RESUMO
The innate immune system plays a pivotal role in pathogen recognition and the initiation of innate immune responses through its Pathogen Recognition Receptors (PRRs), which detect Pathogen-Associated Molecular Patterns (PAMPs). Nucleic acids, including RNA and DNA, are recognized as particularly significant PAMPs, especially in the context of viral pathogens. During RNA virus infections, specific sequences in the viral RNA mark it as non-self, enabling host recognition through interactions with RNA sensors, thereby triggering innate immunity. Given that some of the most lethal viruses are RNA viruses, they pose a severe threat to human and animal health. Therefore, understanding the immunobiology of RNA PRRs is crucial for controlling pathogen infections, particularly RNA virus infections. In this chapter, we will introduce a "pull-down" method for identifying RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensors.
Assuntos
Imunidade Inata , RNA Viral , Receptores de Reconhecimento de Padrão , Humanos , RNA Viral/genética , RNA Viral/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Animais , Receptores Toll-Like/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/genética , Vírus de RNA/imunologia , Vírus de RNA/genética , Interações Hospedeiro-Patógeno/imunologia , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologiaRESUMO
Real-time reverse transcription polymerase chain reaction (RT-PCR), a standard method recommended for the diagnosis of coronavirus disease 2019 (COVID-19) requires 2-4 h to get the result. Although antigen test kit (ATK) is used for COVID-19 screening within 15-30 min, the drawback is its limited sensitivity. Hence, a rapid one-step quadruplex real-time RT-PCR assay: termed Æ©S COVID-19 targeting ORF1ab, ORF3a, and N genes of SARS-CoV-2; and Avocado sunblotch viroid (ASBVd) as an internal control was developed. Based on strategies including designing high melting temperature primers with short amplicons, applying a fast ramp rate, minimizing hold time, and reducing the range between denaturation and annealing/extension temperatures; the assay could be accomplished within 25 min. The limit of detection of ORF1ab, ORF3a, and N genes were 1.835, 1.310, and 1 copy/reaction, respectively. Validation was performed in 205 combined nasopharyngeal and oropharyngeal swabs. The sensitivity, specificity, positive predictive value, and negative predictive value were 92.8%, 100%, 100%, and 97.1%, respectively with 96.7% accuracy. Cohen's Kappa was 0.93. The newly developed rapid real-time RT-PCR assay was highly sensitive, specific, and fast, making it suitable for use as an alternative method to support laboratory diagnosis of COVID-19 in outpatient and emergency departments.
Assuntos
COVID-19 , SARS-CoV-2 , Sensibilidade e Especificidade , COVID-19/diagnóstico , COVID-19/virologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Teste de Ácido Nucleico para COVID-19/métodos , Feminino , Masculino , Pessoa de Meia-Idade , RNA Viral/genética , Adulto , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Nasofaringe/virologia , Proteínas Virais , PoliproteínasRESUMO
BACKGROUND: Early pregnancy Zika virus (ZIKV) infection is associated with major brain damage in fetuses, leading to microcephaly in 0.6-5.0% of cases, but the underlying mechanisms remain largely unknown. METHODS: To understand the kinetics of ZIKV infection during fetal development in a nonhuman primate model, four cynomolgus macaque fetuses were exposed in utero through echo-guided intramuscular inoculation with 103 PFU of ZIKV at 70-80 days of gestation, 2 controls were mock inoculated. Clinical, immuno-virological and ultrasound imaging follow-ups of the mother/fetus pairs were performed until autopsy after cesarean section 1 or 2 months after exposure (n = 3 per group). RESULTS: ZIKV was transmitted from the fetus to the mother and then replicate in the peripheral blood of the mother from week 1 to 4 postexposure. Infected fetal brains tended to be smaller than those of controls, but not the femur lengths. High level of viral RNA ws found after the first month in brain tissues and placenta. Thereafter, there was partial control of the virus in the fetus, resulting in a decreased number of infected tissue sections and a decreased viral load. Immune cellular and humoral responses were effectively induced. CONCLUSIONS: ZIKV infection during the second trimester of gestation induces short-term brain injury, and although viral genomes persist in tissues, most of the virus is cleared before delivery.
Assuntos
Encéfalo , Modelos Animais de Doenças , Feto , Complicações Infecciosas na Gravidez , Carga Viral , Infecção por Zika virus , Zika virus , Animais , Feminino , Gravidez , Infecção por Zika virus/virologia , Feto/virologia , Complicações Infecciosas na Gravidez/virologia , Encéfalo/virologia , Macaca fascicularis/virologia , RNA Viral , Placenta/virologia , Transmissão Vertical de Doenças InfecciosasRESUMO
The family Rhabdoviridae includes viruses with a negative-sense RNA genome. This family is divided into four subfamilies, and until recently, the subfamily Betarhabdovirinae, encompassing all plant-associated rhabdoviruses, was further divided into six genera. Here, we report the creation of two new genera within the subfamily Betarhabdovirinae - Alphagymnorhavirus and Betagymnorhavirus - to include recently described gymnosperm-associated viruses. The genus Alphagymnorhavirus includes nine species, while the genus Betagymnorhavirus includes only one species. Phylogenetic analysis indicated that these viruses form two well-supported clades that are clustered with the varicosaviruses, which have bisegmented genomes. In contrast, the 10 viruses included in the newly created genera have the distinctive feature that they have an unsegmented genome encoding five or six proteins. The creation of the genera Alphagymnorhavirus and Betagymnorhavirus has been ratified by the International Committee on Taxonomy of Viruses (ICTV).
Assuntos
Genoma Viral , Filogenia , Doenças das Plantas , Rhabdoviridae , Rhabdoviridae/genética , Rhabdoviridae/classificação , Rhabdoviridae/isolamento & purificação , Genoma Viral/genética , Doenças das Plantas/virologia , Cycadopsida/virologia , RNA Viral/genéticaRESUMO
Leafcutter ants are dominant herbivores in the Neotropics and rely on a fungus (Leucoagaricus gongylophorus) to transform freshly gathered leaves into a source of nourishment rather than consuming the vegetation directly. Here we report two virus-like particles that were isolated from L. gongylophorus and observed using transmission electron microscopy. RNA sequencing identified two +ssRNA mycovirus strains, Leucoagaricus gongylophorus tymo-like virus 1 (LgTlV1) and Leucoagaricus gongylophorus magoulivirus 1 (LgMV1). Genome annotation of LgTlV1 (7401 nt) showed conserved domains for methyltransferase, endopeptidase, viral RNA helicase, and RNA-dependent RNA polymerase (RdRp). The smaller genome of LgMV1 (2636 nt) contains one open reading frame encoding an RdRp. While we hypothesize these mycoviruses function as symbionts in leafcutter farming systems, further study will be needed to test whether they are mutualists, commensals, or parasites.
Assuntos
Formigas , Micovírus , Genoma Viral , RNA Viral , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Micovírus/fisiologia , Animais , Formigas/microbiologia , Formigas/virologia , RNA Viral/genética , Filogenia , Fases de Leitura Aberta , Simbiose , RNA Polimerase Dependente de RNA/genética , Microscopia Eletrônica de Transmissão , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Vírus de RNA/fisiologia , Agaricales/virologia , Agaricales/genéticaRESUMO
The internal ribosome entry site (IRES) is a cis-regulatory element that can initiate translation in a cap-independent manner. It is often related to cellular processes and many diseases. Thus, identifying the IRES is important for understanding its mechanism and finding potential therapeutic strategies for relevant diseases since identifying IRES elements by experimental method is time-consuming and laborious. Many bioinformatics tools have been developed to predict IRES, but all these tools are based on structure similarity or machine learning algorithms. Here, we introduced a deep learning model named DeepIRES for precisely identifying IRES elements in messenger RNA (mRNA) sequences. DeepIRES is a hybrid model incorporating dilated 1D convolutional neural network blocks, bidirectional gated recurrent units, and self-attention module. Tenfold cross-validation results suggest that DeepIRES can capture deeper relationships between sequence features and prediction results than other baseline models. Further comparison on independent test sets illustrates that DeepIRES has superior and robust prediction capability than other existing methods. Moreover, DeepIRES achieves high accuracy in predicting experimental validated IRESs that are collected in recent studies. With the application of a deep learning interpretable analysis, we discover some potential consensus motifs that are related to IRES activities. In summary, DeepIRES is a reliable tool for IRES prediction and gives insights into the mechanism of IRES elements.
Assuntos
Aprendizado Profundo , Sítios Internos de Entrada Ribossomal , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biologia Computacional/métodos , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Redes Neurais de Computação , AlgoritmosRESUMO
BACKGROUND: Hemorrhagic fever with renal syndrome (HFRS) is a severe public health problem in Jiangxi province, China. Previous studies reported genetic variants of Orthohantavirus hantanense (Hantaan virus, HTNV) in rodents in this area. However, the relationship between HTNV variants and human infection needs to be confirmed. This study aimed to identify the HTNV variants in patients and to understand the clinical characteristics of HFRS caused by these variants. METHODS: Samples were collected from hospitalized suspected cases of HFRS during the acute phase. HFRS cases were confirmed using quantitative real-time RT-PCR. Peripheral blood mononuclear cells (PBMC) from patients with HFRS were inoculated into Vero-E6 cells for viral isolation. The genomic sequences of HTNV from patients were obtained by amplicon-based next-generation sequencing. A retrospective analysis was conducted on the clinical characteristics of the patients. RESULTS: HTNV RNA was detected in 53 of 183 suspected HFRS patients. Thirteen HTNVs were isolated from 32 PBMCs of HFRS cases. Whole genome sequences of 14 HTNVs were obtained, including 13 isolates in cell culture from 13 patients, and one from plasma of the fatal case which was not isolated successfully in cell culture. Genetic analysis revealed that the HTNV sequence from the 14 patients showed significant variations in nucleotide and amino acid to the HTNV strains found in other areas. Fever (100%, 53/53), thrombocytopenia (100%, 53/53), increased serum aspartate aminotransferase (100%, 53/53), and increased lactate dehydrogenase (96.2%, 51/53) were the most common characteristics. Severe acute kidney injury was observed in 13.2% (7/53) of cases. Clinical symptoms, such as pain, petechiae, and gastrointestinal or respiratory symptoms were uncommon. CONCLUSION: The HTNV genetic variants cause human infections in Jiangxi. The clinical symptoms of HFRS caused by the HTNV genetic variant during the acute phase are atypical. In addition to renal dysfunction, attention should be paid to the common liver injuries caused by these genetic variants.
Assuntos
Variação Genética , Febre Hemorrágica com Síndrome Renal , Humanos , Febre Hemorrágica com Síndrome Renal/virologia , Febre Hemorrágica com Síndrome Renal/epidemiologia , China/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Chlorocebus aethiops , Animais , Células Vero , Filogenia , RNA Viral/genética , Adulto Jovem , Estudos Retrospectivos , Leucócitos Mononucleares/virologia , Idoso , Genoma Viral , Orthohantavírus/genética , Orthohantavírus/isolamento & purificação , Orthohantavírus/classificação , Adolescente , Vírus Hantaan/genética , Vírus Hantaan/isolamento & purificação , Vírus Hantaan/classificaçãoRESUMO
BACKGROUND: Healthcare systems are currently ill-equipped to diagnose arboviruses rapidly and efficiently or to differentiate between various viruses. METHODS: Utilizing molecular techniques, this study examined arbovirus infections in 459 patients from a public health unit in Goiânia-Goiás, Brazil, a region where arbovirus infection poses a significant public health challenge. RESULTS: Nearly 60% of the analyzed samples tested positive for at least one arbovirus, and over 10% of the patients were co-infected with more than one virus. CONCLUSIONS: Fast and accurate diagnostic tools are essential for informing public health policy and enhancing epidemiological surveillance.
Assuntos
Infecções por Arbovirus , Arbovírus , Humanos , Brasil/epidemiologia , Arbovírus/isolamento & purificação , Arbovírus/classificação , Arbovírus/genética , Infecções por Arbovirus/diagnóstico , Infecções por Arbovirus/epidemiologia , Feminino , Masculino , Adulto , Adolescente , Criança , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Lactente , Idoso , RNA Viral/análise , Coinfecção/virologiaRESUMO
OBJECTIVE: In the hepatitis C virus (HCV) diagnostic algorithm, an anti-HCV screening test is recommended first. In countries with low HCV prevalence, anti-HCV testing can often give false-positive results. This may lead to unnecessary retesting, increased costs, and psychological stress for patients. METHODS: In this study, the most appropriate S/Co (signal-cutoff) value to predict HCV viremia in anti-HCV test(+) individuals was determined, and the effect of genotype differences was evaluated. Of the 96,515 anti-HCV tests performed between 2020 and 2023, 934 were reactive. A total of 332 retests and 65 patients without HCV-ribonucleic acid (RNA) analysis were excluded. Demographic data were calculated for 537 patients, and 130 patients were included in the study. RESULTS: The average age of 537 patients was 55±18 years, and 57.1% were women. The anti-HCV positivity rate was 0.62% (602/96,515), and the actual anti-HCV positivity rate was 0.13% (130/96,515). Anti-HCV levels were higher in HCV-RNA(+) patients than in HCV-RNA-negative individuals (p<0.0001) (Table 1). Receiver operating characteristic curve analysis identified the optimal S/Co value to be 10.86 to identify true positive cases. Sensitivity was 96.1%, specificity was 61.2%, positive predictive value (PPV) was 44.2%, and negative predictive value (NPV) was 98% (Figure 2). A total of 107 (82.3%) of the patients were identified as GT1, and the most common subtype was GT1b (n=100). CONCLUSION: If anti-HCV S/Co is ≥10.86, direct HCV RNA testing may be recommended; However, the possibility of false positivity should be considered in patients with a S/Co value below 10.86.
Assuntos
Genótipo , Hepacivirus , Anticorpos Anti-Hepatite C , Hepatite C , Valor Preditivo dos Testes , RNA Viral , Viremia , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Hepacivirus/genética , RNA Viral/sangue , RNA Viral/análise , Anticorpos Anti-Hepatite C/sangue , Hepatite C/genética , Hepatite C/sangue , Adulto , Idoso , Sensibilidade e EspecificidadeRESUMO
Despite the increasing burden of dengue, the regional emergence of the virus in Kenya has not been examined. This study investigates the genetic structure and regional spread of dengue virus-2 in Kenya. Viral RNA from acutely ill patients in Kenya was enriched and sequenced. Six new dengue-2 genomes were combined with 349 publicly available genomes and phylogenies used to infer gene flow between Kenya and other countries. Analyses indicate two dengue-2 Cosmopolitan genotype lineages circulating in Kenya, linked to recent outbreaks in coastal Kenya and Burkina Faso. Lineages circulating in Western, Southern, and Eastern Africa exhibiting similar evolutionary features are also reported. Phylogeography suggests importation of dengue-2 into Kenya from East and Southeast Asia and bidirectional geneflow. Additional lineages circulating in Africa are also imported from East and Southeast Asia. These findings underscore how intermittent importations from East and Southeast Asia drive dengue-2 circulation in Kenya and Africa more broadly.
Assuntos
Vírus da Dengue , Dengue , Evolução Molecular , Genoma Viral , Epidemiologia Molecular , Filogenia , Filogeografia , RNA Viral , Vírus da Dengue/genética , Vírus da Dengue/classificação , Dengue/epidemiologia , Dengue/virologia , Humanos , Quênia/epidemiologia , África Oriental/epidemiologia , RNA Viral/genética , Genoma Viral/genética , Genótipo , Fluxo Gênico , Surtos de DoençasRESUMO
Early, rapid, and accurate diagnostic tests play critical roles not only in the identification/management of individuals infected by SARS-CoV-2, but also in fast and effective public health surveillance, containment, and response. Our aim has been to develop a fast and robust fluorescence in situ hybridization (FISH) detection method for detecting SARS-CoV-2 RNAs by using an HEK 293 T cell culture model. At various times after being transfected with SARS-CoV-2 E and N plasmids, HEK 293 T cells were fixed and then hybridized with ATTO-labeled short DNA probes (about 20 nt). At 4 h, 12 h, and 24 h after transfection, SARS-CoV-2 E and N mRNAs were clearly revealed as solid granular staining inside HEK 293 T cells at all time points. Hybridization time was also reduced to 1 h for faster detection, and the test was completed within 3 h with excellent results. In addition, we have successfully detected 3 mRNAs (E mRNA, N mRNA, and ORF1a (-) RNA) simultaneously inside the buccal cells of COVID-19 patients. Our high-resolution RNA FISH might significantly increase the accuracy and efficiency of SARS-CoV-2 detection, while significantly reducing test time. The method can be conducted on smears containing cells (e.g., from nasopharyngeal, oropharyngeal, or buccal swabs) or smears without cells (e.g., from sputum, saliva, or drinking water/wastewater) for detecting various types of RNA viruses and even DNA viruses at different timepoints of infection.
Assuntos
COVID-19 , Hibridização in Situ Fluorescente , RNA Viral , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Hibridização in Situ Fluorescente/métodos , RNA Viral/genética , COVID-19/diagnóstico , COVID-19/virologia , COVID-19/genética , Células HEK293 , Fosfoproteínas/genética , Proteínas do Envelope de Coronavírus/genética , RNA Mensageiro/genética , Proteínas do Nucleocapsídeo de Coronavírus/genéticaRESUMO
Dengue virus (DENV) is one of the most significant mosquito-borne diseases in Nepal. In 2023, DENV outbreaks began in Eastern Nepal, near the border with India, and rapidly spread nationwide. The study aims to describe the outbreak's epidemiological pattern, laboratory characteristics, DENV serotypes, and genotypes. A hospital-based cross-sectional study was conducted in four hospitals in Jhapa, Eastern Nepal, in 2023. Acute serum samples were obtained from dengue suspected patients within 7 days of illness and subjected to virus isolation, conventional and real-time polymerase chain reaction (RT-PCR), and phylogenetic analysis. Out of 60 samples, 42 (70 %), 11 (18.3 %) and 7 (11.7 %) were primary, secondary and non-dengue infection, respectively. Among 53 dengue confirmed patients, 46 (86.7 %) were positive for NS1 and 12 (22.6 %) were positive for both NS1 and IgM. Out of 42 dengue isolates, a new clade of the cosmopolitan genotype of DENV-2 was the most prevalent (28, 66.7 %), followed by genotype III of DENV-3 (11, 26.2 %) and genotype V of DENV-1 (3, 7.1 %). Genotype III of DENV-3 was first introduced in 2022-2023 in Nepal. Phylogenetic analysis of the E gene revealed the DENV-2 isolates from Nepal had 98 % homologous nucleotide similarity with the strains from India and Bangladesh. To our knowledge, this is the first report of circulating serotypes and genotypes of DENV in Jhapa. Integrating molecular findings into the dengue control plan can enhance surveillance efforts, monitor disease trends, and implement proactive measures to reduce the burden of dengue and prevent fatalities in future outbreaks.
Assuntos
Vírus da Dengue , Dengue , Surtos de Doenças , Genótipo , Filogenia , Sorogrupo , Humanos , Vírus da Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Dengue/epidemiologia , Dengue/virologia , Nepal/epidemiologia , Estudos Transversais , Adulto , Masculino , Feminino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Criança , Pré-Escolar , Idoso , RNA Viral/genéticaRESUMO
BACKGROUND: Head-to-head data for bictegravir/emtricitabine/tenofovir alafenamide (BIC/F/TAF; B) and darunavir/cobicistat/emtricitabine/tenofovir alafenamide (DRV/c/F/TAF; D) are lacking in the context of rapid antiretroviral therapy (ART) initiation. This study, BIC-T&T, evaluates the efficacy and tolerability of B vs D in a UK test-and-treat setting. SETTING: BIC-T&T was a randomised, open-label, multi-centre, study in which participants initiated ART within 14 days after confirmed HIV-1 diagnosis before baseline laboratory. METHODS: The primary endpoint is the virological response (HIV RNA < 50copies/mL) at week 12 by time-weighted average change in log10 HIV RNA recorded in viral load assays from treatment initiation to week 12, using two-sample Wilcoxon rank-sum test. RESULTS: 36 participants were randomised: 94% were male, 53% white; mean (SD) age was 35 years (11.8). Baseline mean (±SD) log10 HIV-RNA was 4.79 (± 0.87) log10 copies/mL and CD4 505 (±253) cells/mm3. The mean (±SD) time from confirmed HIV diagnosis to ART initiation was 7.9 (± 3.7) days. The time-weighted mean decrease in log10 HIV RNA from treatment initiation to week 12 was significantly greater in B in comparison to D (3.1 vs. 2.6 log10 copies/mL, p < 0.001). Both regimens demonstrated good tolerability with infrequent laboratory abnormalities and no grade 3 or 4 adverse events. CONCLUSION: In this first head-to-head study in the context of ART initiation, HIV RNA decline from baseline to week 12 was significantly more rapid for BIC/F/TAF compared with DRV/c/F/TAF.
Assuntos
Fármacos Anti-HIV , Emtricitabina , Infecções por HIV , Tenofovir , Carga Viral , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Masculino , Feminino , Adulto , Tenofovir/uso terapêutico , Tenofovir/análogos & derivados , Fármacos Anti-HIV/uso terapêutico , Carga Viral/efeitos dos fármacos , Emtricitabina/uso terapêutico , HIV-1/efeitos dos fármacos , HIV-1/genética , Adenina/análogos & derivados , Adenina/uso terapêutico , Piperazinas/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Darunavir/uso terapêutico , Alanina/uso terapêutico , Alanina/análogos & derivados , Resultado do Tratamento , RNA Viral , Sulfonamidas/uso terapêutico , Pessoa de Meia-Idade , Cobicistat/uso terapêutico , Reino Unido , Combinação de Medicamentos , Amidas , PiridonasRESUMO
PURPOSE: To evaluate the clinical characteristics and viral Colonization of corneas donated by volunteers with coronavirus disease 2019 (COVID-19) before and after corneal transplantation. METHODS: We retrospectively compared the characteristics and clinical outcomes of patients who received corneas from donors with and without a history of COVID-19 after corneal transplantation. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to evaluate the expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA on ocular surfaces in corneal preservation solutions as well as the recipients' tears. Immunofluorescence was also performed to evaluate the expression of viral spike proteins in the corneas. Intraocular pressure (IOP) measurement, optical coherence tomography (OCT), and slit-lamp inspection at each follow-up examination were performed to assess the surgical efficacy. RESULTS: The RT-PCR results of eye surface swabs before corneal extraction, the corneal preservation solutions before transplantation as well as the recipients' tears were negative, thereby indicating the suitability for transplantation. No significant differences in IOP measurements, OCT findings, or in the incidence of post transplantation complications were observed between donors with and without COVID-19. CONCLUSIONS: Corneal transplantation using corneas from COVID-19 infected donors does not alter clinical outcomes when compared to controls receiving corneas from non-infected donors.
Assuntos
COVID-19 , Córnea , Transplante de Córnea , SARS-CoV-2 , Doadores de Tecidos , Humanos , Masculino , Transplante de Córnea/efeitos adversos , Transplante de Córnea/métodos , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Córnea/virologia , Córnea/cirurgia , Adulto , Idoso , RNA Viral/isolamento & purificação , RNA Viral/análiseRESUMO
HIV-1 polymerase, commonly known as HIV reverse transcriptase (RT), catalyzes the critical reaction of reverse transcription by synthesizing a double-stranded DNA copy of the viral genomic RNA. During the replication cycle, this synthesized DNA is integrated into the host genome. This entire process is essential for viral replication and is targeted by several antiviral drugs. Numerous studies in biochemistry and structural biology have led to a good understanding of HIV-1 RT functions. However, the discovery of epitranscriptomic marks, such as 2'-O-methylations, on the HIV-1 RNA genome raise the questions about RT's ability to copy RNAs decorated with these biochemical modifications. This review focuses on the importance of RT in the viral cycle, its structure and function and the impact of 2'-O-methylations on its activity and replication regulation, particularly in quiescent cells.
Assuntos
Transcriptase Reversa do HIV , HIV-1 , Replicação Viral , Transcriptase Reversa do HIV/metabolismo , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/química , HIV-1/fisiologia , HIV-1/genética , Humanos , Metilação , RNA Viral/metabolismo , RNA Viral/genética , Transcrição Reversa , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológicoRESUMO
Conidiobolus sensu lato, a genus within the family Ancylistaceae, encompasses a diverse range of fungal species that are widely distributed in plant debris and soil. In this study, we identified three double-stranded RNA (dsRNA) viruses coinfecting a strain of Conidiobolus taihushanensis. These viruses were identified as Conidiobolus taihushanensis totivirus 1 (CtTV1), Conidiobolus nonsegmented RNA virus 1-2 (CNRV1-2), and Conidiobolus taihushanensis virus 1 (CtV1). Through high-throughput sequencing and RNA-ligase-mediated rapid amplification of cDNA ends (RLM-RACE), we determined their complete genome sequences. The genome of CtTV1 is 6,921 nucleotides in length, containing two open reading frames (ORFs). ORF1 encodes a 1,124-amino-acid capsid protein (CP) with a molecular weight of 125.07 kDa, and ORF2 encodes a 780-amino-acid RNA-dependent RNA polymerase (RdRp) with a molecular weight of 88.05 kDa. CNRV1-2, approximately 3.0 kb in length, also contains two ORFs, which are predicted to encode a 186-amino-acid hypothetical protein (HP) and a 758-amino-acid RdRp. CtV1 has a smaller genome consisting of 3,081 base pairs (bp) with two ORFs: one encoding a 244-amino-acid HP (26.85 kDa) and the other encoding a 707-amino-acid RdRp (80.64 kDa). Phylogenetic analysis based on RdRp sequences revealed that CtTV1 shows the highest similarity to Phytophthora pluvialis RNA virus 1, with 38.79% sequence identity, and clusters with members of the family Orthototiviridae, and it is most closely related to Utsjoki toti-like virus. In contrast, CtV1 formed a unique branch and might represent a new genus. The genome sequence of CNRV1-2 is 99.74% identical to that of the previously described Conidiobolus non-segmented RNA virus 1 (CNRV1). Our findings indicate that CtTV1 and CtV1 are distinct novel viruses, while CNRV1-2 appears to be a variant of CNRV1. This study enhances our understanding of the genetic diversity and evolutionary relationships among mycoviruses associated with C. taihushanensis.
Assuntos
Conidiobolus , Vírus de RNA de Cadeia Dupla , Genoma Viral , Fases de Leitura Aberta , Filogenia , Genoma Viral/genética , Vírus de RNA de Cadeia Dupla/genética , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/isolamento & purificação , Conidiobolus/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Doenças das Plantas/virologia , Doenças das Plantas/microbiologia , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Proteínas Virais/genética , RNA de Cadeia Dupla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Genômica/métodos , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificaçãoRESUMO
A novel grapevine viroid was discovered in an asymptomatic grapevine of Indian rootstocks. The whole genome sequence of the viroid (370 nt) was determined by high-throughput sequencing as well as RT-PCR followed by cloning and Sanger sequencing. The terminal conserved region (TCR), central conserved region (CCR) upper strand, and CCR lower strand are conserved regions found in the viroid that are unique to the members of the genus Apscaviroid. Based on our findings and the demarcation criteria for viroids, the novel viroid, which we have tentatively named "grapevine yellow speckle viroid 3" is a putative new member of the genus Apscaviroid.
Assuntos
Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Doenças das Plantas , Viroides , Vitis , Vitis/virologia , Viroides/genética , Viroides/isolamento & purificação , Viroides/classificação , Genoma Viral/genética , Doenças das Plantas/virologia , RNA Viral/genética , Sequenciamento Completo do Genoma/métodos , Sequência de BasesRESUMO
The whole-genome sequence (WGS) analysis of Aichivirus (AiV) identified in Korea was performed in this study. Using Sanger and Nanopore sequencing, the 8228-nucleotide-long genomic sequence of AiV (OQ121963) was determined and confirmed to belong to genotype A. The full-length genome of OQ121963 consisted of a 7296 nt open reading frame (ORF) that encodes a single polyprotein, and 5' UTR (676 nt) and 3' UTR (256 nt) at 5' and 3' ends, respectively. The ORF consisted of leader protein (L), structural protein P1 (VP0, VP1, and VP3), and nonstructural protein P2 (2A, 2B, and 2C) and P3 (3A, 3B, 3C, and 3D). The secondary structure analysis of the 5' UTR identified only stem-loop C (SL-C) and not SL-A and SL-B. The variable region of the AiV genome was analyzed by MegAlign Pro and reconfirmed by SimPlot analysis using 16 AiV whole genomes known to date. Among the entire regions, structural protein region P1 showed the lowest amino acid identity (96.07%) with reference sequence AB040749 (originated in Japan; genotype A), while the highest amino acid identity (98.26%) was confirmed in the 3D region among nonstructural protein region P2 and P3. Moreover, phylogenetic analysis of the WGS of OQ121963 showed the highest homology (96.96%) with JX564249 (originated in Taiwan; genotype A) and lowest homology (90.14%) with DQ028632 (originated in Brazil; genotype B). Therefore, the complete genome characterization of OQ121963 and phylogenetic analysis of the AiV conducted in this study provide useful information allowing to improve diagnostic tools and epidemiological studies of AiVs.
Assuntos
Genoma Viral , Genótipo , Kobuvirus , Fases de Leitura Aberta , Filogenia , Sequenciamento Completo do Genoma , Genoma Viral/genética , República da Coreia , Humanos , Kobuvirus/genética , Kobuvirus/classificação , Kobuvirus/isolamento & purificação , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/epidemiologia , Regiões 5' não Traduzidas/genética , Adulto , RNA Viral/genética , Regiões 3' não Traduzidas/genéticaRESUMO
Background: Many research laboratories have long-term repositories of cryopreserved peripheral blood mononuclear cells (PBMC), which are costly to maintain but are of uncertain utility for immunological studies after decades in storage. This study investigated preservation of cell surface phenotypes and in-vitro functional capacity of PBMC from viraemic HIV+ patients and healthy seronegative control subjects, after more than 20 years of cryopreservation. Methods: PBMC were assessed by 18-colour flow cytometry for major lymphocyte subsets within T, B, NK, and dendritic cells and monocytes. Markers of T-cell differentiation and activation were compared with original immunophenotyping performed in 1995/1996 on fresh blood at the time of collection. Functionality of PBMC was assessed by culture with influenza antigen or polyclonal T-cell activation, to measure upregulation of activation-induced CD25 and CD134 (OX40) on CD4 T cells and cytokine production at day 2, and proliferative CD25+ CD4 blasts at day 7. RNA was extracted from cultures containing proliferating CD4+ blast cells, and intracellular HIV RNA was measured using short amplicons for both the Double R and pol region pi code assays, whereas long 4-kbp amplicons were sequenced. Results: All major lymphocyte and T-cell subpopulations were conserved after long-term cryostorage, except for decreased proportions of activated CD38+HLA-DR+ CD4 and CD8 T cells in PBMC from HIV+ patients. Otherwise, differences in T-cell subpopulations between recent and long-term cryopreserved PBMC primarily reflected donor age-associated or HIV infection-associated effects on phenotypes. Proportions of naïve, memory, and effector subsets of T cells from thawed PBMC correlated with results from the original flow cytometric analysis of respective fresh blood samples. Antigen-specific and polyclonal T-cell responses were readily detected in cryopreserved PBMC from HIV+ patients and healthy control donors. Intracellular HIV RNA quantitation by pi code assay correlated with original plasma viral RNA load results. Full-length intracellular and supernatant-derived amplicons were generated from 5/12 donors, and sequences were ≥80% wild-type, consistent with replication competence. Conclusions: This unique study provides strong rationale and validity for using well-maintained biorepositories to support immunovirological research even decades after collection.
Assuntos
Criopreservação , Infecções por HIV , Imunofenotipagem , Leucócitos Mononucleares , RNA Viral , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Leucócitos Mononucleares/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Ativação Linfocitária/imunologia , Masculino , Adulto , Feminino , Citometria de FluxoRESUMO
Mitoviruses are cryptic capsidless viruses belonging to the family Mitoviridae that replicate and are maintained in the mitochondria of fungi. Complete mitovirus-like sequences were recently assembled from plant transcriptome data and plant leaf tissue samples. Passion fruit (Passiflora spp.) is an economically important crop for numerous tropical and subtropical countries worldwide, and many virus-induced diseases impact its production. From a large-scale genomic study targeting viruses infecting Passiflora spp. in Brazil, we detected a de novo-assembled contig with similarity to other plant-associated mitoviruses. The contig is â¼2.6 kb long, with a single open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRP). This contig has been named "passion fruit mitovirus-like 1" (PfMv1). An alignment of the predicted amino acid sequence of the RdRP of PfMv1 and those of other plant-associated mitoviruses revealed the presence of the six conserved motifs of mitovirus RdRPs. PfMv1 has 79% coverage and 50.14% identity to Humulus lupulus mitovirus 1. Phylogenetic analysis showed that PfMV1 clustered with other plant-associated mitoviruses in the genus Duamitovirus. Using RT-PCR, we detected a PfMv1-derived fragment, but no corresponding DNA was identified, thus excluding the possibility that this is an endogenized viral-like sequence. This is the first evidence of a replicating mitovirus associated with Passiflora edulis, and it should be classified as a member of a new species, for which we propose the name "Duamitovirus passiflorae".