Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 915
Filtrar
1.
Microb Cell Fact ; 18(1): 162, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31581942

RESUMO

BACKGROUND: Efficient and convenient genome-editing toolkits can expedite genomic research and strain improvement for desirable phenotypes. Zymomonas mobilis is a highly efficient ethanol-producing bacterium with a small genome size and desirable industrial characteristics, which makes it a promising chassis for biorefinery and synthetic biology studies. While classical techniques for genetic manipulation are available for Z. mobilis, efficient genetic engineering toolkits enabling rapidly systematic and high-throughput genome editing in Z. mobilis are still lacking. RESULTS: Using Cas12a (Cpf1) from Francisella novicida, a recombinant strain with inducible cas12a expression for genome editing was constructed in Z. mobilis ZM4, which can be used to mediate RNA-guided DNA cleavage at targeted genomic loci. gRNAs were then designed targeting the replicons of native plasmids of ZM4 with about 100% curing efficiency for three native plasmids. In addition, CRISPR-Cas12a recombineering was used to promote gene deletion and insertion in one step efficiently and precisely with efficiency up to 90%. Combined with single-stranded DNA (ssDNA), CRISPR-Cas12a system was also applied to introduce minor nucleotide modification precisely into the genome with high fidelity. Furthermore, the CRISPR-Cas12a system was employed to introduce a heterologous lactate dehydrogenase into Z. mobilis with a recombinant lactate-producing strain constructed. CONCLUSIONS: This study applied CRISPR-Cas12a in Z. mobilis and established a genome editing tool for efficient and convenient genome engineering in Z. mobilis including plasmid curing, gene deletion and insertion, as well as nucleotide substitution, which can also be employed for metabolic engineering to help divert the carbon flux from ethanol production to other products such as lactate demonstrated in this work. The CRISPR-Cas12a system established in this study thus provides a versatile and powerful genome-editing tool in Z. mobilis for functional genomic research, strain improvement, as well as synthetic microbial chassis development for economic biochemical production.


Assuntos
Edição de Genes/métodos , Genoma Bacteriano , Zymomonas/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/metabolismo , Francisella/enzimologia , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia/genética , RNA Guia/metabolismo , Zymomonas/metabolismo
2.
Sheng Li Xue Bao ; 71(4): 588-596, 2019 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-31440756

RESUMO

The aim of the study was to establish Ace2 (angiotensin-converting enzyme 2) knockout mouse model with CRISPR/Cas9 gene targeting technology. A vector targeting Ace2 gene knockout was constructed with the primers of single-guide RNA (gRNA), and then transcribed gRNA/Cas9 mRNA was micro-injected into the mouse zygote. The deletion of exons 3 to 18 of Ace2 gene in mice was detected and identified by PCR and gene sequencing. The Ace2 gene knock-out mice were bred and copulated. Ace2 protein and mRNA expression were detected by Western blot and qRT-PCR in F3 progeny knock-out male mice. The gRNA expression vector was successfully constructed and transcribed in vitro, and active gRNA and Cas9 mRNA were injected directly into zygote. The deletion of exons 3 to 18 of Ace2 gene in six positive founder mice as the F0 generation were confirmed by PCR and gene sequencing. Six founder mice were mated with wild-type mice, then achieved F1 generation were mated and produced F2 generation. The female positive mouse of F2 was selected to mate with wild-type mice and produce Ace2-/Y mice of F3 generation. Ace2 mRNA and protein were not detected in tissues of these Ace2-/Y mice. In conclusion, a mouse model with Ace2 deficiency has been successfully established with CRISPR/Cas9 technique, which shall lay a foundation for future investigation of Ace2.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Camundongos Knockout , RNA Guia/genética , Animais , Feminino , Marcação de Genes , Masculino , Camundongos
3.
Nature ; 571(7764): 219-225, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31189177

RESUMO

Conventional CRISPR-Cas systems maintain genomic integrity by leveraging guide RNAs for the nuclease-dependent degradation of mobile genetic elements, including plasmids and viruses. Here we describe a notable inversion of this paradigm, in which bacterial Tn7-like transposons have co-opted nuclease-deficient CRISPR-Cas systems to catalyse RNA-guided integration of mobile genetic elements into the genome. Programmable transposition of Vibrio cholerae Tn6677 in Escherichia coli requires CRISPR- and transposon-associated molecular machineries, including a co-complex between the DNA-targeting complex Cascade and the transposition protein TniQ. Integration of donor DNA occurs in one of two possible orientations at a fixed distance downstream of target DNA sequences, and can accommodate variable length genetic payloads. Deep-sequencing experiments reveal highly specific, genome-wide DNA insertion across dozens of unique target sites. This discovery of a fully programmable, RNA-guided integrase lays the foundation for genomic manipulations that obviate the requirements for double-strand breaks and homology-directed repair.


Assuntos
Sistemas CRISPR-Cas/genética , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Edição de Genes/métodos , Mutagênese Insercional/métodos , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Escherichia coli/genética , Genoma Bacteriano/genética , Integrases/genética , Integrases/metabolismo , Mutagênese Sítio-Dirigida/métodos , RNA Guia/genética , Especificidade por Substrato , Vibrio cholerae/genética
4.
J Vet Sci ; 20(3): e23, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31161741

RESUMO

The clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a versatile genome editing tool with high efficiency. A guide sequence of 20 nucleotides (nt) is commonly used in application of CRISPR/Cas9; however, the relationship between the length of the guide sequence and the efficiency of CRISPR/Cas9 in porcine cells is still not clear. To illustrate this issue, guide RNAs of different lengths targeting the EGFP gene were designed. Specifically, guide RNAs of 17 nt or longer were sufficient to direct the Cas9 protein to cleave target DNA sequences, while 15 nt or shorter guide RNAs had loss-of-function. Full-length guide RNAs complemented with mismatches also showed loss-of-function. When the shortened guide RNA and target DNA heteroduplex (gRNA:DNA heteroduplex) was blocked by mismatch, the CRISPR/Cas9 would be interfered with. These results suggested the length of the gRNA:DNA heteroduplex was a key factor for maintaining high efficiency of the CRISPR/Cas9 system rather than weak bonding between shortened guide RNA and Cas9 in porcine cells.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Ácidos Nucleicos Heteroduplexes/genética , RNA Guia/genética , Animais , Pareamento Incorreto de Bases/genética , Linhagem Celular , Edição de Genes/normas , Genes erbB-1/genética , Ácidos Nucleicos Heteroduplexes/química , RNA Guia/química , Suínos
5.
BMC Bioinformatics ; 20(1): 332, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195957

RESUMO

BACKGROUND: CRISPR-Cpf1 has recently been reported as another RNA-guided endonuclease of class 2 CRISPR-Cas system, which expands the molecular biology toolkit for genome editing. However, most of the online tools and applications to date have been developed primarily for the Cas9. There are a limited number of tools available for the Cpf1. RESULTS: We present DeepCpf1, a deep convolution neural networks (CNN) approach to predict Cpf1 guide RNAs on-target activity and off-target effects using their matched and mismatched DNA sequences. Trained on published data sets, DeepCpf1 is superior to other machine learning algorithms and reliably predicts the most efficient and less off-target effects guide RNAs for a given gene. Combined with a permutation importance analysis, the key features of guide RNA sequences are identified, which determine the activity and specificity of genome editing. CONCLUSIONS: DeepCpf1 can significantly improve the accuracy of Cpf1-based genome editing and facilitates the generation of optimized guide RNAs libraries.


Assuntos
Sistemas CRISPR-Cas/genética , Aprendizado Profundo , Endonucleases/metabolismo , Redes Neurais (Computação) , Algoritmos , Sequência de Bases , RNA Guia/genética
6.
Nat Methods ; 16(7): 633-639, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235883

RESUMO

Mammalian genomes are folded into tens of thousands of long-range looping interactions. The cause-and-effect relationship between looping and genome function is poorly understood, and the extent to which loops are dynamic on short time scales remains an unanswered question. Here, we engineer a new class of synthetic architectural proteins for directed rearrangement of the three-dimensional genome using blue light. We target our light-activated-dynamic-looping (LADL) system to two genomic anchors with CRISPR guide RNAs and induce their spatial colocalization via light-induced heterodimerization of cryptochrome 2 and a dCas9-CIBN fusion protein. We apply LADL to redirect a stretch enhancer (SE) away from its endogenous Klf4 target gene and to the Zfp462 promoter. Using single-molecule RNA-FISH, we demonstrate that de novo formation of the Zfp462-SE loop correlates with a modest increase in Zfp462 expression. LADL facilitates colocalization of genomic loci without exogenous chemical cofactors and will enable future efforts to engineer reversible and oscillatory loops on short time scales.


Assuntos
Regulação da Expressão Gênica , Engenharia de Proteínas , Animais , Proteínas de Transporte/genética , Células Cultivadas , Fatores de Transcrição Kruppel-Like/genética , Luz , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , RNA Guia/genética
7.
Chem Commun (Camb) ; 55(57): 8219-8222, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31210215

RESUMO

Here we reported a new strategy to construct synthetic metabolons using dCas9-guided assembly. Three orthogonal dCas9 proteins were exploited to guide the independent and site-specific assembly of their fusion partners onto a single DNA scaffold. This new platform was applied towards the construction of a two-component cellulosome. Because of the superior binding affinity, the resulting structures exhibited both improved assembly and reducing sugar production. Conditional enzyme assembly was made possible by utilizing toehold-gated sgRNA (thgRNA), which blocks cellulosome formation until the spacer region is unblocked by a RNA trigger. This platform is highly modular owing to the ease of target synthesis, combinations of possible Cas9-fusion arrangements, and expansion to other metabolic pathways.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , RNA Guia/metabolismo , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Celulase/química , Celulase/genética , Celulase/metabolismo , Celulossomas/química , Celulossomas/metabolismo , DNA/química , DNA/metabolismo , Ligação Proteica , Domínios Proteicos , RNA Guia/genética
8.
Nat Commun ; 10(1): 2544, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186424

RESUMO

Cas13d, the type VI-D CRISPR-Cas effector, is an RNA-guided ribonuclease that has been repurposed to edit RNA in a programmable manner. Here we report the detailed structural and functional analysis of the uncultured Ruminococcus sp. Cas13d (UrCas13d)-crRNA complex. Two hydrated Mg2+ ions aid in stabilizing the conformation of the crRNA repeat region. Sequestration of divalent metal ions does not alter pre-crRNA processing, but abolishes target cleavage by UrCas13d. Notably, the pre-crRNA processing is executed by the HEPN-2 domain. Furthermore, both the structure and sequence of the nucleotides U(-8)-C(-1) within the repeat region are indispensable for target cleavage, and are specifically recognized by UrCas13d. Moreover, correct base pairings within two separate spacer regions (an internal and a 3'-end region) are essential for target cleavage. These findings provide a framework for the development of Cas13d into a tool for a wide range of applications.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ribonucleases/metabolismo , Ruminococcus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Conformação de Ácido Nucleico , Domínios Proteicos , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Guia/genética , Ribonucleases/química , Ribonucleases/genética , Ruminococcus/enzimologia
9.
BMC Bioinformatics ; 20(1): 293, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142266

RESUMO

BACKGROUND: Predicted RNA secondary structures are typically visualized using dot-plots for base pair binding probabilities and planar graphs for unique structures, such as the minimum free energy structure. These are however difficult to analyze simultaneously. RESULTS: This work introduces a compact unified view of the most stable conformation of an RNA secondary structure and its base pair probabilities, which is called the Circular Secondary Structure Base Pairs Probabilities Plot (CS2BP2-Plot). Along with our design we provide access to a web server implementation of our solution that facilitates pairwise comparison of short RNA (and DNA) sequences up to 200 base pairs. The web server first calculates the minimum free energy secondary structure and the base pair probabilities for up to 10 RNA or DNA sequences using RNAfold and then provides a two panel comparative view that includes CS2BP2-Plots along with the traditional graph, planar and circular diagrams obtained with VARNA. The CS2BP2-Plots include highlighting of the nucleotide differences between two selected sequences using ClustalW local alignments. We also provide descriptive statistics, dot-bracket secondary structure representations and ClustalW local alignments for compared sequences. CONCLUSIONS: Using circular diagrams and colour and weight-coded arcs, we demonstrate how a single image can replace the state-of-the-art dual representations (dot-plots and minimum free energy structures) for base-pair probabilities of RNA secondary structures while allowing efficient exploration and comparison of different RNA conformations via a web server front end. With that, we provide the community, especially the biologically oriented, with an intuitive tool for ncRNA visualization. Web-server: https://nrcmonsrv01.nrc.ca/cs2bp2plot.


Assuntos
Pareamento de Bases , Conformação de Ácido Nucleico , Probabilidade , RNA/química , Algoritmos , Sistemas CRISPR-Cas/genética , Evolução Molecular , Humanos , RNA Guia/genética , Virulência/genética , Yersinia/patogenicidade
10.
Analyst ; 144(11): 3581-3589, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065636

RESUMO

The microalgal cell wall is a natural barrier that limits the efficiency of gene delivery in algae genetic engineering. Here, we report the role of hard-uptake nanoparticles (huNPs) in microalgae cell electroporation to enhance the delivery of genes in Chlamydomonas reinhardtii. This role can be divided into two categories: (i) a 'transient state' for short-term behavior under confocal visualization and (ii) a 'steady state' for long-term behavior in cell culture. First, the 'transient' role of gene-huNP complexes was investigated after washing for clear confocal imaging to observe the location of huNPs after electroporation. Second, the 'steady-state' role of the gene-huNP complexes was examined after electroporation by transferring cells to a fresh, medium-rich culture environment without washing to obtain a stable cell culture. For selection of the huNPs, we used two types of nanoparticles (NPs, 250 nm and 530 nm) larger than the threshold size of electroporation uptake to avoid unwanted endocytic uptake of NPs. In the transient state, the visualization results indicate that gene-NP (250 nm) complexes were positioned on the cells and helped to deliver more genes than did the 530 nm NPs. In the steady state, the gene-NP (530 nm) complexes helped stably deliver more genes to the cells by precipitation of NPs due to gravity. We believe that these findings illustrate how gene-NP complexes function in microalgae cell electroporation and could help set up a protocol for enhanced microalgae applications associated with NPs such as environmental waste removal and biofuel production.


Assuntos
DNA/farmacocinética , Técnicas de Transferência de Genes , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Chlamydomonas reinhardtii , DNA/genética , Eletroporação/métodos , Vetores Genéticos/genética , Vetores Genéticos/farmacocinética , Proteínas de Fluorescência Verde/genética , Microalgas , Nanopartículas/toxicidade , Oxazinas/química , Oxazinas/toxicidade , Tamanho da Partícula , Poliestirenos/química , Poliestirenos/toxicidade , RNA Guia/genética
11.
Nat Commun ; 10(1): 2233, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110232

RESUMO

The recently developed single-cell CRISPR screening techniques, independently termed Perturb-Seq, CRISP-seq, or CROP-seq, combine pooled CRISPR screening with single-cell RNA-seq to investigate functional CRISPR screening in a single-cell granularity. Here, we present MUSIC, an integrated pipeline for model-based understanding of single-cell CRISPR screening data. Comprehensive tests applied to all the publicly available data revealed that MUSIC accurately quantifies and prioritizes the individual gene perturbation effect on cell phenotypes with tolerance for the substantial noise that exists in such data analysis. MUSIC facilitates the single-cell CRISPR screening from three perspectives, i.e., prioritizing the gene perturbation effect as an overall perturbation effect, in a functional topic-specific way, and quantifying the relationships between different perturbations. In summary, MUSIC provides an effective and applicable solution to elucidate perturbation function and biologic circuits by a model-based quantitative analysis of single-cell-based CRISPR screening data.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Genéticos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Estudos de Viabilidade , Perfilação da Expressão Gênica/métodos , Técnicas de Silenciamento de Genes , Humanos , Células Jurkat , Células K562 , RNA Guia/genética
13.
Nat Commun ; 10(1): 2092, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064995

RESUMO

The CRISPR effector protein Cas12a has been used for a wide variety of applications such as in vivo gene editing and regulation or in vitro DNA sensing. Here, we add programmability to Cas12a-based DNA processing by combining it with strand displacement-based reaction circuits. We first establish a viable strategy for augmenting Cas12a guide RNAs (gRNAs) at their 5' end and then use such 5' extensions to construct strand displacement gRNAs (SD gRNAs) that can be activated by single-stranded RNA trigger molecules. These SD gRNAs are further engineered to exhibit a digital and orthogonal response to different trigger RNA inputs-including full length mRNAs-and to function as multi-input logic gates. We also demonstrate that SD gRNAs can be designed to work inside bacterial cells. Using such in vivo SD gRNAs and a DNase inactive version of Cas12a (dCas12a), we demonstrate logic gated transcriptional control of gene expression in E. coli.


Assuntos
Proteínas Associadas a CRISPR/genética , Edição de Genes/métodos , RNA Guia/genética , Acidaminococcus/genética , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Plasmídeos/genética , Transformação Bacteriana
14.
Nat Commun ; 10(1): 2113, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068592

RESUMO

Gene editing by CRISPR/Cas9 is commonly used to generate germline mutations or perform in vitro screens, but applicability for in vivo screening has so far been limited. Recently, it was shown that in Drosophila, Cas9 expression could be limited to a desired group of cells, allowing tissue-specific mutagenesis. Here, we thoroughly characterize tissue-specific (ts)CRISPR within the complex neuronal system of the Drosophila mushroom body. We report the generation of a library of gRNA-expressing plasmids and fly lines using optimized tools, which provides a valuable resource to the fly community. We demonstrate the application of our library in a large-scale in vivo screen, which reveals insights into developmental neuronal remodeling.


Assuntos
Animais Geneticamente Modificados/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Drosophila/genética , Edição de Genes/métodos , Animais , Sistemas CRISPR-Cas/genética , Feminino , Masculino , Corpos Pedunculados/metabolismo , Mutagênese , Sistema Nervoso/crescimento & desenvolvimento , Plasticidade Neuronal/genética , Neurônios/fisiologia , Plasmídeos/genética , RNA Guia/genética
15.
Nat Commun ; 10(1): 2127, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073154

RESUMO

The CRISPR-Cas9 system provides the ability to edit, repress, activate, or mark any gene (or DNA element) by pairing of a programmable single guide RNA (sgRNA) with a complementary sequence on the DNA target. Here we present a new method for small-molecule control of CRISPR-Cas9 function through insertion of RNA aptamers into the sgRNA. We show that CRISPR-Cas9-based gene repression (CRISPRi) can be either activated or deactivated in a dose-dependent fashion over a >10-fold dynamic range in response to two different small-molecule ligands. Since our system acts directly on each target-specific sgRNA, it enables new applications that require differential and opposing temporal control of multiple genes.


Assuntos
Aptâmeros de Nucleotídeos/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia/genética , DNA/genética , Ligantes
16.
Nat Commun ; 10(1): 2119, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073172

RESUMO

Master transcription factors have the ability to direct and reverse cellular identities, and consequently their genes must be subject to particular transcriptional control. However, it is unclear which molecular processes are responsible for impeding their activation and safeguarding cellular identities. Here we show that the targeting of dCas9-VP64 to the promoter of the master transcription factor Sox1 results in strong transcript and protein up-regulation in neural progenitor cells (NPCs). This gene activation restores lost neuronal differentiation potential, which substantiates the role of Sox1 as a master transcription factor. However, despite efficient transactivator binding, major proportions of progenitor cells are unresponsive to the transactivating stimulus. By combining the transactivation domain with epigenome editing we find that among a series of euchromatic processes, the removal of DNA methylation (by dCas9-Tet1) has the highest potential to increase the proportion of cells activating foreign master transcription factors and thus breaking down cell identity barriers.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Epigênese Genética , Células-Tronco Neurais/fisiologia , Fatores de Transcrição SOXB1/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Edição de Genes/métodos , Regulação da Expressão Gênica , Camundongos , Neuroglia/citologia , Neuroglia/fisiologia , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Guia/genética , RNA Guia/metabolismo , Fatores de Transcrição SOXB1/genética , Transcrição Genética/genética
17.
Mol Vis ; 25: 174-182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30996586

RESUMO

Purpose: To evaluate the efficacy of using a CRISPR/Cas-mediated strategy to correct a common high-risk allele that is associated with age-related macular degeneration (AMD; rs1061170; NM_000186.3:c.1204T>C; NP_000177.2:p.His402Tyr) in the complement factor H (CFH) gene. Methods: A human embryonic kidney cell line (HEK293A) was engineered to contain the pathogenic risk variant for AMD (HEK293A-CFH). Several different base editor constructs (BE3, SaBE3, SaKKH-BE3, VQR-BE3, and Target-AID) and their respective single-guide RNA (sgRNA) expression cassettes targeting either the pathogenic risk variant allele in the CFH locus or the LacZ gene, as a negative control, were evaluated head-to-head for the incidence of a cytosine-to-thymine nucleotide correction. The base editor construct that showed appreciable editing activity was selected for further assessment in which the base-edited region was subjected to next-generation deep sequencing to quantify on-target and off-target editing efficacy. Results: The tandem use of the Target-AID base editor and its respective sgRNA demonstrated a base editing efficiency of facilitating a cytosine-to-thymine nucleotide correction in 21.5% of the total sequencing reads. Additionally, the incidence of insertions and deletions (indels) was detected in only 0.15% of the sequencing reads with virtually no off-target effects evident across the top 11 predicted off-target sites containing at least one cytosine in the activity window (n = 3, pooled amplicons). Conclusions: CRISPR-mediated base editing can be used to facilitate a permanent and stably inherited cytosine-to-thymine nucleotide correction of the rs1061170 SNP in the CFH gene with minimal off-target effects.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Citosina/metabolismo , Expressão Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Óperon Lac , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia/metabolismo , Timina/metabolismo
18.
Methods Mol Biol ; 1979: 395-406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31028650

RESUMO

The combination of single-cell RNA-seq and CRISPR allows for efficient interrogation of possibly any number of genes, only limited by the sequencing capability. Here we describe the current protocols for CRISPR screening in single cells, from cloning and virus production to generating sequencing data.


Assuntos
Sistemas CRISPR-Cas , Análise de Célula Única/métodos , Animais , Linhagem Celular , Clonagem Molecular/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Lentivirus/genética , RNA Guia/genética , Análise de Sequência de RNA/métodos , Transdução Genética/métodos , Transfecção/métodos
19.
Methods Mol Biol ; 1968: 89-98, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30929208

RESUMO

Sequence-specific knockdown of gene expression using CRISPR interference (CRISPRi) has recently been developed for Streptococcus pneumoniae. By coexpression of a catalytically inactive Cas9-protein (dCas9) and a single guide RNA (sgRNA), CRISPRi can be used to knock down transcription of any gene of interest. Gene specificity is mediated by a 20 bp sequence on the sgRNA, and new genes can be targeted by replacing this 20 bp sequence. Here, a protocol is provided for design of sgRNAs and construction of CRIPSRi strains in S. pneumoniae, based on the vectors published by Liu et al. (Mol Syst Biol 13:931, 2017).


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Streptococcus pneumoniae/genética , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas/genética , Regulação Bacteriana da Expressão Gênica/genética , Reação em Cadeia da Polimerase , RNA Guia/genética
20.
Nat Biotechnol ; 37(6): 657-666, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988504

RESUMO

CRISPR (clustered regularly interspaced short palindromic repeat) systems have been broadly adopted for basic science, biotechnology, and gene and cell therapy. In some cases, these bacterial nucleases have demonstrated off-target activity. This creates a potential hazard for therapeutic applications and could confound results in biological research. Therefore, improving the precision of these nucleases is of broad interest. Here we show that engineering a hairpin secondary structure onto the spacer region of single guide RNAs (hp-sgRNAs) can increase specificity by several orders of magnitude when combined with various CRISPR effectors. We first demonstrate that designed hp-sgRNAs can tune the activity of a transactivator based on Cas9 from Streptococcus pyogenes (SpCas9). We then show that hp-sgRNAs increase the specificity of gene editing using five different Cas9 or Cas12a variants. Our results demonstrate that RNA secondary structure is a fundamental parameter that can tune the activity of diverse CRISPR systems.


Assuntos
Biotecnologia/tendências , Sistemas CRISPR-Cas/genética , Edição de Genes , RNA/genética , Conformação de Ácido Nucleico , RNA/química , RNA Guia/genética , Streptococcus pyogenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA