Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.612
Filtrar
1.
J Microbiol ; 61(2): 211-220, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36814003

RESUMO

RNase E is an essential enzyme in Escherichia coli. The cleavage site of this single-stranded specific endoribonuclease is well-characterized in many RNA substrates. Here, we report that the upregulation of RNase E cleavage activity by a mutation that affects either RNA binding (Q36R) or enzyme multimerization (E429G) was accompanied by relaxed cleavage specificity. Both mutations led to enhanced RNase E cleavage in RNA I, an antisense RNA of ColE1-type plasmid replication, at a major site and other cryptic sites. Expression of a truncated RNA I with a major RNase E cleavage site deletion at the 5'-end (RNA I-5) resulted in an approximately twofold increase in the steady-state levels of RNA I-5 and the copy number of ColE1-type plasmid in E. coli cells expressing wild-type or variant RNase E compared to those expressing RNA I. These results indicate that RNA I-5 does not efficiently function as an antisense RNA despite having a triphosphate group at the 5'-end, which protects the RNA from ribonuclease attack. Our study suggests that increased cleavage rates of RNase E lead to relaxed cleavage specificity on RNA I and the inability of the cleavage product of RNA I as an antisense regulator in vivo does not stem from its instability by having 5'-monophosphorylated end.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA Bacteriano/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , Especificidade por Substrato , Proteínas de Escherichia coli/genética
2.
Biosci Rep ; 43(3)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36787218

RESUMO

RNA-binding proteins are key actors of post-transcriptional networks. Almost exclusively studied in the light of their interactions with RNA ligands and the associated functional events, they are still poorly understood as evolutionary units. In this review, we discuss the FinO/ProQ family of bacterial RNA chaperones, how they evolve and spread across bacterial populations and what properties and opportunities they provide to their host cells. We reflect on major conserved and divergent themes within the family, trying to understand how the same ancestral RNA-binding fold, augmented with additional structural elements, could yield either highly specialised proteins or, on the contrary, globally acting regulatory hubs with a pervasive impact on gene expression. We also consider dominant convergent evolutionary trends that shaped their RNA chaperone activity and recurrently implicated the FinO/ProQ-like proteins in bacterial DNA metabolism, translation and virulence. Finally, we offer a new perspective in which FinO/ProQ-family regulators emerge as active evolutionary players with both negative and positive roles, significantly impacting the evolutionary modes and trajectories of their bacterial hosts.


Assuntos
Proteínas de Escherichia coli , RNA Bacteriano , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Chaperonas Moleculares/genética , Virulência , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química
3.
RNA ; 29(3): 376-391, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604113

RESUMO

A small group of bacteria encode two types of RNase P, the classical ribonucleoprotein (RNP) RNase P as well as the protein-only RNase P HARP (homolog of Aquifex RNase P). We characterized the dual RNase P activities of five bacteria that belong to three different phyla. All five bacterial species encode functional RNA (gene rnpB) and protein (gene rnpA) subunits of RNP RNase P, but only the HARP of the thermophile Thermodesulfatator indicus (phylum Thermodesulfobacteria) was found to have robust tRNA 5'-end maturation activity in vitro and in vivo in an Escherichia coli RNase P depletion strain. These findings suggest that both types of RNase P are able to contribute to the essential tRNA 5'-end maturation activity in T. indicus, thus resembling the predicted evolutionary transition state in the progenitor of the Aquificaceae before the loss of rnpA and rnpB genes in this family of bacteria. Remarkably, T. indicus RNase P RNA is transcribed with a P12 expansion segment that is posttranscriptionally excised in vivo, such that the major fraction of the RNA is fragmented and thereby truncated by ∼70 nt in the native T. indicus host as well as in the E. coli complementation strain. Replacing the native P12 element of T. indicus RNase P RNA with the short P12 helix of Thermotoga maritima RNase P RNA abolished fragmentation, but simultaneously impaired complementation efficiency in E. coli cells, suggesting that intracellular fragmentation and truncation of T. indicus RNase P RNA may be beneficial to RNA folding and/or enzymatic activity.


Assuntos
Escherichia coli , Ribonuclease P , Ribonuclease P/metabolismo , Escherichia coli/metabolismo , Bactérias/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética
4.
Nucleic Acids Res ; 51(1): 365-379, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36594161

RESUMO

RNase E is an endoribonuclease found in many bacteria, including important human pathogens. Within Escherichia coli, it has been shown to have a major role in both the maturation of all classes of RNA involved in translation and the initiation of mRNA degradation. Thus, knowledge of the major determinants of RNase E cleavage is central to our understanding and manipulation of bacterial gene expression. We show here that the binding of RNase E to structured RNA elements is crucial for the processing of tRNA, can activate catalysis and may be important in mRNA degradation. The recognition of structured elements by RNase E is mediated by a recently discovered groove that is distant from the domains associated with catalysis. The functioning of this groove is shown here to be essential for E. coli cell viability and may represent a key point of evolutionary divergence from the paralogous RNase G family, which we show lack amino acid residues conserved within the RNA-binding groove of members of the RNase E family. Overall, this work provides new insights into the recognition and cleavage of RNA by RNase E and provides further understanding of the basis of RNase E essentiality in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Endorribonucleases/metabolismo , RNA/genética , RNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Catálise , RNA Bacteriano/metabolismo
5.
Microbiol Spectr ; 11(1): e0409422, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625662

RESUMO

Small RNAs (sRNAs) play a very important role in gene regulation at the posttranscriptional level. However, sRNAs from nonmodel microorganisms, extremophiles in particular, have been rarely explored. We discovered a putative sRNA, termed Pf1 sRNA, in Pseudoalteromonas fuliginea BSW20308 isolated from the polar regions in our previous work. In this study, we identified the sRNA and investigated its regulatory role in gene expression under different temperatures. Pf1 sRNA was confirmed to be a new member of the CsrB family but has little sequence similarity with Escherichia coli CsrB. However, Pf1 sRNA was able to bind to CsrA from E. coli and P. fuliginea BSW20308 to regulate glycogen synthesis. The Pf1 sRNA knockout strain (ΔPf1) affected motility, fitness, and global gene expression in transcriptomes and proteomes at 4°C and 32°C. Genes related to carbon metabolism, amino acid metabolism, salinity tolerance, antibiotic resistance, oxidative stress, motility, chemotaxis, biofilm, and secretion systems were differentially expressed in the wild-type strain and the ΔPf1 mutant. Our study suggested that Pf1 sRNA might play an important role in response to environmental changes by regulating global gene expression. Specific targets of the Pf1 sRNA-CsrA system were tentatively proposed, such as genes involved in the type VI secretion system, TonB-dependent receptors, and response regulators, but most of them have an unknown function. Since this is the first study of CsrB family sRNA in Pseudoalteromonas and microbes from the polar regions, it provides a novel insight at the posttranscriptional level into the responses and adaptation to temperature changes in bacteria from extreme environments. This study also sheds light on the evolution of sRNA in extreme environments and expands the bacterial sRNA database. IMPORTANCE Previous research on microbial temperature adaptation has focused primarily on functional genes, with little attention paid to posttranscriptional regulation. Small RNAs, the major posttranscriptional modulators of gene expression, are greatly underexplored, especially in nonpathogenic and nonmodel microorganisms. In this study, we verified the first Csr sRNA, named Pf1 sRNA, from Pseudoalteromonas, a model genus for studying cold adaptation. We revealed that Pf1 sRNA played an important role in global regulation and was indispensable in improving fitness. This study provided us a comprehensive view of sRNAs from Pseudoalteromonas and expanded our understanding of bacterial sRNAs from extreme environments.


Assuntos
Proteínas de Escherichia coli , Pseudoalteromonas , Pequeno RNA não Traduzido , Escherichia coli/genética , Temperatura , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Escherichia coli/genética
6.
mBio ; 14(1): e0309322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598194

RESUMO

Small bacterial regulatory RNAs (sRNAs) have been implicated in the regulation of numerous metabolic pathways. In most of these studies, sRNA-dependent regulation of mRNAs or proteins of enzymes in metabolic pathways has been predicted to affect the metabolism of these bacteria. However, only in a very few cases has the role in metabolism been demonstrated. Here, we performed a combined transcriptome and metabolome analysis to define the regulon of the sibling sRNAs NgncR_162 and NgncR_163 (NgncR_162/163) and their impact on the metabolism of Neisseria gonorrhoeae. These sRNAs have been reported to control genes of the citric acid and methylcitric acid cycles by posttranscriptional negative regulation. By transcriptome analysis, we now expand the NgncR_162/163 regulon by several new members and provide evidence that the sibling sRNAs act as both negative and positive regulators of target gene expression. Newly identified NgncR_162/163 targets are mostly involved in transport processes, especially in the uptake of glycine, phenylalanine, and branched-chain amino acids. NgncR_162/163 also play key roles in the control of serine-glycine metabolism and, hence, probably affect biosyntheses of nucleotides, vitamins, and other amino acids via the supply of one-carbon (C1) units. Indeed, these roles were confirmed by metabolomics and metabolic flux analysis, which revealed a bipartite metabolic network with glucose degradation for the supply of anabolic pathways and the usage of amino acids via the citric acid cycle for energy metabolism. Thus, by combined deep RNA sequencing (RNA-seq) and metabolomics, we significantly extended the regulon of NgncR_162/163 and demonstrated the role of NgncR_162/163 in the regulation of central metabolic pathways of the gonococcus. IMPORTANCE Neisseria gonorrhoeae is a major human pathogen which infects more than 100 million people every year. An alarming development is the emergence of gonococcal strains that are resistant against virtually all antibiotics used for their treatment. Despite the medical importance and the vanishing treatment options of gonococcal infections, the bacterial metabolism and its regulation have been only weakly defined until today. Using RNA-seq, metabolomics, and 13C-guided metabolic flux analysis, we here investigated the gonococcal metabolism and its regulation by the previously studied sibling sRNAs NgncR_162/163. The results demonstrate the regulation of transport processes and metabolic pathways involved in the biosynthesis of nucleotides, vitamins, and amino acids by NgncR_162/163. In particular, the combination of transcriptome and metabolic flux analyses provides a heretofore unreached depth of understanding the core metabolic pathways and their regulation by the neisserial sibling sRNAs. This integrative approach may therefore also be suitable for the functional analysis of a growing number of other bacterial metabolic sRNA regulators.


Assuntos
Neisseria gonorrhoeae , Pequeno RNA não Traduzido , Humanos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Irmãos , Bactérias/genética , Redes e Vias Metabólicas/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Nucleotídeos/metabolismo , Aminoácidos/metabolismo , Vitaminas , Regulação Bacteriana da Expressão Gênica
7.
Nucleic Acids Res ; 51(4): 1880-1894, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36660825

RESUMO

The ribosome serves as the universally conserved translator of the genetic code into proteins and supports life across diverse temperatures ranging from below freezing to above 120°C. Ribosomes are capable of functioning across this wide range of temperatures even though the catalytic site for peptide bond formation, the peptidyl transferase center, is nearly universally conserved. Here we find that Thermoproteota, a phylum of thermophilic Archaea, substitute cytidine for uridine at large subunit rRNA positions 2554 and 2555 (Escherichia coli numbering) in the A loop, immediately adjacent to the binding site for the 3'-end of A-site tRNA. We show by cryo-EM that E. coli ribosomes with uridine to cytidine mutations at these positions retain the proper fold and post-transcriptional modification of the A loop. Additionally, these mutations do not affect cellular growth, protect the large ribosomal subunit from thermal denaturation, and increase the mutational robustness of nucleotides in the peptidyl transferase center. This work identifies sequence variation across archaeal ribosomes in the peptidyl transferase center that likely confers stabilization of the ribosome at high temperatures and develops a stable mutant bacterial ribosome that can act as a scaffold for future ribosome engineering efforts.


Assuntos
Peptidil Transferases , RNA Ribossômico , RNA Ribossômico/metabolismo , Peptidil Transferases/metabolismo , Escherichia coli/genética , Archaea/genética , Sequência de Bases , Ribossomos/metabolismo , Bactérias/genética , Sítios de Ligação , Uridina/metabolismo , Citidina/metabolismo , RNA Ribossômico 23S/metabolismo , RNA Bacteriano/metabolismo
8.
Nature ; 613(7945): 783-789, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631609

RESUMO

Efficient and accurate termination is required for gene transcription in all living organisms1,2. Cellular RNA polymerases in both bacteria and eukaryotes can terminate their transcription through a factor-independent termination pathway3,4-called intrinsic termination transcription in bacteria-in which RNA polymerase recognizes terminator sequences, stops nucleotide addition and releases nascent RNA spontaneously. Here we report a set of single-particle cryo-electron microscopy structures of Escherichia coli transcription intrinsic termination complexes representing key intermediate states of the event. The structures show how RNA polymerase pauses at terminator sequences, how the terminator RNA hairpin folds inside RNA polymerase, and how RNA polymerase rewinds the transcription bubble to release RNA and then DNA. These macromolecular snapshots define a structural mechanism for bacterial intrinsic termination and a pathway for RNA release and DNA collapse that is relevant for factor-independent termination by all RNA polymerases.


Assuntos
DNA Bacteriano , RNA Polimerases Dirigidas por DNA , Escherichia coli , RNA Bacteriano , Terminação da Transcrição Genética , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/ultraestrutura , Regiões Terminadoras Genéticas/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura
9.
EMBO J ; 42(3): e111129, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504222

RESUMO

The widely occurring bacterial RNA chaperone Hfq is a key factor in the post-transcriptional control of hundreds of genes in Pseudomonas aeruginosa. How this broadly acting protein can contribute to the regulatory requirements of many different genes remains puzzling. Here, we describe cryo-EM structures of higher order assemblies formed by Hfq and its partner protein Crc on control regions of different P. aeruginosa target mRNAs. Our results show that these assemblies have mRNA-specific quaternary architectures resulting from the combination of multivalent protein-protein interfaces and recognition of patterns in the RNA sequence. The structural polymorphism of these ribonucleoprotein assemblies enables selective translational repression of many different target mRNAs. This system elucidates how highly complex regulatory pathways can evolve with a minimal economy of proteinogenic components in combination with RNA sequence and fold.


Assuntos
Proteínas de Bactérias , Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo
10.
mBio ; 14(1): e0241822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475775

RESUMO

Behind the pathogenic lifestyle of Pseudomonas aeruginosa exists a complex regulatory network of intertwined switches at both the transcriptional and posttranscriptional levels. Major players that mediate translation regulation of several genes involved in host-P. aeruginosa interaction are small RNAs (sRNAs) and the Hfq protein. The canonical role of Hfq in sRNA-driven regulation is to act as a matchmaker between sRNAs and target mRNAs. Besides, the sRNA CrcZ is known to sequester Hfq and abrogate its function of translation repression of target mRNAs. In this study, we describe the novel sRNA GssA in the strain PA14 and its multifaceted interplay with Hfq. We show that GssA is multiresponsive to environmental and physiological signals and acts as an apical repressor of key bacterial functions in the human host such as the production of pyocyanin, utilization of glucose, and secretion of exotoxin A. We suggest that the main role of Hfq is not to directly assist GssA in its regulatory role but to repress GssA expression. In the case of pyocyanin production, we suggest that Hfq interplays with GssA also by converging a positive effect on this pathway. Furthermore, our results indicate that both Hfq and GssA play a positive role in anaerobic growth, possibly by regulating the respiratory chain. On the other hand, we show that GssA can modulate not only Hfq expression at both transcriptional and posttranscriptional levels but also that of CrcZ, thus potentially influencing the pleiotropic role of Hfq. IMPORTANCE The pathogenic lifestyle of the bacterium Pseudomonas aeruginosa, a leading cause of life-threatening infections in the airways of cystic fibrosis patients, is based on the fine regulation of virulence-associated factors. Regulatory small RNAs (sRNAs) and the RNA-binding protein Hfq are recognized key components within the P. aeruginosa regulatory networks involved in host-pathogen interaction. In this study, we characterized in the highly virulent P. aeruginosa strain PA14 the novel sRNA GssA. We found that it can establish a many-sided reciprocal interplay with Hfq which goes beyond the canonical mechanism of direct physical interaction that had previously been characterized for other sRNAs. Given that the Hfq-driven regulatory network of virulence factors is very broad and important for the progression of infection, we consider GssA as a new RNA target that can potentially be used to develop new antibacterial drugs.


Assuntos
Pseudomonas aeruginosa , Pequeno RNA não Traduzido , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Piocianina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Mensageiro/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo
11.
EMBO J ; 42(2): e112574, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36504162

RESUMO

Biogenesis of the essential precursor of the bacterial cell envelope, glucosamine-6-phosphate (GlcN6P), is controlled by intricate post-transcriptional networks mediated by GlmZ, a small regulatory RNA (sRNA). GlmZ stimulates translation of the mRNA encoding GlcN6P synthtase in Escherichia coli, but when bound by RapZ protein, the sRNA becomes inactivated through cleavage by the endoribonuclease RNase E. Here, we report the cryoEM structure of the RapZ:GlmZ complex, revealing a complementary match of the RapZ tetrameric quaternary structure to structural repeats in the sRNA. The nucleic acid is contacted by RapZ mostly through a highly conserved domain that shares an evolutionary relationship with phosphofructokinase and suggests links between metabolism and riboregulation. We also present the structure of a precleavage intermediate formed between the binary RapZ:GlmZ complex and RNase E that reveals how GlmZ is presented and recognised by the enzyme. The structures provide a framework for understanding how other encounter complexes might guide recognition and action of endoribonucleases on target transcripts, and how structured substrates in polycistronic precursors may be recognised for processing by RNase E.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ribonucleoproteínas/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética
12.
Cell Rep ; 41(13): 111881, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577380

RESUMO

Hfq, an Sm-like protein and the major RNA chaperone in E. coli, has been shown to distribute non-uniformly along a helical path under normal growth conditions and to relocate to the cell poles under certain stress conditions. We have previously shown that Hfq relocation to the poles is accompanied by polar accumulation of most small RNAs (sRNAs). Here, we show that Hfq undergoes RNA-dependent phase separation to form cytoplasmic or polar condensates of different density under normal and stress conditions, respectively. Purified Hfq forms droplets in the presence of crowding agents or RNA, indicating that its condensation is via heterotypic interactions. Stress-induced relocation of Hfq condensates and sRNAs to the poles depends on the pole-localizer TmaR. Phase separation of Hfq correlates with its ability to perform its posttranscriptional roles as sRNA-stabilizer and sRNA-mRNA matchmaker. Our study offers a spatiotemporal mechanism for sRNA-mediated regulation in response to environmental changes.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Fator Proteico 1 do Hospedeiro , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
13.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555635

RESUMO

Alkanes are widespread in the ocean, and Alcanivorax is one of the most ubiquitous alkane-degrading bacteria in the marine ecosystem. Small RNAs (sRNAs) are usually at the heart of regulatory pathways, but sRNA-mediated alkane metabolic adaptability still remains largely unknown due to the difficulties of identification. Here, differential RNA sequencing (dRNA-seq) modified with a size selection (~50-nt to 500-nt) strategy was used to generate high-resolution sRNAs profiling in the model species Alcanivorax dieselolei B-5 under alkane (n-hexadecane) and non-alkane (acetate) conditions. As a result, we identified 549 sRNA candidates at single-nucleotide resolution of 5'-ends, 63.4% of which are with transcription start sites (TSSs), and 36.6% of which are with processing sites (PSSs) at the 5'-ends. These sRNAs originate from almost any location in the genome, regardless of intragenic (65.8%), antisense (20.6%) and intergenic (6.2%) regions, and RNase E may function in the maturation of sRNAs. Most sRNAs locally distribute across the 15 reference genomes of Alcanivorax, and only 7.5% of sRNAs are broadly conserved in this genus. Expression responses to the alkane of several core conserved sRNAs, including 6S RNA, M1 RNA and tmRNA, indicate that they may participate in alkane metabolisms and result in more actively global transcription, RNA processing and stresses mitigation. Two novel CsrA-related sRNAs are identified, which may be involved in the translational activation of alkane metabolism-related genes by sequestering the global repressor CsrA. The relationships of sRNAs with the characterized genes of alkane sensing (ompS), chemotaxis (mcp, cheR, cheW2), transporting (ompT1, ompT2, ompT3) and hydroxylation (alkB1, alkB2, almA) were created based on the genome-wide predicted sRNA-mRNA interactions. Overall, the sRNA landscape lays the ground for uncovering cryptic regulations in critical marine bacterium, among which both the core and species-specific sRNAs are implicated in the alkane adaptive metabolisms.


Assuntos
Alcanivoraceae , Pequeno RNA não Traduzido , Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Ecossistema , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Sequência de Bases , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Regulação Bacteriana da Expressão Gênica
14.
Science ; 378(6622): 874-881, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36423276

RESUMO

In prokaryotes, CRISPR-Cas systems provide adaptive immune responses against foreign genetic elements through RNA-guided nuclease activity. Recently, additional genes with non-nuclease functions have been found in genetic association with CRISPR systems, suggesting that there may be other RNA-guided non-nucleolytic enzymes. One such gene from Desulfonema ishimotonii encodes the TPR-CHAT protease Csx29, which is associated with the CRISPR effector Cas7-11. Here, we demonstrate that this CRISPR-associated protease (CASP) exhibits programmable RNA-activated endopeptidase activity against a sigma factor inhibitor to regulate a transcriptional response. Cryo-electron microscopy of an active and substrate-bound CASP complex reveals an allosteric activation mechanism that reorganizes Csx29 catalytic residues upon target RNA binding. This work reveals an RNA-guided function in nature that can be leveraged for RNA-sensing applications in vitro and in human cells.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Deltaproteobacteria , Endopeptidases , Proteólise , Humanos , Microscopia Crioeletrônica , Endopeptidases/química , Endopeptidases/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , /metabolismo , Fator sigma/metabolismo , Transcrição Gênica , Especificidade por Substrato , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação Enzimática
15.
Nucleic Acids Res ; 50(20): 11858-11875, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36354005

RESUMO

Bacterial pathogens employ a plethora of virulence factors for host invasion, and their use is tightly regulated to maximize infection efficiency and manage resources in a nutrient-limited environment. Here we show that during Escherichia coli stationary phase the 3' UTR-derived small non-coding RNA FimR2 regulates fimbrial and flagellar biosynthesis at the post-transcriptional level, leading to biofilm formation as the dominant mode of survival under conditions of nutrient depletion. FimR2 interacts with the translational regulator CsrA, antagonizing its functions and firmly tightening control over motility and biofilm formation. Generated through RNase E cleavage, FimR2 regulates stationary phase biology by fine-tuning target mRNA levels independently of the chaperones Hfq and ProQ. The Salmonella enterica orthologue of FimR2 induces effector protein secretion by the type III secretion system and stimulates infection, thus linking the sRNA to virulence. This work reveals the importance of bacterial sRNAs in modulating various aspects of bacterial physiology including stationary phase and virulence.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Virulência/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biofilmes , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
16.
J Bacteriol ; 204(11): e0025122, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36286516

RESUMO

The group A Streptococcus (GAS; Streptococcus pyogenes) causes an elaborate array of human diseases. In part, such variability in disease potential is a consequence of GAS manipulating the expression of a catalogue of virulence factors, with regulation occurring at both the transcriptional and posttranscriptional levels. The GAS small regulatory RNA (sRNA) FasX contributes to this regulatory activity, enhancing expression of the thrombolytic agent streptokinase, and reducing expression of collagen (pili) and fibronectin (PrtF1 and PrtF2) -binding adhesins. Here, we expand insight into the regulatory targets of FasX by identifying the M-related protein (Mrp), a fibrinogen-binding adhesin with anti-phagocytic activity, as a negatively-regulated target of FasX. Importantly, investigation of the consequences of FasX-mediated regulation led to the discovery that FasX is a major positive regulator of GAS survival and proliferation in non-immune whole human blood, with a 30-fold difference in GAS cell numbers between a fasX mutant strain and isogenic parental and complemented mutant strains. No difference in cell numbers were observed when these strains were grown in human serum, consistent with the protective phenotype associated with FasX occurring due to the inhibition of cell (e.g., neutrophil) - mediated GAS killing. The FasX-regulated factor/s responsible for the blood survival phenotype remain to be defined. In summary, we expand the known FasX regulon and identify a new phenotype associated with the regulatory activity of this key GAS sRNA. IMPORTANCE Small regulatory RNAs (sRNAs) represent a major class of regulatory molecule that promotes the ability of the group A Streptococcus (GAS) and other pathogens to regulate virulence factor expression. Despite FasX being the best-described sRNA in GAS, there remains much to be learned. Here, we highlight the importance of FasX, identifying for the first time that the loss of this sRNA results in a major reduction in the ability of GAS to survive in human blood, a phenotype critical to the ability of this human-specific pathogen to cause severe invasive infections. We also identified a novel regulatory target of FasX, thereby expanding the known regulon of this key sRNA.


Assuntos
Pequeno RNA não Traduzido , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/metabolismo , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
RNA ; 28(12): 1643-1658, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36198425

RESUMO

The E. coli 6S RNA is an RNA polymerase (RNAP) inhibitor that competes with σ70-dependent DNA promoters for binding to RNAP holoenzyme (RNAP:σ70). The 6S RNA when bound is then used as a template to synthesize a short product RNA (pRNA; usually 13-nt-long). This pRNA changes the 6S RNA structure, triggering the 6S RNA:pRNA complex to release and allowing DNA-dependent housekeeping gene expression to resume. In high nutrient conditions, 6S RNA turnover is extremely rapid but becomes very slow in low nutrient environments. This leads to a large accumulation of inhibited RNAP:σ70 in stationary phase. As pRNA initiates synthesis with ATP, we and others have proposed that the 6S RNA release rate strongly depends on ATP levels as a proxy for sensing the cellular metabolic state. By purifying endogenous 6S RNA:pRNA complexes using RNA Mango and using reverse transcriptase to generate pRNA-cDNA chimeras, we demonstrate that 6S RNA:pRNA formation can be simultaneous with 6S RNA 5' maturation. More importantly, we find a dramatic accumulation of capped pRNAs during stationary phase. This indicates that ATP levels in stationary phase are low enough for noncanonical initiator nucleotides (NCINs) such as NAD+ and NADH to initiate pRNA synthesis. In vitro, mutation of the conserved 6S RNA template sequence immediately upstream of the pRNA transcriptional start site can increase or decrease the pRNA capping efficiency, suggesting that evolution has tuned the biological 6S RNA sequence for an optimal capping rate. NCIN-initiated pRNA synthesis may therefore be essential for cell viability in low nutrient conditions.


Assuntos
Escherichia coli , Nucleotídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotídeos/metabolismo , Transcrição Gênica , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Fator sigma/metabolismo
18.
Arch Microbiol ; 204(9): 582, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36042049

RESUMO

Streptomyces coelicolor is a model organism for studying streptomycetes. This genus possesses relevant medical and economical roles, because it produces many biologically active metabolites of pharmaceutical interest, including the majority of commercialized antibiotics. In this bioinformatic study, the transcriptome of S. coelicolor has been analyzed to identify novel RNA species and quantify the expression of both annotated and novel transcripts in solid and liquid growth medium cultures at different times. The major characteristics disclosed in this study are: (i) the diffuse antisense transcription; (ii) the great abundance of transfer-messenger RNAs (tmRNA); (iii) the abundance of rnpB transcripts, paramount for the RNase-P complex; and (iv) the presence of abundant fragments derived from pre-ribosomal RNA leader sequences of unknown biological function. Overall, this study extends the catalogue of ncRNAs in S. coelicolor and suggests an important role of non-coding transcription in the regulation of biologically active molecule production.


Assuntos
Streptomyces coelicolor , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico , Ribonuclease P/metabolismo
19.
Nature ; 609(7926): 384-393, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002573

RESUMO

Bacterial transposons are pervasive mobile genetic elements that use distinct DNA-binding proteins for horizontal transmission. For example, Escherichia coli Tn7 homes to a specific attachment site using TnsD1, whereas CRISPR-associated transposons use type I or type V Cas effectors to insert downstream of target sites specified by guide RNAs2,3. Despite this targeting diversity, transposition invariably requires TnsB, a DDE-family transposase that catalyses DNA excision and insertion, and TnsC, a AAA+ ATPase that is thought to communicate between transposase and targeting proteins4. How TnsC mediates this communication and thereby regulates transposition fidelity has remained unclear. Here we use chromatin immunoprecipitation with sequencing to monitor in vivo formation of the type I-F RNA-guided transpososome, enabling us to resolve distinct protein recruitment events before integration. DNA targeting by the TniQ-Cascade complex is surprisingly promiscuous-hundreds of genomic off-target sites are sampled, but only a subset of those sites is licensed for TnsC and TnsB recruitment, revealing a crucial proofreading checkpoint. To advance the mechanistic understanding of interactions responsible for transpososome assembly, we determined structures of TnsC using cryogenic electron microscopy and found that ATP binding drives the formation of heptameric rings that thread DNA through the central pore, thereby positioning the substrate for downstream integration. Collectively, our results highlight the molecular specificity imparted by consecutive factor binding to genomic target sites during RNA-guided transposition, and provide a structural roadmap to guide future engineering efforts.


Assuntos
Adenosina Trifosfatases , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , RNA Bacteriano , Adenosina Trifosfatases/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Especificidade por Substrato , Transposases/metabolismo
20.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194871, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041664

RESUMO

An array of external factors, an important one being temperature, decide the fate of survival in a microbe. The ability of microbes to sense external cues and to regulate the expression of genes accordingly is critical for its likely survival. Among a myriad of cellular defence mechanisms, a strategy to recuperate stress involves RNA regulatory elements. RNAs own a repertoire of functions in a cell as messengers, for transfer or as a component of ribosomes. A shift from its indigenous role is as regulators of gene expression, where in the cis-encoded RNA termed as "RNA Thermometers" play a pivotal role in translational level of gene expression. In this paper, we review the occurrence, the different types and molecular mechanism of gene regulation by RNATs, with a special focus limited to the domain Bacteria. We discuss the role of RNATs in mediating expression of temperature-responsive genes like heat shock/cold attributing in heat/cold shock response and a cascade of virulence genes to evade host defence mechanisms.


Assuntos
Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , Bactérias/metabolismo , Regulação da Temperatura Corporal/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Termômetros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...