus) is a common carrier of Bd and harbours a diverse skin microbiota that includes lactic acid bacteria (LAB), a microbial group containing species classified as safe and conferring host benefits. We investigated beneficial/probiotic properties: anti-Bd activity, and adhesion and colonisation characteristics (hydrophobicity, biofilm formation and exopolysaccharide-EPS production) in two confirmed LAB (cLAB-Enterococcus gallinarum CRL 1826, Lactococcus garvieae CRL 1828) and 60 presumptive LAB (pLAB) [together named as LABs] isolated from bullfrog skin.We challenged LABs against eight genetically diverse Bd isolates and found that 32% of the LABs inhibited at least one Bd isolate with varying rates of inhibition. Thus, we established a score of sensitivity from highest (BdGPL AVS7) to lowest (BdGPL C2A) for the studied Bd isolates. We further reveal key factors underlying host adhesion and colonisation of LABs. Specifically, 90.3% of LABs exhibited hydrophilic properties that may promote adhesion to the cutaneous mucus, with the remaining isolates (9.7%) being hydrophobic in nature with a surface polarity compatible with colonisation of acidic, basic or both substrate types. We also found that 59.7% of LABs showed EPS synthesis and 66.1% produced biofilm at different levels: 21% weak, 29% moderate, and 16.1% strong. Together all these properties enhance colonisation of the host surface (mucus or epithelial cells) and may confer protective benefits against Bd through competitive exclusion. Correspondence analysis indicated that biofilm synthesis was LABs specific with high aggregating bacteria correlating with strong biofilm producers, and EPS producers being correlated to negative biofilm producing LABs. We performed Random Amplified Polymorphic DNA (RAPD)-PCR analysis and demonstrated a higher degree of genetic diversity among rod-shaped pLAB than cocci. Based on the LAB genetic analysis and specific probiotic selection criteria that involve beneficial properties, we sequenced 16 pLAB which were identified as Pediococcus pentosaceus, Enterococcus thailandicus, Lactobacillus pentosus/L. plantarum, L. brevis, and L. curvatus. Compatibility assays performed with cLAB and the 16 species described above indicate that all tested LAB can be included in a mixed probiotic formula. Based on our analyses, we suggest that E. gallinarum CRL 1826, L. garvieae CRL 1828, and P. pentosaceus 15 and 18B represent optimal probiotic candidates for Bd control and mitigation.


Assuntos
Quitridiomicetos/patogenicidade , Lactobacillales/imunologia , Microbiota/imunologia , Micoses/veterinária , Probióticos/isolamento & purificação , Rana catesbeiana/microbiologia , Animais , Quitridiomicetos/isolamento & purificação , DNA Bacteriano , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Micoses/imunologia , Micoses/microbiologia , Rana catesbeiana/imunologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Pele/imunologia , Pele/microbiologia
11.
Proc Biol Sci ; 286(1904): 20190833, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161901

RESUMO

Many amphibian species around the world, except in Asia, suffer morbidity and mortality when infected by the emerging infectious pathogen Batrachochytrium dendrobatidis (Bd). A lineage of the amphibian chytrid fungus isolated from South Korean amphibians (BdAsia-1) is evolutionarily basal to recombinant global pandemic lineages (BdGPL) associated with worldwide amphibian population declines. In Asia, the Bd pathogen and its amphibian hosts have coevolved over 100 years or more. Thus, resilience of Asian amphibian populations to infection might result from attenuated virulence of endemic Bd lineages, evolved immunity to the pathogen or both. We compared susceptibilities of an Australasian amphibian, Litoria caerulea, known to lack resistance to BdGPL, with those of three Korean species, Bufo gargarizans, Bombina orientalis and Hyla japonica, after inoculation with BdAsia-1, BdGPL or a blank solution. Subjects became infected in all experimental treatments but Korean species rapidly cleared themselves of infection, regardless of Bd lineage. They survived with no apparent secondary effects. By contrast, L. caerulea, after infection by either BdAsia-1 or BdGPL, suffered deteriorating body condition and carried progressively higher Bd loads over time. Subsequently, most subjects died. Comparing their effects on L. caerulea, BdAsia-1 induced more rapid disease progression than BdGPL. The results suggest that genomic recombination with other lineages was not necessary for the ancestral Bd lineage to evolve hypervirulence over its long period of coevolution with amphibian hosts. The pathogen's virulence may have driven strong selection for immune responses in endemic Asian amphibian host species.


Assuntos
Anuros/microbiologia , Coevolução Biológica , Bufonidae/microbiologia , Quitridiomicetos/patogenicidade , Suscetibilidade a Doenças/microbiologia , Micoses/veterinária , Animais , Anuros/imunologia , Bufonidae/imunologia , Quitridiomicetos/genética , Resistência à Doença , Interações Hospedeiro-Patógeno , Micoses/imunologia , Micoses/microbiologia , Modelos de Riscos Proporcionais , República da Coreia , Virulência/genética
12.
Comp Med ; 69(3): 204-211, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31142399

RESUMO

Chytridiomycosis is an infectious disease of amphibians caused by the fungal species Batrachochytrium dendrobatidis and B. salamandrivorans and has been implicated in the population decline of amphibian species worldwide. This case report describes a successful treatment protocol for chytridiomycosis in laboratory-maintained colonies of axolotls (Ambystoma mexicanum) and rough-skinned newts (Taricha granulosa). Over 12 mo, axolotls (n = 12) in a laboratory-reared colony developed multifocal erythematous dermatitis, mainly on the distal limbs and tails. Wild-caught newts handled by the same lab personnel were housed in an adjacent room and occasionally presented with abdominal distension and lethargy. Differentials included poor water quality, pathogen infection, parasitic infestation, and trauma. Antibiotic treatment of animals according to results of bacterial culture and sensitivity, combined with bleach disinfection of aquaria, did not resolve clinical signs. Skin swabs from clinically affected axolotls submitted for a newly available commercial screen were positive for B. dendrobatidis. Additional PCR and sequencing analysis revealed chytrid-positive animals among group-housed newts in 2 clinically unaffected aquaria and suspected PCR-positives for 2 affected newt aquaria and an additional axolotl. Axolotls with skin lesions (n = 2) and newts with abdominal distension and lethargy (n = 2) underwent experimental treatment with itraconazole submersion (0.002% to 0.0025%; 5 min daily for 10 d). This pilot treatment was well tolerated and led to clinical resolution. Subsequent itraconazole treatment of the entire colony led to regrowth of extremities and restoration of normal coloration among axolotls. During treatment, the facility was decontaminated, and additional biosecurity measures were developed. PCR results after the pilot treatment and subsequent full-colony treatments (at 1 wk, 1 mo, and 6 mo after treatment) were negative for the presence of B. dendrobatidis. Because chytridiomycosis is a reportable animal disease in our state, colonies officially remained quarantined until negative PCR results were obtained at least 6 mo after treatment.


Assuntos
Ambystoma mexicanum/microbiologia , Quitridiomicetos/patogenicidade , Dermatomicoses/veterinária , Salamandridae/microbiologia , Criação de Animais Domésticos/instrumentação , Animais , Antifúngicos/uso terapêutico , Dermatomicoses/tratamento farmacológico , Dermatomicoses/patologia , Itraconazol/uso terapêutico , Especificidade da Espécie
13.
Am J Physiol Regul Integr Comp Physiol ; 317(2): R301-R311, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141416

RESUMO

Chytridiomycosis, a lethal skin disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), disrupts skin function of amphibians, interfering with ionic and osmotic regulation. To regulate fungal loads, amphibians increase their rate of skin sloughing. However, sloughing also causes a temporary loss of ionic and osmotic homeostasis due to disruption of the skin, a key osmoregulatory organ. The combined effects of increased sloughing frequency and chytridiomycosis contribute to the high rates of mortality from Bd infections. However, the mechanisms responsible for the loss of cutaneous osmotic regulation remain unknown. We measured the changes in whole animal water uptake rates, in vitro transcutaneous water fluxes across the ventral skin, and the mRNA expression of epithelial water transport proteins (aquaporins, AQPs) and junctional proteins in Bd-infected and uninfected Litoria caerulea skin. We hypothesize that infected frogs would show reduction/inhibition in cutaneous water transporters responsible for regulating water balance, and sloughing would exacerbate cutaneous water fluxes. We found that infected, nonsloughing frogs had an impaired rate of water uptake and showed increased rates of in vitro water efflux across the ventral skin. In uninfected frogs, the expression of AQPs and junction genes increased significantly with sloughing, which may assist in regulating cutaneous water movements and barrier function in the newly exposed skin. In contrast, infected frogs did not show this postsloughing increase in AQP gene expression. The combination of increased sloughing frequency, impaired water uptake rates, and increased rates of water loss likely contributes to the loss of osmotic homeostasis in frogs infected with Bd.


Assuntos
Quitridiomicetos/patogenicidade , Pele/microbiologia , Equilíbrio Hidroeletrolítico/fisiologia , Água/metabolismo , Animais , Homeostase/fisiologia , Micoses/microbiologia , Rana clamitans/microbiologia , Pele/metabolismo
15.
PLoS One ; 14(4): e0214405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30939146

RESUMO

Immediate and reliable pathogen detection in large numbers of samples is essential in wildlife disease monitoring and is often realized by DNA-based techniques. Pooling samples increases processing efficiency and reduces processing costs, and has been suggested as a viable technique for quantitative PCR detection of fungal amphibian pathogens of the genus Batrachochytrium. For these fungi, this diagnostic method has been validated by in vitro set ups that provided controlled test conditions but did not take into account potential effects from amphibian skin compounds (e.g. skin secretions and Microbiota) on the approach. Some of these skin compounds are known to cause PCR inhibition in single sample applications and could lead to false negative reactions and thereby hamper pathogen detection. In this study we examined the effect of skin compounds on the pooled extraction method by swabbing individuals of seven amphibian species (one Anura and six Caudata) prior to the inoculation of the swabs with chytrid zoospores. For each species, swabs were extracted in pools of different sizes (from one to four swabs) with only one swab per pool being inoculated with zoospores. There were no significant differences regarding the ability to detect zoospores when comparing pool sizes for any species, with a tendency for more false negatives when the inoculated swab had been inoculated with a single zoospore. This study provides further in vivo evidence for the viability of the pooled extraction method for DNA-based detection of pathogens.


Assuntos
Anuros/microbiologia , Quitridiomicetos/genética , DNA/genética , Infecções/genética , Animais , Animais Selvagens/genética , Animais Selvagens/microbiologia , Anuros/genética , Quitridiomicetos/patogenicidade , Infecções/diagnóstico , Infecções/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Pele/microbiologia , Manejo de Espécimes
16.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833338

RESUMO

Amphibians have been declining around the world for more than four decades. One recognized driver of these declines is the chytrid fungus Batrachochytrium dendrobatidis, which causes the disease chytridiomycosis. Amphibians have complex and varied immune defenses against B. dendrobatidis, but the fungus also has a number of counterdefenses. Previously, we identified two small molecules produced by the fungus that inhibit frog lymphocyte proliferation, methylthioadenosine (MTA) and kynurenine (KYN). Here, we report on the isolation and identification of the polyamine spermidine (SPD) as another significant immunomodulatory molecule produced by B. dendrobatidis SPD and its precursor, putrescine (PUT), are the major polyamines detected, and SPD is required for growth. The major pathway of biosynthesis is from ornithine through putrescine to spermidine. An alternative pathway from arginine to agmatine to putrescine appears to be absent. SPD is inhibitory at concentrations of ≥10 µM and is found at concentrations between 1 and 10 µM in active fungal supernatants. Although PUT is detected in the fungal supernatants, it is not inhibitory to lymphocytes even at concentrations as high as 100 µM. Two other related polyamines, norspermidine (NSP) and spermine (SPM), also inhibit amphibian lymphocyte proliferation, but a third polyamine, cadaverine (CAD), does not. A suboptimal (noninhibitory) concentration of MTA (10 µM), a by-product of spermidine synthesis, enhances the inhibition of SPD at 1 and 10 µM. We interpret these results to suggest that B. dendrobatidis produces an "armamentarium" of small molecules that, alone or in concert, may help it to evade clearance by the amphibian immune system.


Assuntos
Anfíbios/imunologia , Anfíbios/metabolismo , Quitridiomicetos/imunologia , Quitridiomicetos/metabolismo , Quitridiomicetos/patogenicidade , Poliaminas/metabolismo , Espermidina/metabolismo , Animais , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/imunologia , Evasão da Resposta Imune/fisiologia , Micoses/imunologia , Micoses/metabolismo
17.
PLoS One ; 14(2): e0211960, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30753218

RESUMO

The recent decline in populations of European salamanders caused by the chytrid fungus Batrachochytrium salamandrivorans (Bsal) has generated worldwide concern, as it is a major threat to amphibians. Evaluation of the areas most suitable for the establishment of Bsal combined with analysis of the distribution of salamander species could be used to generate and implement biosecurity measures and protect biodiversity at sites with high salamander diversity. In this study, we identified the areas most suitable for the establishment of Bsal in Mexico. Mexico has the second-highest salamander species diversity in the world; thus, we identified areas moderately to highly suitable for the establishment of Bsal with high salamander diversity as potential hotspots for surveillance. Central and Southern Mexico were identified as high-risk zones, with 13 hotspots where 30% of Mexican salamander species occur, including range-restricted species and endangered species. We propose that these hotspots should be thoroughly monitored for the presence of Bsal to prevent the spread of the pathogen if it is introduced to the country.


Assuntos
Quitridiomicetos/patogenicidade , Urodelos/crescimento & desenvolvimento , Distribuição Animal , Animais , Biodiversidade , Demografia , Espécies em Perigo de Extinção/estatística & dados numéricos , México , Vigilância da População , Urodelos/microbiologia
18.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266725

RESUMO

Parasitic Chytridiomycota (chytrids) are ecologically significant in various aquatic ecosystems, notably through their roles in controlling bloom-forming phytoplankton populations and in facilitating the transfer of nutrients from inedible algae to higher trophic levels. The diversity and study of these obligate parasites, while critical to understand the interactions between pathogens and their hosts in the environment, have been hindered by challenges inherent to their isolation and stable long-term maintenance under laboratory conditions. Here, we isolated an obligate chytrid parasite (CCAP 4086/1) on the freshwater bloom-forming diatom Asterionella formosa and characterized its infectious cycle under controlled conditions. Phylogenetic analyses based on 18S, 5.8S, and 28S ribosomal DNAs (rDNAs) revealed that this strain belongs to the recently described clade SW-I within the Lobulomycetales. All morphological features observed agree with the description of the known Asterionella parasite Zygorhizidium affluens Canter. We thus provide a phylogenetic placement for this chytrid and present a robust and simple assay that assesses both the infection success and the viability of the host. We also validate a cryopreservation method for stable and cost-effective long-term storage and demonstrate its recovery after thawing. All the above-mentioned tools establish a new gold standard for the isolation and long-term preservation of parasitic aquatic chytrids, thus opening new perspectives to investigate the diversity of these organisms and their physiology in a controlled laboratory environment.IMPORTANCE Despite their ecological relevance, parasitic aquatic chytrids are understudied, especially due to the challenges associated with their isolation and maintenance in culture. Here we isolated and established a culture of a chytrid parasite infecting the bloom-forming freshwater diatom Asterionella formosa The chytrid morphology suggests that it corresponds to the Asterionella parasite known as Zygorhizidium affluens The phylogenetic reconstruction in the present study supports the hypothesis that our Z. affluens isolate belongs to the order Lobulomycetales and clusters within the novel clade SW-I. We also validate a cryopreservation method for stable and cost-effective long-term storage of parasitic chytrids of phytoplankton. The establishment of a monoclonal pathosystem in culture and its successful cryopreservation opens the way to further investigate this ecologically relevant parasitic interaction.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/isolamento & purificação , Criopreservação/métodos , Diatomáceas/microbiologia , Quitridiomicetos/genética , Quitridiomicetos/patogenicidade , DNA Fúngico/genética , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 28S/genética , Taiwan , Virulência
19.
Dis Aquat Organ ; 130(2): 83-93, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198484

RESUMO

Identifying the factors that affect pathogen prevalence is critical to understanding the effects of wildlife diseases. We aimed to examine drivers of seasonal changes in the prevalence of infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis in tadpoles. Because tadpoles may be important reservoirs for this disease, examining them will aid in understanding how chytridiomycosis affects entire amphibian populations. We hypothesized that temperature is a strong driver of prevalence of Bd in tadpoles, and the accumulation of infection as tadpoles become larger and older also drives prevalence in this system. We studied Litoria rheocola, a tropical rainforest stream frog with seasonal recruitment of annual tadpoles, and surveyed 6 streams in northeastern Queensland, Australia. Comparisons among models relating infection status to stream type, season, their interaction, tadpole age, and water temperature showed that age explained a large portion of the variance in infection status. Across sites and seasons, larger, older tadpoles had increased mean probabilities of infection, indicating that a large component of the variation among individuals was related to age, and thus to cumulative infection risk. Our results indicate that in systems with annual tadpoles, seasonal changes in infection prevalence may be strongly affected by seasonal patterns of tadpole growth and development in addition to stream type, season, and water temperature. These effects may then influence prevalence of infection in terrestrial individuals in species that have relatively frequent contact with water. This reinforces the need to integrate studies of the drivers of pathogen prevalence across all host life history stages.


Assuntos
Anuros , Quitridiomicetos , Micoses , Estações do Ano , Animais , Anuros/microbiologia , Austrália , Quitridiomicetos/patogenicidade , Larva , Micoses/veterinária , Prevalência , Queensland
20.
BMC Evol Biol ; 18(1): 136, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200892

RESUMO

BACKGROUND: Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen. RESULTS: We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence. CONCLUSIONS: Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.


Assuntos
Evolução Biológica , Quitridiomicetos/genética , Genoma Mitocondrial , Plantas/microbiologia , Animais , Teorema de Bayes , Quitridiomicetos/patogenicidade , DNA Mitocondrial/genética , Europa (Continente) , Variação Genética , Haplótipos/genética , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Quarentena , Reprodutibilidade dos Testes , Especificidade da Espécie , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...