Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.222
Filtrar
1.
Pharm Res ; 37(10): 196, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32944844

RESUMO

PURPOSE: Hypoxia-inducible factor (HIF) is one of the critical components of the tumor microenvironment that is involved in tumor development. HIF-1α functionally and physically interacts with CDK1, 2, and 5 and stimulates the cell cycle progression and Cyclin-Dependent Kinase (CDK) expression. Therefore, hypoxic tumor microenvironment and CDK overexpression lead to increased cell cycle progression and tumor expansion. Therefore, we decided to suppress cancer cell expansion by blocking HIF-1α and CDK molecules. METHODS: In the present study, we used the carboxylated graphene oxide (CGO) conjugated with trimethyl chitosan (TMC) and hyaluronate (HA) nanoparticles (NPs) loaded with HIF-1α-siRNA and Dinaciclib, the CDK inhibitor, for silencing HIF-1α and blockade of CDKs in CD44-expressing cancer cells and evaluated the impact of combination therapy on proliferation, metastasis, apoptosis, and tumor growth. RESULTS: The results indicated that the manufactured NPs had conceivable physicochemical properties, high cellular uptake, and low toxicity. Moreover, combination therapy of cancer cells using CGO-TMC-HA NPs loaded with HIF-1α siRNA and Dinaciclib (SCH 727965) significantly suppressed the CDKs/HIF-1α and consequently, decreased the proliferation, migration, angiogenesis, and colony formation in tumor cells. CONCLUSIONS: These results indicate the ability of CGO-TMC-HA NPs for dual drug/gene delivery in cancer treatment. Furthermore, the simultaneous inhibition of CDKs/HIF-1α can be considered as a novel anti-cancer treatment strategy; however, further research is needed to confirm this treatment in vivo. Graphical Abstract The suppression of HIF-1α and CDKs inhibits cancer growth. HIF-1α is overexpressed by the cells present in the tumor microenvironment. The hypoxic environment elevates mitochondrial ROS production and increases p38 MAP kinase, JAK/STAT, ERK, JNK, and Akt/PI3K signaling, resulting in cyclin accumulation and aberrant cell cycle progression. Furthermore, the overexpression of HIF-1α/CDK results in increased expression of genes such as BCL2, Bcl-xl, Ki-67, TGFß, VEGF, FGF, MMP2, MMP9, and, HIF-1α and consequently raise the survival, proliferation, angiogenesis, metastasis, and invasion of tumor cells. In conclusion, HIF-1α-siRNA/Dinaciclib-loaded CGO-TMC-HA NPs can inhibit the tumor expansion by blockage of CDKs and HIF-1α (JAK: Janus kinase, STAT: Signal transducer and activator of transcription, MAPK: mitogen-activated protein kinase, ERK: extracellular signal-regulated kinase, JNK: c-Jun N-terminal kinase, PI3K: phosphatidylinositol 3-kinase).


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Experimentais/terapia , Compostos de Piridínio/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Quitosana/química , Grafite/química , Ácido Hialurônico/química , Camundongos , Nanopartículas/química , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Compostos de Piridínio/química , Compostos de Piridínio/farmacocinética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética
2.
Life Sci ; 259: 118150, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726663

RESUMO

Conventional therapeutic methods against cancer, including chemotherapy, radiotherapy, surgery, and combination therapy, have exhibited different toxicity levels due to their unspecific mechanism of action. To overcome the challenges facing conventional cancer therapies, newly developed methods are being investigated. Significant levels of specificity, remarkable accumulation at the tumor site, limited side effects, and minimal off-target effects enable the newly synthesized nanoparticles (NPs) to become the preferred drug delivery method in anticancer therapeutic approaches. According to the literature, CD73 has a pivotal role in cancer progression and resistance to chemotherapy and radiotherapy. Therefore, CD73 has attracted considerable attention among scientists to target this molecule. Accordingly, FDA approved CDK inhibitors such as Dinaciclib that blocks CDK1, 2, 5, and 9, and exhibits significant anticancer activity. So in this study, we intended to simultaneously suppress CD73 and CDKs in cancer cells by using the folic acid (FA)-conjugated chitosan-lactate (CL) NPs loaded with anti-CD73 siRNA and Dinaciclib to control tumor progression and metastasis. The results showed that NPs could effectively transfect cancer cells in a FA receptor-dependent manner leading to suppression of proliferation, survival, migration, and metastatic potential. Moreover, the treatment of tumor-bearing mice with this combination strategy robustly inhibited tumor growth and enhanced survival time in mice. These findings imply the high potential of FA-CL NPs loaded with anti-CD73 siRNA and Dinaciclib for use in cancer treatment shortly.


Assuntos
5'-Nucleotidase/efeitos dos fármacos , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ácido Fólico , Nanopartículas , Compostos de Piridínio/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , 5'-Nucleotidase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada , Quinases Ciclina-Dependentes/efeitos dos fármacos , Progressão da Doença , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Humanos , Camundongos , Metástase Neoplásica/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Ensaio Tumoral de Célula-Tronco
3.
Nat Commun ; 11(1): 3360, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620763

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is considered the next major health epidemic with an estimated 25% worldwide prevalence. No drugs have yet been approved and NAFLD remains a major unmet need. Here, we identify MCJ (Methylation-Controlled J protein) as a target for non-alcoholic steatohepatitis (NASH), an advanced phase of NAFLD. MCJ is an endogenous negative regulator of the respiratory chain Complex I that acts to restrain mitochondrial respiration. We show that therapeutic targeting of MCJ in the liver with nanoparticle- and GalNAc-formulated siRNA efficiently reduces liver lipid accumulation and fibrosis in multiple NASH mouse models. Decreasing MCJ expression enhances the capacity of hepatocytes to mediate ß-oxidation of fatty acids and minimizes lipid accumulation, which results in reduced hepatocyte damage and fibrosis. Moreover, MCJ levels in the liver of NAFLD patients are elevated relative to healthy subjects. Thus, inhibition of MCJ emerges as an alternative approach to treat NAFLD.


Assuntos
Ácidos Graxos/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Fígado/patologia , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Adulto , Idoso , Animais , Conjuntos de Dados como Assunto , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Proteínas de Choque Térmico HSP40/antagonistas & inibidores , Proteínas de Choque Térmico HSP40/genética , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Nanopartículas/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/administração & dosagem , RNA-Seq
4.
Theranostics ; 10(13): 5932-5942, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-501783

RESUMO

On the 30th of January 2020, the World Health Organization fired up the sirens against a fast spreading infectious disease caused by a newly discovered Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and gave this disease the name COVID-19. While there is currently no specific treatment for COVID-19, several off label drugs approved for other indications are being investigated in clinical trials across the globe. In the last decade, theranostic nanoparticles were reported as promising tool for efficiently and selectively deliver therapeutic moieties (i.e. drugs, vaccines, siRNA, peptide) to target sites of infection. In addition, they allow monitoring infectious sides and treatment responses using noninvasive imaging modalities. While intranasal delivery was proposed as the preferred administration route for therapeutic agents against viral pulmonary diseases, NP-based delivery systems offer numerous benefits to overcome challenges associated with mucosal administration, and ensure that these agents achieve a concentration that is many times higher than expected in the targeted sites of infection while limiting side effects on normal cells. In this article, we have shed light on the promising role of nanoparticles as effective carriers for therapeutics or immune modulators to help in fighting against COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Nanopartículas/uso terapêutico , Pneumonia Viral/terapia , Nanomedicina Teranóstica/métodos , Administração Intranasal , Antivirais/administração & dosagem , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/genética , Betacoronavirus/imunologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Internalização do Vírus/efeitos dos fármacos
5.
Gene ; 756: 144916, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32580008

RESUMO

Chronic idiopathic urticaria (CIU) is an unfavorable skin condition which could be maintained for six weeks or longer time. Gremlin1 (GREM1) was recently applied in treatments of many diseases. However, the possible regulatory mechanism of GREM1 in CIU remained unclear. This study aimed to explore the regulatory effects of GREM1 on the inflammatory response and vascular permeability mediated by mast cells of CIU via TGF-ß signaling pathway. Initially, microarray analysis was used to identify CIU-related differentially expressed genes and the potential mechanism of this gene. A mouse model of CIU was established. To explore the functional role of GREM1 in CIU, the modeled mice were then injected with GREM1-siRNA, SRI-011381 (the activator of TGF-ß signaling pathway), or both, followed by serum test, and immunoglobulin detection. The levels of inflammatory factors and tryptase, ß-hexosaminase, histamine in the serum were detected. Besides, vascular endothelial cell permeability and the target relation between GREM1 and TGF-ß were also examined. Mice injected with SRI-011381 exhibited higher levels of tryptase, ß-hexosaminase, histamine, inflammation-related factors and increased vascular endothelial cell permeability, while GREM1-silenced mice yet expressed opposite tendency. Silencing of GREM1 was demonstrated to inhibit the TGF-ß signaling pathway. Taken together, our results demonstrated that down-regulation of GREM1 could potentially impede inflammatory response and vascular permeability by suppressing TGF-ß signaling pathway. GREM1 may promote the development of prognosis management and therapeutic treatment in CIU.


Assuntos
Urticária Crônica/genética , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Células Cultivadas , Urticária Crônica/patologia , Regulação para Baixo , Células Endoteliais/metabolismo , Feminino , Humanos , Inflamação/genética , Masculino , Mastócitos/metabolismo , Camundongos , RNA Interferente Pequeno/administração & dosagem , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
6.
Life Sci ; 256: 117864, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32474021

RESUMO

As a major risk factor of acute kidney injury, renal ischemia/reperfusion (I/R) has a high mortality rate. Myeloid differentiation protein 2 (MD-2) is a secretory glycoprotein that plays an important role in inflammation. Our study aimed to explore the roles of MD-2 in I/R-induced inflammation and oxidative stress in vivo and in vitro. For the in vivo studies, male C57BL/6 mice were randomly divided into four groups: 1) sham, 2) I/R, 3) negative control for siRNA (siNC) and I/R treatment, or 4) MD-2 siRNA (siMD-2) and I/R. Levels of blood urea nitrogen and creatinine in the plasma were tested, and hematoxylin and eosin staining was performed at 24 h after I/R injury. The inflammatory cytokines TNF-α, IL-6, and MCP-1 were measured using ELISA and Real-time qPCR (RT-qPCR). Malondialdehyde (MDA) content and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity were estimated. For the in vitro studies, HK-2 cells were transfected with siMD-2 and then exposed to hypoxia/reoxygenation (H/R). Inflammatory cytokine expression and oxidative stress then were evaluated. We found decreased levels of blood urea nitrogen and creatinine levels after MD-2 silencing. MD-2 deficiency improved histological damage. MD-2 downregulation attenuated levels of inflammatory cytokines. Inhibition of MD-2 resulted in reduced MDA content and increased SOD, CAT, and GPx activity. Loss of function of MD-2 inhibited the H/R-induced production and expression of inflammatory cytokines. MD-2 silencing reduced MDA content after H/R, and MD-2 suppression enhanced SOD, CAT, and GPx activity. MD-2 deficiency also blocked H/R-mediated activation of the TLR4/TRAF6/NF-κB pathway, and pyrrolidinedithiocarbamate (PDTC) pretreatment strengthened the anti-inflammatory and antioxidant damage effects of MD-2 silencing. Taken together, our study revealed that MD-2 deficiency ameliorated renal I/R-induced inflammation and oxidative stress via inhibition of TLR4/TRAF6/NF-κB pathway.


Assuntos
Inflamação/patologia , Antígeno 96 de Linfócito/metabolismo , Estresse Oxidativo/genética , Traumatismo por Reperfusão/fisiopatologia , Lesão Renal Aguda/etiologia , Lesão Renal Aguda/genética , Animais , Linhagem Celular , Inativação Gênica , Humanos , Inflamação/genética , Antígeno 96 de Linfócito/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , RNA Interferente Pequeno/administração & dosagem , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo
7.
Int J Nanomedicine ; 15: 3347-3362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494134

RESUMO

Introduction: Temozolomide (TMZ) is the first-line chemotherapeutic option to treat glioma; however, its efficacy and clinical application are limited by its drug resistance properties. Polo-like kinase 1 (PLK1)-targeted therapy causes G2/M arrest and increases the sensitivity of glioma to TMZ. Therefore, to limit TMZ resistance in glioma, an angiopep-2 (A2)-modified polymeric micelle (A2PEC) embedded with TMZ and a small interfering RNA (siRNA) targeting PLK1 (siPLK1) was developed (TMZ-A2PEC/siPLK). Materials and Methods: TMZ was encapsulated by A2-PEG-PEI-PCL (A2PEC) through the hydrophobic interaction, and siPLK1 was complexed with the TMZ-A2PEC through electrostatic interaction. Then, an angiopep-2 (A2) modified polymeric micelle (A2PEC) embedding TMZ and siRNA targeting polo-like kinase 1 (siPLK1) was developed (TMZ-A2PEC/siPLK). Results: In vitro experiments indicated that TMZ-A2PEC/siPLK effectively enhanced the cellular uptake of TMZ and siPLK1 and resulted in significant cell apoptosis and cytotoxicity of glioma cells. In vivo experiments showed that glioma growth was inhibited, and the survival time of the animals was prolonged remarkably after TMZ-A2PEC/siPLK1 was injected via their tail vein. Discussion: The results demonstrate that the combination of TMZ and siPLK1 in A2PEC could enhance the efficacy of TMZ in treating glioma.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Nanopartículas/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/administração & dosagem , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Temozolomida/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Resultado do Tratamento
8.
Anticancer Res ; 40(6): 3239-3246, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32487618

RESUMO

BACKGROUND/AIM: Non-structural maintenance of chromosomes condensin I complex subunit H (NCAPH) is implicated in correct chromosome condensation and segregation during mitosis. However, the functional role of NCAPH in the pathogenesis of non-small-cell lung cancer (NSCLC) remains unclear. The aim of this study was to elucidate the role of NCAPH in NSCLC cells. MATERIALS AND METHODS: A549 and H1299 NSCLC cells were transfected with small-interfering RNA (siRNA) against NCAPH. Subsequently, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony-formation assay and flow cytometry analysis were performed to reveal the role of NCAPH in NSCLC cells. In addition, migration and invasion assay were also performed. RESULTS: NCAPH knockdown inhibited cell proliferation, induced cell-cycle arrest at G2/M phase, and prevented colony formation, migration and invasion by NSCLC cells. CONCLUSION: NCAPH is involved in NSCLC progression and development, and may be a potential therapeutic target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Invasividade Neoplásica , Proteínas Nucleares/biossíntese , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção , Regulação para Cima
9.
Theranostics ; 10(13): 5932-5942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483428

RESUMO

On the 30th of January 2020, the World Health Organization fired up the sirens against a fast spreading infectious disease caused by a newly discovered Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and gave this disease the name COVID-19. While there is currently no specific treatment for COVID-19, several off label drugs approved for other indications are being investigated in clinical trials across the globe. In the last decade, theranostic nanoparticles were reported as promising tool for efficiently and selectively deliver therapeutic moieties (i.e. drugs, vaccines, siRNA, peptide) to target sites of infection. In addition, they allow monitoring infectious sides and treatment responses using noninvasive imaging modalities. While intranasal delivery was proposed as the preferred administration route for therapeutic agents against viral pulmonary diseases, NP-based delivery systems offer numerous benefits to overcome challenges associated with mucosal administration, and ensure that these agents achieve a concentration that is many times higher than expected in the targeted sites of infection while limiting side effects on normal cells. In this article, we have shed light on the promising role of nanoparticles as effective carriers for therapeutics or immune modulators to help in fighting against COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Nanopartículas/uso terapêutico , Pneumonia Viral/terapia , Nanomedicina Teranóstica/métodos , Administração Intranasal , Antivirais/administração & dosagem , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/genética , Betacoronavirus/imunologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Internalização do Vírus/efeitos dos fármacos
10.
Arch Biochem Biophys ; 690: 108430, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32473132

RESUMO

BACKGROUND: The severity and duration of hypoxia is known to determine apoptotic fate in heart; however, its implication during myocardial infarction (MI) remains unaddressed. Therefore the aim of the study was to determine apoptotic regulation in cardiomyocytes under varied hypoxic intensity and duration and to unravel the role of HIF-1α in such modulation. METHODS: Treatment of cardiomyocytes to varied hypoxic intensity and duration was carried out in vitro, which was mimicked in vivo by dose-dependent Isoproterenol hydrochloride treatment for varied time-points. Myocardium-targeted HIF-1α knockdown in vivo was performed to decipher its role in cardiomyocyte apoptosis under varied stress. Signaling intermediates were analyzed by RT-PCR, immunoblotting and co-immunoprecipitation. DCFDA-based ROS assay, Griess assay for NO release and biochemical assays for estimating caspase activity were performed. RESULTS: Severe stress resulted in cardiomyocyte apoptosis in both shorter and longer time-points. Moderate stress, on the other hand, induced apoptosis only in the shorter time-point which was downregulated in the longer time-point. ROS activity was upregulated under severe hypoxic stress for both time-points and only in the early time-point under moderate hypoxia. Increased ROS accumulation activated ERK-1/2 which stabilized nuclear HIF-1α, promoting bnip3-mediated apoptosis. Stable HSP90-IRE-1 association in such cells caused elevated endoplasmic reticulum stress-related caspase-12 activity. Sustained moderate hypoxia caused decline in ROS activity, but upregulated NFκB-dependent NO generation. NO-stabilized HIF-1α was predominantly cytosolic, since low ROS levels downregulated ERK-1/2 activity, thereby suppressing bnip3 expression. Cytosolic HIF-1α in such cells sequestered HSP90 from IRE-1, downregulating caspase-12 activity due to proteasomal degradation of IRE-1. Accordingly, myocardium-specific in vivo silencing of HIF-1α was beneficial at both time-points under severe stress as also for lesser duration of moderate stress. However, silencing of HIF-1α aggravated apoptotic injury during sustained moderate stress. CONCLUSION: ROS-mediated HIF-1α stabilization promotes cardiomyocyte apoptosis on one hand while NO-mediated stabilization of HIF-1α disrupts apoptosis depending upon the severity and duration of hypoxia. Therefore the outcome of modulation of cardiac HIF-1α activity is regulated by both the severity and duration of ischemic stress.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Infarto do Miocárdio/fisiopatologia , Animais , Apoptose , Caspase 12/metabolismo , Hipóxia Celular , Linhagem Celular , Estresse do Retículo Endoplasmático , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Mutação , Miócitos Cardíacos/citologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Fatores de Tempo , Transfecção
11.
Life Sci ; 255: 117817, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32446845

RESUMO

Glucocorticoids can promote cardiomyocyte maturation. However, the mechanism underlying glucocorticoid-mediated cardiomyocyte maturation is still unclear. Mitophagy plays a key role in cardiomyocyte maturation. Based on current knowledge, our study evaluated the effects of the glucocorticoid dexamethasone (100 nM) on the maturation of mouse embryonic stem cell-derived cardiomyocytes and the role of mitophagy in this maturation. The results showed that dexamethasone can promote embryonic stem cell-derived cardiomyocyte maturation, inhibit cardiomyocyte proliferation, and promote myocardial fiber arrangement. However, dexamethasone did not affect mitochondrial morphology in cardiomyocytes. Glucocorticoid receptor inhibitors (RU486, 1 nM) can inhibit dexamethasone-mediated cardiomyocyte maturation. Additionally, dexamethasone can promote mitophagy in embryonic stem cell-derived cardiomyocytes and induce LC3 and lysosomal aggregation in mitochondria. The inhibition of mitophagy can inhibit the cardiomyocyte maturation effect of dexamethasone. Furthermore, our research found that dexamethasone may mediate the occurrence of mitophagy in cardiomyocytes through Parkin. The siRNA-mediated inhibition of Parkin expression can inhibit mitochondrial autophagy caused by dexamethasone, thus inhibiting cardiomyocyte maturation. Overall, our study found that dexamethasone can promote embryonic stem cell-derived cardiomyocyte maturation through Parkin-mediated mitophagy.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/citologia , RNA Interferente Pequeno/administração & dosagem , Receptores de Glucocorticoides/metabolismo
12.
Yakugaku Zasshi ; 140(5): 611-615, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32378660

RESUMO

Delivery of nucleic acid therapeutics to target body organs requires injection of nanocarriers into the bloodstream. However, as such nanocarriers would also be delivered to non-target organs, low delivery efficiency to target organs and risk of unexpected effects are clear limitations of this technology. We recently applied iontophoresis (IP) for direct delivery of nucleic acid therapeutics to various organs. IP relies on a weak electric current for noninvasive transdermal drug delivery. We found that IP can deliver hydrophilic macromolecules and nanoparticles into the skin. We previously succeeded in transdermal delivery of siRNA, and subsequent knockdown (70%) of target mRNA levels in the skin via IP of siRNA (Int. J. Pharm., 383, 2010, Kigasawa et al.). Moreover, we found that cell signal activation and cleavage of intercellular junctions are induced by IP (J. Biol. Chem., 289, 2014, Hama et al.). We hypothesized that this phenomenon should be observed in not only skin but also other organs, and subsequently carried out IP of nucleic acid therapeutics to various body organs including liver, pancreas and kidney. This technique resulted in delivery of nucleic acid therapeutics into the various target body organs, and subsequent knockdown of target genes. These results suggest that direct delivery to target body organs via non-blood circulatory pathway is possible. This technology may offer a solution to the various limitations associated with current drug delivery systems (DDS).


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Iontoforese , Rim/metabolismo , Fígado/metabolismo , Substâncias Macromoleculares/administração & dosagem , Ácidos Nucleicos/administração & dosagem , Pele/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , RNA Mensageiro , RNA Interferente Pequeno/administração & dosagem
13.
Biochim Biophys Acta Rev Cancer ; 1874(1): 188377, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32418899

RESUMO

Cancer is one of the most prevalent potentially lethal diseases. With the increase in the number of investigations into the uses of nanotechnology, many nucleic acid (NA)-based nanostructures such as small interfering RNA, microRNA, aptamers, and immune adjuvant NA have been applied to treat cancer. Here, we discuss studies on the applications of NA in cancer treatment, recent research trends, and the limitations and prospects of specific NA-mediated gene therapy and immunotherapy for cancer treatment. The NA structures used for cancer therapy consist only of NA or hybrids comprising organic or inorganic substances integrated with functional NA. We also discuss delivery vehicles for therapeutic NA and anti-cancer agents, and recent trends in NA-based gene therapy and immunotherapy against cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Aptâmeros de Nucleotídeos/administração & dosagem , MicroRNAs/administração & dosagem , Nanomedicina/métodos , Neoplasias/terapia , RNA Interferente Pequeno/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/genética , Animais , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Portadores de Fármacos/química , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Terapia Genética/métodos , Humanos , Imunoterapia/métodos , MicroRNAs/genética , Nanopartículas/química , Neoplasias/genética , Neoplasias/imunologia , RNA Interferente Pequeno/genética , Resultado do Tratamento
14.
Life Sci ; 253: 117680, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305524

RESUMO

AIMS: To investigate the effect of lncRNA LCTS5 in the non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: LncRNA profiling was used to identify the novel lncRNA LCTS5. Viability and migration assays were implemented to evaluate the in vitro effect of LCTS5. Transplantation study was designed to investigate the in vivo role. Short hairpin RNA (shRNA) and lentiviral vector were used to alter LCTS5 expression. KEY FINDINGS: We identified a novel lncRNA named LCTS5 whose abundance is dramatically decreased in NSCLC. Overexpressing LCTS5 effectively inhibits viability and migration. Meanwhile, LCTS5 overexpression retards xenograft tumor growth and proliferation. LCTS5 interacts with INO80 to reduce INO80 occupancy at enhancer regions of multiple lung cancer related genes without affecting INO80 decay. SIGNIFICANCE: The newly identified lncRNA LCTS5 impairs NSCLC progression and provides a compelling target for therapeutic intervention during NSCLC treatments.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Progressão da Doença , Humanos , Neoplasias Pulmonares/genética , Camundongos , RNA Interferente Pequeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Life Sci ; 251: 117640, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32259603

RESUMO

AIM: To evaluate the effects of P2X7 receptor blockade on renin-angiotensin system (RAS) in rats with diabetic nephropathy (DN). MAIN METHODS: Wistar rats were unilaterally nephrectomized and received streptozotocin for diabetes mellitus (DM) induction; control animals (CTL) received the drug vehicle. The animals were submitted to P2X7 receptor silencing, forming the group (DM + siRNA). The animals were placed in metabolic cages for data collection and evaluation of renal function; at the end of the protocol, the kidney was removed for analysis of P2X7, renin, angiotensin-converting enzyme (ACE), ACE2, angiotensin, thiobarbituric acid reactive substance levels (TBARS), nitric oxide (NO) and qualitative histological. KEY FINDINGS: The metabolic profile was attenuated in DM + siRNA vs. DM and there was a significant improvement in creatinine, urea and proteinuria levels in the same group. Renin expression was significantly decreased in DM + siRNA vs. DM. ACE and ACE2 were significantly reduced in DM + siRNA vs. DM. TBARS levels were decreased and NO showed an increase in DM + siRNA vs. DM, both significant. All histological alterations were improved in DM + siRNA vs. DM. SIGNIFICANCE: Data have shown that although silencing of the P2X7 receptor did not decrease fasting glucose, it promoted an improvement in the metabolic profile and a significant recovery of renal function, revealing a protective action by the inhibition of this receptor. This effect must have occurred due to the inhibition of RAS and the increase of NO, suggesting that the use of P2X7 receptors inhibitors could be used as adjuvant therapy against DN progression.


Assuntos
Diabetes Mellitus Experimental/terapia , Nefropatias Diabéticas/terapia , Inativação Gênica , Receptores Purinérgicos P2X7/genética , Sistema Renina-Angiotensina/genética , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/fisiopatologia , Masculino , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Wistar , Estreptozocina
16.
Sheng Wu Gong Cheng Xue Bao ; 36(4): 622-631, 2020 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-32347057

RESUMO

Small interfering RNA (siRNA) has been used to treat various skin diseases. However, siRNA is limited in application due to its electronegativity, strong polarity, easy degradation by nuclease and difficulty in breaking through the skin barrier. Therefore, safe and efficient siRNA delivery vector is the premise of effective treatment of skin diseases by siRNA. In recent years, with the deepening of research on siRNA, great progress has been made in the development of delivery systems based on lipids, polymers, peptides and nanoparticles, some new transdermal delivery vectors of siRNA have emerged, such as liposomes, dendrimers, cell penetrating peptides, and spherical nucleic acid nanoparticles. This review will focus on the recent advance in siRNA transdermal delivery vectors.


Assuntos
Administração Cutânea , RNA Interferente Pequeno , Dermatopatias , Vetores Genéticos/administração & dosagem , Humanos , RNA Interferente Pequeno/administração & dosagem , Dermatopatias/terapia
17.
Int J Nanomedicine ; 15: 2323-2335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308384

RESUMO

Background: Drug resistance often occurs in the treatment of gastric cancer, which is the main cause of poor prognosis of chemotherapy. c-Met is overexpressed in a variety of tumors including gastric cancer, often leads to poor prognosis of gastric cancer, therefore regarded as a key target for the treatment of gastric cancer. This study aims to determine whether exosomes with si-c-Met could inhibit the resistance to cisplatin in gastric cancer (GC). Methods: The protein expression levels of c-Met in tumor tissues and normal tissues of patients were evaluated by Western blot (WB) and immunohistochemistry (IHC), HEK293T cells were transfected with si-c-Met, exosomes were isolated, then co-cultured with gastric cancer cell lines and confirmed that it was incorporated into the cells by transmitted electron microscopy. Functional experiments were performed to examine the inhibitory effect of exo-si-c-Met on gastric cancer cell resistance in vitro, and xenograft models were used to reveal that exo-si-c-Met can enhance the sensitivity of tumors to cisplatin in vivo. Results: High expression of c-Met is associated with poor prognosis of GC patients. si-c-Met significantly inhibited migration, invasion and promoted apoptosis in vitro, which indicated that si-c-Met sensitizes the response of gastric cancer cells to cisplatin. Exo-si-c-Met sharply reduced c-Met expression in gastric cancer cells and reverse the resistance to cisplatin in vitro and in vivo. Conclusion: Our results indicate that exo-si-c-Met can inhibit the invasion and migration of gastric cancer cells and promote apoptosis in vitro and inhibit tumor growth in vivo, reversing the resistance to cisplatin in gastric cancer.


Assuntos
Cisplatino/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/genética , RNA Interferente Pequeno/administração & dosagem , Neoplasias Gástricas/tratamento farmacológico , c-Mer Tirosina Quinase/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , c-Mer Tirosina Quinase/metabolismo
18.
Int J Nanomedicine ; 15: 2379-2390, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308389

RESUMO

Background: Osteoarthritis (OA) is the most common type of joint disease associated with cartilage breakdown. However, the role played by mitochondrial dysfunction in OA remains inadequately understood. Therefore, we investigated the role played by p66shc during oxidative damage and mitochondrial dysfunction in OA and the effects of p66shc downregulation on OA progression. Methods: Monosodium iodoacetate (MIA), which is commonly used to generate OA animal models, inhibits glycolysis and biosynthetic processes in chondrocytes, eventually causing cell death. To observe the effects of MIA and poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles, histological analysis, immunohistochemistry, micro-CT, mechanical paw withdrawal thresholds, quantitative PCR, and measurement of oxygen consumption rate and extracellular acidification rate were conducted. Results: p-p66shc was highly expressed in cartilage from OA patients and rats with MIA-induced OA. MIA caused mitochondrial dysfunction and reactive oxygen species (ROS) production, and the inhibition of p66shc phosphorylation attenuated MIA-induced ROS production in human chondrocytes. Inhibition of p66shc by PLGA-based nanoparticles-delivered siRNA ameliorated pain behavior, cartilage damage, and inflammatory cytokine production in the knee joints of MIA-induced OA rats. Conclusion: p66shc is involved in cartilage degeneration in OA. By delivering p66shc-siRNA-loaded nanoparticles into the knee joints with OA, mitochondrial dysfunction-induced cartilage damage can be significantly decreased. Thus, p66shc siRNA PLGA nanoparticles may be a promising option for the treatment of OA.


Assuntos
Mitocôndrias/patologia , Osteoartrite/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Cartilagem Articular/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Ácido Iodoacético/toxicidade , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/uso terapêutico , Osteoartrite/induzido quimicamente , Osteoartrite/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , RNA Interferente Pequeno/administração & dosagem , Ratos Sprague-Dawley
19.
Prostate ; 80(6): 453-462, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134535

RESUMO

BACKGROUND: Docetaxel is the preferred chemotherapeutic agent for hormone-refractory prostate cancer (PC) patients. However, patients eventually develop docetaxel resistance, and no effective treatment options are available for them. OBJECTIVE: We aimed to establish docetaxel resistance in castration-resistant prostate cancer (CRPC) cell lines (DU145/TXR, PC-3/TXR, and CWR22/TXR) and characterized transcriptional changes upon acquiring resistance to the docetaxel. METHODS: Human PC cells (DU145, PC-3, CWR22) and all docetaxel-resistant cells were maintained in Roswell Park Memorial Institute Medium (RPMI) 1640 media supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. ABCB1 was detected by using both parental and docetaxel-resistant CRPCs prepared for flow cytometry. For the evaluation of tumor-suppressive effects under each chemotherapeutic agent, subcutaneous xenografts of DU145 or DU145/TXR were implanted at the mouse flank. RESULTS: The P-glycoprotein-encoding gene ABCB1 was distinctively upregulated in the resistant cells, and its overexpression played an essential role in docetaxel resistance in CRPC. When tested for the cytotoxicity of gemcitabine, another option for chemotherapy, the docetaxel-resistant cells were shown to become sensitive to the drug, implying additional phenotypic transformation in the docetaxel-resistant cells. Studies using xenograft animal models demonstrated that the growth of tumors composed of both docetaxel-sensitive and docetaxel-resistant cells was deterred most profoundly when docetaxel and gemcitabine were administered together. CONCLUSION: This study suggests that when a drug develops therapeutic resistance, sensitivity tests could be another option, ultimately providing insight into a novel alternative clinical strategy.


Assuntos
Desoxicitidina/análogos & derivados , Docetaxel/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transcriptoma , Transfecção , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Proc Natl Acad Sci U S A ; 117(14): 8126-8134, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205443

RESUMO

We recently reported that social choice-induced voluntary abstinence prevents incubation of methamphetamine craving in rats. This inhibitory effect was associated with activation of protein kinase-Cδ (PKCδ)-expressing neurons in central amygdala lateral division (CeL). In contrast, incubation of craving after forced abstinence was associated with activation of CeL-expressing somatostatin (SOM) neurons. Here we determined the causal role of CeL PKCδ and SOM in incubation using short-hairpin RNAs against PKCδ or SOM that we developed and validated. We injected two groups with shPKCδ or shCtrlPKCδ into CeL and trained them to lever press for social interaction (6 d) and then for methamphetamine infusions (12 d). We injected two other groups with shSOM or shCtrlSOM into CeL and trained them to lever press for methamphetamine infusions (12 d). We then assessed relapse to methamphetamine seeking after 1 and 15 abstinence days. Between tests, the rats underwent either social choice-induced abstinence (shPKCδ groups) or homecage forced abstinence (shSOM groups). After test day 15, we assessed PKCδ and SOM, Fos, and double-labeled expression in CeL and central amygdala medial division (CeM). shPKCδ CeL injections decreased Fos in CeL PKCδ-expressing neurons, increased Fos in CeM output neurons, and reversed the inhibitory effect of social choice-induced abstinence on incubated drug seeking on day 15. In contrast, shSOM CeL injections decreased Fos in CeL SOM-expressing neurons, decreased Fos in CeM output neurons, and decreased incubated drug seeking after 15 forced abstinence days. Our results identify dissociable central amygdala mechanisms of abstinence-dependent expression or inhibition of incubation of craving.


Assuntos
Núcleo Central da Amígdala/fisiologia , Fissura/fisiologia , Comportamento de Procura de Droga/fisiologia , Relações Interpessoais , Animais , Comportamento Animal , Modelos Animais de Doenças , Humanos , Masculino , Metanfetamina/administração & dosagem , Metanfetamina/efeitos adversos , Neurônios/metabolismo , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Sprague-Dawley , Autoadministração , Somatostatina/genética , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA