Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178.646
Filtrar
1.
Cancer Sci ; 111(1): 209-218, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31724785

RESUMO

Analysis of anticancer immunity aids in assessing the prognosis of patients with breast cancer. From 250 operated breast cancers, we focused on serum levels of C-C motif chemokine ligand 5 (CCL5), which is involved in cancer immune reactions. Serum levels of CCL5 were measured using a cytometric bead-based immunoassay kit and CCL5 expression in cancer cells was determined using immunohistochemical staining. In addition, mRNA in cancer and stromal cells was analyzed by microdissection and comparison with the public dataset. Disease-free survival (DFS) of patients with high CCL5 levels (cut-off, 13.87 ng/mL; n = 192) was significantly better than those with low CCL5 levels (n = 58; hazard ratio, 0.20; 95% confidence interval, 0.10-0.39; P < .0001). An improved overall survival was observed in patients with high CCL5 levels compared to those with low CCL5 levels (P = .024). On the contrary, high immunohistochemical expression of CCL5 in cancer cells was significantly associated with decreased DFS. As serum CCL5 levels did not correlate with CCL5 expression in cancer cells and the relative expression of mRNA CCL5 was elevated in stromal cells in relation to cancer cells, serum CCL5 might be derived not from cancer cells, but from stromal cells. Expression of CCL5 in serum, but not in cancer cells, might contribute to improved patient prognosis mediating through not only immune reaction, but through other mechanisms. Determination of circulating CCL5 levels could be useful for predicting patient prognosis.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/mortalidade , Quimiocina CCL5/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/metabolismo
2.
J Photochem Photobiol B ; 202: 111680, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31810038

RESUMO

Tissue engineering and stem cell rehabilitation are the hopeful aspects that are being investigated for the management of Myocardial Infarction (MI); cardiac patches have been used to start myocardial rejuvenation. In this study, we engineered p-phenylenediamine surface functionalized (modif-CQD) into the Silk fibroin/PLA (SF/PLA) nanofibrous bioactive scaffolds with improved physico-chemical abilities, mechanical and cytocompatibility to cardiomyocytes. The micrograph results visualized the morphological improved spherical modif-CQD have been equivalently spread throughout the SF/PLA bioactive cardiac scaffolds. The fabricated CQD@SF/PLA nanofibrous bioactive scaffolds were highly porous with fully consistent pores; effectively improved young modulus and swelling asset for the suitability and effective implantation efficacy. The scaffolds were prepared with rat cardiomyocytes and cultured for up to 7 days, without electrical incentive. After 7 days of culture, the scaffold pores all over the construct volume were overflowing with cardiomyocytes. The metabolic activity and viability of the cardiomyocytes in CQD@SF/PLA scaffolds were significantly higher than cardiomyocytes in Silk fibroin /PLA scaffolds. The integration of CQD also influenced greatly and increases the expression of cardiac-marker genes. The results of the present investigations evidently recommended that well-organized cardiac nanofibrous scaffold with greater cardiac related mechanical abilities and biocompatibilities for cardiac tissue engineering and nursing care applications.


Assuntos
Fibroínas/química , Nanofibras/química , Pontos Quânticos/química , Engenharia Tecidual , Tecidos Suporte/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Carbono/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Raios Infravermelhos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Nanofibras/toxicidade , Poliésteres/química , RNA Mensageiro/metabolismo , Ratos , Troponina C/genética , Troponina C/metabolismo
3.
Gene ; 728: 144279, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31821871

RESUMO

AIM OF THE STUDY: Chronic glomerulonephritis (CGN) is the most common form of primary glomerular disease. Qi Teng Xiao Zhuo granules have been proposed as a prescription of traditional Chinese medicine (TCM) for treatment of CGN, however,the comprehensive molecular mechanism underlying this therapeutic effectremains unclear to date. Our study aimed to evaluate and analyze the possible roles and molecular mechanisms of Qi Teng Xiao Zhuo granule-mediated treatment of CGN induced by adriamycin in rats. MATERIALS AND METHODS: RNA-sequencing and real-time polymerase chain reaction (RT-PCR) were applied to identify specifically expressed long noncoding RNAs (lncRNAs) in glomerular tissues of rats from the control group, adriamycin-induced group, and Qi Teng Xiao Zhuo granules group (n = 3). Differentially expressed lncRNAs and mRNAs (messengerRNAs) were screened out among the 3 groups. Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for mRNAs. LncRNA-mRNA co-expression network was constructed to analyse for the genes. The protein-protein interaction (PPI) network was visualized. RESULTS: A total of 473 significantly up and down-regulated lncRNAs, 753 up and down-regulated mRNAs were identified. Additionally, it is worth noting that TOP2a (topoisomerase (DNA) II alpha), with the highest connectivity degree in PPI network, was enriched in variouskinds of pathways. Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between lncRNAs and mRNAs. Ten lncRNAs, NONRATT009275.2, NONRATT025409.2, NONRATT025419.2, MSTRG.7681.1, ENSRNOT00000084373, NONRATT000512.2, NONRATT006734.2, ENSRNOT00000084386, NONRATT021738.2, ENSRNOT00000084080, were selected to analyse the relationship between LncRNAs and Qi Teng Xiao Zhuo granules via the CNC network (Coding-non-coding gene co-expression networks) and GO analysis. Real-time PCR results confirmed that the six lncRNAs were specifically expressed in the Qi Teng Xiao Zhuo granules rats. CONCLUSIONS: The ten lncRNAs might play important roles in the Qi Teng Xiao Zhuo granules treatment of CGN. Key genes, such as Ptprc (protein tyrosine phosphatase, receptor type, C), TOP2a, Fos (FBJ osteosarcoma oncogene), Myc (myelocytomatosis oncogene), etc, may be crucial biomarkers for Qi Teng Xiao Zhuo granules.


Assuntos
Biomarcadores/análise , Medicamentos de Ervas Chinesas/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glomerulonefrite/genética , RNA Longo não Codificante/genética , Animais , Doença Crônica , Glomerulonefrite/tratamento farmacológico , Masculino , Mapas de Interação de Proteínas , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Cancer Sci ; 111(1): 160-174, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31755615

RESUMO

The EP4 prostanoid receptors are one of four receptor subtypes for prostaglandin E2 (PGE2 ). Therefore, EP4 may play an important role in cancer progression. However, little information is available regarding their function per se, including migration and the cellular signaling pathway of EP4 in oral cancer. First, we found that mRNA and protein expression of EP4 was abundantly expressed in human-derived tongue squamous cell carcinoma cell lines HSC-3 and OSC-19. The EP4 agonist (ONO-AE1-437) significantly promoted cell migration in HSC-3 cells. In contrast, knockdown of EP4 reduced cell migration. Furthermore, we confirmed that knockdown of EP4 suppressed metastasis of oral cancer cells in the lungs of mice in vivo. Therefore, we focused on the mechanism of migration/metastasis in EP4 signaling. Interestingly, EP4 agonist significantly induced intracellular Ca2+ elevation not in only oral cancer cells but also in other cells, including normal cells. Furthermore, we found that EP4 activated PI3K and induced Ca2+ influx through Orai1 without activation of store depletion and stromal interaction molecule 1 (STIM1). Immunoprecipitation showed that EP4 formed complexes with Orai1 and TRPC1, but not with STIM. Moreover, the EP4 agonist ONO-AE1-437 phosphorylated ERK and activated MMP-2 and MMP-9. Knockdown of Orai1 negated EP4 agonist-induced ERK phosphorylation. Taken together, our data suggested that EP4 activated PI3K and then induced Ca2+ influx from the extracellular space through Orai1, resulting in ERK phosphorylation and promoting cell migration. Migration is regulated by EP4/PI3K/Orai1 signaling in oral cancer.


Assuntos
Movimento Celular/fisiologia , Proteína ORAI1/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Cálcio/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Fosforilação/fisiologia , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Língua/metabolismo
5.
Chemosphere ; 238: 124650, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31472347

RESUMO

Arsenic (As) has become a major problem in maintaining the environment and human health due to its wide application in the production of agriculture and industry. Many studies indicate that As can affect spermatogenesis process and lower sperm quality. However, the undergoing molecular mechanism is unclear. For this, forty-eight 8-week old adult male mice were divided into four groups of twelve each, which were administrated to 0, 0.2, 2, 20 ppm As2O3 in their drinking water respectively for six months. The results showed that As treatment reduced sperm counts and increased the sperm malformation ratio of mice. Interestingly, both the amounts of round and elongated spermatids, and the ratios of spermatids elongation were decreased significantly by As exposure. Furthermore, the structure of Chromatoid Body (CB) which presents a typical nebulous shape in round spermatids after spermatogenesis arrested, and the mRNA expression levels of gene TDRD1, TDRD6 and TDRD7 related to CB were changed by arsenic. Again, the mRNA and protein expression levels of the markers DDX25 and CRM1 in haploid periods of spermatogenesis and the associated proteins HMG2, PGK2, and H4 with DDX25 regulation were declined significantly with As treatment. Taken together; it reveals that As interferes with spermatogenesis by disorganizing the elongation of spermatids. H4, HMG2 and PGK2 are regulated by DDX25 which interacts with CRM1 and may play a vital role in spermatogenesis disorder induced by As exposure, which maybe provides one of the underlying mechanisms for As-induced male reproductive toxicity.


Assuntos
Arsênico/toxicidade , Espermátides/patologia , Espermatogênese/efeitos dos fármacos , Envelhecimento , Animais , Proteínas de Ciclo Celular/genética , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , Masculino , Camundongos , RNA Mensageiro/metabolismo , Espermátides/efeitos dos fármacos , Espermatozoides/metabolismo
6.
Arch Insect Biochem Physiol ; 103(1): e21636, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31612557

RESUMO

As a member of the low-density lipoprotein receptor (LDLR) superfamily, vitellogenin (Vg) receptor (VgR) is responsible for the uptake of Vg into developing oocytes and is a potential target for pest control. Here, a full-length VgR complementary DNA (named as CsVgR) was isolated and characterized in the rice stem borer, Chilo suppressalis. The composite CsVgR gene contained an open reading frame of 5,484 bp encoding a protein of 1,827 amino acid residues. Structural analysis revealed that CsVgR contained two ligand-binding domains (LBDs) with four Class A (LDLRA ) repeats in LBD1 and seven in LBD2, which was structurally different from most non-Lepidopteran insect VgRs having five repeats in LBD1 and eight in LBD2. The developmental expression analysis showed that CsVgR messenger RNA expression was first detectable in 3-day-old pupae, sharply increased in newly emerged female adults, and reached a peak in 2-day-old female adults. Consistent with most other insects VgRs, CsVgR was exclusively expressed in the ovary. Notably, injection of dsCsVgR into late pupae resulted in fewer follicles in the ovarioles as well as reduced fecundity, suggesting a critical role of CsVgR in female reproduction. These results may contribute to the development of RNA interference-mediated disruption of reproduction as a control strategy of C. suppressalis.


Assuntos
Proteínas do Ovo/genética , Mariposas/genética , Receptores de Superfície Celular/genética , Animais , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Filogenia , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Análise de Sequência de Proteína
7.
Chemosphere ; 239: 124747, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31514003

RESUMO

BACKGROUNDS: Polychlorinated biphenyls are persistent environmental pollutants associated with the onset of non-alcoholic fatty liver disease in humans, but there is limited information on the underlying mechanism. In the present study, we investigated the alterations in gene expression profiles in normal human liver cells L-02 following exposure to 2, 3, 3', 4, 4', 5 - hexachlorobiphenyl (PCB 156), a potent compound that may induce non-alcoholic fatty liver disease. METHODS: The L-02 cells were exposed to PCB 156 for 72 h and the contents of intracellular triacylglyceride and total cholesterol were subsequently measured. Microarray analysis of mRNAs and long non-coding RNAs (lncRNAs) in the cells was also performed after 3.4 µM PCB 156 treatment. RESULTS: Exposure to PCB 156 (3.4 µM, 72 h) resulted in significant increases of triacylglyceride and total cholesterol concentrations in L-02 cells. Microarray analysis identified 222 differentially expressed mRNAs and 628 differentially expressed lncRNAs. Gene Ontology and pathway analyses associated the differentially expressed mRNAs with metabolic and inflammatory processes. Moreover, lncRNA-mRNA co-expression network revealed 36 network pairs comprising 10 differentially expressed mRNAs and 34 dysregulated lncRNAs. The results of bioinformatics analysis further indicated that dysregulated lncRNA NONHSAT174696, lncRNA NONHSAT179219, and lncRNA NONHSAT161887, as the regulators of EDAR, CYP1B1, and ALDH3A1 respectively, played an important role in the PCB 156-induced lipid metabolism disorder. CONCLUSION: Our findings provide an overview of differentially expressed mRNAs and lncRNAs in L-02 cells exposed to PCB 156, and contribute to the field of polychlorinated biphenyl-induced non-alcoholic fatty liver disease.


Assuntos
Fígado/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Transcriptoma/efeitos dos fármacos , Aldeído Desidrogenase/genética , Linhagem Celular , Colesterol/metabolismo , Citocromo P-450 CYP1B1/genética , Receptor Edar/genética , Perfilação da Expressão Gênica , Humanos , Fígado/citologia , Fígado/fisiologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante , RNA Mensageiro/metabolismo , Testes de Toxicidade , Triglicerídeos/metabolismo
8.
J Clin Pathol ; 73(1): 14-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31434698

RESUMO

AIMS: Untranslated regions (UTRs) play an important role in post-transcriptional regulation of gene expression, including by modulating messenger RNA (mRNA) transport out of the nucleus, translation efficiency, subcellular localisation and stability. Any mutation in this region could alter the stability of mRNA and thereby affect protein synthesis. We analysed if a mutation located in the α complex protected region of the α1 globin gene could cause non-deletional α-thalassaemia by affecting post-transcriptional stability (mRNA stability). METHODS: A total of 14 patients without anaemia, normal or slight microcytosis and hypochromia (medium concentration haemoglobin [MCH] <27 pg) were studied. Haemoglobin subtypes were screened using capillary zone electrophoresis and ion-exchange high-performance liquid chromatography (VARIANT II ß-Thalassaemia Short Program). The most common α-globin mutations were identified by multiplex PCR (Alpha-Globin StripAssay kit) and the molecular characterisation by automatic sequencing of alpha globin genes. RESULTS: All of them shown a novel transversion mutation in nt 778 (C>A), which is located in the 3' UTR in the α complex protected region [HBA1: c.*+46C>A]. CONCLUSIONS: This mutation is in the αRNAmin binding site, so a single nucleotide substitution in this region can decrease mRNA stability by potentially compromising the binding of α-complex protein to αRNAmin, favouring the decay of α-globin mRNA via erythroid cell-enriched endoribonuclease cleavage. In this case, it is a non-deletional α-thalassaemia. However, in silico and empirical studies predicted that it could be a silent polymorphism. Functional studies should be carried out to confirm whether it is a pathological mutation or a silent polymorphism.


Assuntos
Regiões 3' não Traduzidas , Mutação , Polimorfismo Genético , Estabilidade de RNA , RNA Mensageiro/genética , alfa-Globinas/genética , Talassemia alfa/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Análise Mutacional de DNA/métodos , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Fenótipo , RNA Mensageiro/metabolismo , Fatores de Risco , alfa-Globinas/metabolismo , Talassemia alfa/sangue , Talassemia alfa/diagnóstico
9.
Anticancer Res ; 39(12): 6723-6730, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31810937

RESUMO

BACKGROUND/AIM: Phosphoserine aminotransferase 1 (PSAT1) is an enzyme implicated in serine biosynthesis, and its overexpression has been linked to cancer cell proliferation. Therefore, targeting PSAT1 is considered to be an anticancer strategy. MATERIALS AND METHODS: The viability of non-small cell lung cancer (NSCLC) cells was measured by MTT assay. Protein and mRNA expression were determined by western blot and reverse transcription polymerase chain reaction, respectively. RESULTS: Glutamine-limiting conditions were generated through glutamine deprivation or CB-839 treatment, which induced PSAT1 expression in NSCLC cells. PSAT1 expression induced by glutamine-limiting conditions was regulated by activating transcription factor 4. Knock-down of PSAT1 enhanced the sensitivity of NSCLC cells to glutamine-limiting conditions. Interestingly, ionizing radiation induced PSAT1 expression, and knocking down PSAT1 increased cell sensitivity to ionizing radiation. CONCLUSION: Inhibiting PSAT1 might aid in the treatment of lung cancer, and PSAT1 may be a therapeutic target for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Transaminases/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Benzenoacetamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Introdução de Genes , Glutaminase/antagonistas & inibidores , Glutamina/antagonistas & inibidores , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , RNA Mensageiro/metabolismo , Tolerância a Radiação , Tiadiazóis/farmacologia , Transaminases/genética
10.
Adv Exp Med Biol ; 1203: 1-31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811629

RESUMO

mRNA is the "hermes" of gene expression as it carries the information of a protein-coding gene to the ribosome. Already during its synthesis, the mRNA is bound by mRNA-binding proteins that package the mRNA into a messenger ribonucleoprotein particle (mRNP). This mRNP assembly is important for mRNA stability and nuclear mRNA export. It also often regulates later steps in the mRNA lifetime such as translation and mRNA degradation in the cytoplasm. Thus, mRNP composition and accordingly the assembly of nuclear mRNA-binding proteins onto the mRNA are of crucial importance for correct gene expression. Here, we review our current knowledge of the mechanism of co-transcriptional mRNP assembly and nuclear mRNA export. We introduce the proteins involved and elaborate on what is known about their functions so far. In addition, we discuss the importance of regulated mRNP assembly in changing environmental conditions, especially during stress. Furthermore, we examine how defects in mRNP assembly cause diseases and how viruses exploit the host's nuclear mRNA export pathway. Finally, we summarize the questions that need to be answered in the future.


Assuntos
Transporte de RNA , Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas
11.
Adv Exp Med Biol ; 1203: 33-81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811630

RESUMO

The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined. In this chapter, we will begin by outlining the mechanism by which most mRNAs are homeostatically exported ("bulk mRNA export"), involving the recruitment of the NXF1/TAP export receptor by the Aly/REF and THOC5 components of the TREX complex. We will then examine various mechanisms by which this pathway may be controlled, modified, or bypassed in order to promote the export of subset(s) of cellular mRNAs, which include the use of metazoan-specific orthologs of bulk mRNA export factors, specific cis RNA motifs which recruit mRNA export machinery via specific trans-acting-binding factors, posttranscriptional mRNA modifications that act as "inducible" export cis elements, the use of the atypical mRNA export receptor, CRM1, and the manipulation or bypass of the nuclear pore itself. Finally, we will discuss major outstanding questions in the field of mRNA export heterogeneity and outline how cutting-edge experimental techniques are providing new insights into and tools for investigating the intriguing field of mRNA export heterogeneity.


Assuntos
Transporte de RNA , RNA Mensageiro , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo
12.
Adv Exp Med Biol ; 1203: 133-148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811633

RESUMO

The noncoding elements of an mRNA influence multiple aspects of its fate. For example, 3'-UTRs serve as physical and sequence-based information hubs that direct the time, place, and level of translation of the protein encoded in cis, but often also have additional roles in trans. Understanding the information content of 3'-UTRs has been a challenge. Bioinformatic searches for motifs, such as those that encode the polyadenylation signal or microRNA seed regions, are simple enough, but rarely do these inferred positions in genomes correlate well with the actual sites chosen by the relevant nanomachines in living cells. This is almost certainly due to three-dimensional complexity of RNA, the physical states of which are recognized by RNA-binding proteins that serve to read and interpret the information content. Here, we follow the 3'-UTR-mediated posttranscriptional metabolism of mRNA in the germline of the nematode worm Caenorhabditis elegans. While many areas still require the clarification only detailed fundamental research can provide, this model system can serve as a basis of 3'-mediated regulatory control for elaboration in more complex metazoan systems.


Assuntos
Regiões 3' não Traduzidas , Regulação da Expressão Gênica , RNA Mensageiro , Regiões 3' não Traduzidas/genética , Motivos de Aminoácidos , Animais , Caenorhabditis elegans , Poliadenilação , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Tempo
13.
Adv Exp Med Biol ; 1203: 149-164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811634

RESUMO

Most eukaryotic mRNAs maintain a 5' cap structure and 3' poly(A) tail, cis-acting elements that are often separated by thousands of nucleotides. Nevertheless, multiple paradigms exist where mRNA 5' and 3' termini interact with each other in order to regulate mRNA translation and turnover. mRNAs recruit translation initiation factors to their termini, which in turn physically interact with each other. This physical bridging of the mRNA termini is known as the "closed loop" model, with years of genetic and biochemical evidence supporting the functional synergy between the 5' cap and 3' poly(A) tail to enhance mRNA translation initiation. However, a number of examples exist of "non-canonical" 5'-3' communication for cellular and viral RNAs that lack 5' cap structures and/or poly(A) tails. Moreover, in several contexts, mRNA 5'-3' communication can function to repress translation. Overall, we detail how various mRNA 5'-3' interactions play important roles in posttranscriptional regulation, wherein depending on the protein factors involved can result in translational stimulation or repression.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro , Células Eucarióticas , Regulação da Expressão Gênica , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo
14.
Adv Exp Med Biol ; 1203: 165-194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811635

RESUMO

Messenger RNA (mRNA) is a fundamental intermediate in the expression of proteins. As an integral part of this important process, protein production can be localized by the targeting of mRNA to a specific subcellular compartment. The subcellular destination of mRNA is suggested to be governed by a region of its primary sequence or secondary structure, which consequently dictates the recruitment of trans-acting factors, such as RNA-binding proteins or regulatory RNAs, to form a messenger ribonucleoprotein particle. This molecular ensemble is requisite for precise and spatiotemporal control of gene expression. In the context of RNA localization, the description of the binding preferences of an RNA-binding protein defines a motif, and one, or more, instance of a given motif is defined as a localization element (zip code). In this chapter, we first discuss the cis-regulatory motifs previously identified as mRNA localization elements. We then describe motif representation in terms of entropy and information content and offer an overview of motif databases and search algorithms. Finally, we provide an outline of the motif topology of asymmetrically localized mRNA molecules.


Assuntos
Biologia Computacional , RNA Mensageiro , Proteínas de Ligação a RNA , Algoritmos , Motivos de Aminoácidos , Bases de Dados como Assunto , RNA Mensageiro/metabolismo
15.
Adv Exp Med Biol ; 1203: 195-245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811636

RESUMO

In recent years, cytoplasmic RNA granules, which are micron-sized membrane-less entities formed by phase separation, have progressively gained recognition as essential constituents of neuronal RNA metabolism. Stress granules form under adverse growth conditions in order to protect nontranslating mRNA, shift translation toward the production of prosurvival factors, as well as potentially serve as hubs for intracellular signaling. In contrast, processing bodies play a role in RNA degradation in both stressed and homeostatic conditions. Lastly, transport granules permit, as their name indicates, the transport of mRNA within neurons. All of these granule subtypes are required for proper neuronal function; thus, impairments in their regulation and/or composition are expected to be deleterious. Here, we review these cytoplasmic RNA granule subtypes and discuss how they have been implicated in some neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , RNA Mensageiro , Grânulos Citoplasmáticos/metabolismo , Humanos , Doenças Neurodegenerativas/fisiopatologia , RNA Mensageiro/metabolismo
16.
Adv Exp Med Biol ; 1203: 247-284, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811637

RESUMO

Cells are complex assemblies of molecules organized into organelles and membraneless compartments, each playing important roles in ensuring cellular homeostasis. The different steps of the gene expression pathway take place within these various cellular compartments, and studying gene regulation and RNA metabolism requires incorporating the spatial as well as temporal separation and progression of these processes. Microscopy has been a valuable tool to study RNA metabolism, as it allows the study of biomolecules in the context of intact individual cells, embryos or tissues, preserving cellular context often lost in experimental approaches that require the collection and lysis of cells in large numbers to obtain sufficient material for different types of assays. Indeed, from the first detection of RNAs and ribosomes in cells to today's ability to study the behaviour of single RNA molecules in living cells, or the expression profile and localization of hundreds of mRNA simultaneously in cells, constant effort in developing tools for microscopy has extensively contributed to our understanding of gene regulation. In this chapter, we will describe the role various microscopy approaches have played in shaping our current understanding of mRNA metabolism and outline how continuous development of new approaches might help in finding answers to outstanding questions or help to look at old dogmas through a new lens.


Assuntos
Precursores de RNA , RNA Mensageiro , Animais , Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Imagem Molecular , RNA Mensageiro/metabolismo
17.
Cell Physiol Biochem ; 53(6): 948-960, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31820855

RESUMO

BACKGROUND/AIMS: HOTAIR is a long non-coding RNA that promotes the development of human cancer. TET1 enzyme is involved in DNA demethylation by oxidation of 5-methylcytocine and it is considered a tumor suppressor in some types of cancer. HOTAIR and TET1 are involved in modulation of the Wnt/ß-catenin signaling pathway, but their role in cervical cancer remains to be elucidated. The aim of this work was to analyze the effect of HOTAIR in TET1 expression, Wnt/ß-catenin signaling, and expression, methylation and hidroxymethylation of some negative regulators of this pathway in HeLa cells. METHODS: HOTAIR and TET expression were analyzed by RT-qPCR and western blot. The HOTAIR knockdown was done with DsiRNA and the activity of the Wnt/ß-catenin signaling pathway through luciferase assays and ß-catenin nuclear translocation. The mRNA levels of SNAIL, EDN3, CYCD1, SPRY2 (targets of Wnt/ß-catenin pathway) PCDH10, SOX17, AJAP1, and MAGI2 (negative regulators of Wnt/ß-catenin pathway) were evaluated by RT-qPCR. The DNA methylation and hidroxymethylation of negative regulators of the Wnt/ß-catenin pathway were evaluated by methylation-specific PCR and chemical modification, followed by digestion and quantitative PCR. RESULTS: HOTAIR knockdown in HeLa cells decreased the activity of Wnt/ß-catenin signaling pathway. It increased the mRNA levels of Wnt/ ß-catenin negative regulators through a decrease in their promoter's methylation pattern. TET1 enzyme was also down-regulated in HOTAIR knockdown cells. CONCLUSION: Our study suggests a mechanism in which HOTAIR promotes the over-activation of Wnt/ß-catenin signaling pathway by downregulation of PCDH10, SOX17, AJAP1 and MAGI2 and also TET.


Assuntos
RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metilação de DNA , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Células HeLa , Humanos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
18.
Sheng Li Xue Bao ; 71(6): 917-934, 2019 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-31879747

RESUMO

Exosome is a kind of nanoscale-size extracellular vesicles secreted by the means of cell active stimulation with outer membrane structure of vacuoles corpuscle. It can carry and transfer a lot of biological molecules, such as DNA fragments, circular RNA (circRNA), messenger RNA (mRNA), microRNA (miRNA), functional proteins, transcription factors, etc., so as to achieve the goal of information transmission between cells. The relationship between exosomes and diabetes has received extensive attention in recent years. The exosomes play an important role in insulin sensitivity, glucose homeostasis and vascular endothelial function. This paper reviews the role of exosomes in the occurrence and development of diabetes and its complications, and discusses the role and prospect of exosomes as a target for diabetes treatment and its role in the diagnosis and treatment of diabetes.


Assuntos
Diabetes Mellitus , Exossomos , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus/terapia , Exossomos/metabolismo , Humanos , Resistência à Insulina/fisiologia , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
19.
Medicine (Baltimore) ; 98(51): e17944, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31860949

RESUMO

To investigate the difference in messenger ribonucleic acid (mRNA) and protein expression of growth arrest DNA damage-inducible gene 45α (GADD45α), mouse double minute 2 homolog (MDM2), and P73 in cancer and cancer-adjacent tissues in patients with non-small-cell lung carcinoma (NSCLC).We compared the mRNA expression of GADD45α and MDM2 and the protein expression of GADD45α, MDM2, and P73 in lung cancer and cancer-adjacent tissues in NSCLC patients by quantitative real-time PCR, immunohistochemistry (IHC), and Western Blot (WB). We analyzed GADD45α, MDM2, and P73 expression in patients with different pathological types of NSCLC, and the correlation of these genes with gender, smoking history, and TNM/T stages.IHC results suggested that MDM2 protein expression significantly increased in cancer tissues in female patients (P = .01), but not in male patients. In addition, WB results indicated that P73 protein expression significantly decreased in cancer tissues in patients with adenocarcinoma (P = .03), but not squamous carcinoma.MDM2 and P73 protein levels were differentially regulated in cancer and cancer-adjacient tissues in patients with sub types of NSCLC. There was no significant difference in GADD45α expression between cancer and cancer-adjacent tissues in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Tumoral p73/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Idoso , Animais , Biópsia por Agulha , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Dano ao DNA/genética , Seguimentos , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Camundongos , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência
20.
BMC Bioinformatics ; 20(1): 553, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694521

RESUMO

BACKGROUND: Tea is the oldest and among the world's most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. RESULTS: We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. CONCLUSIONS: The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.


Assuntos
Camellia sinensis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Folhas de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA