Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.842
Filtrar
1.
Nat Commun ; 11(1): 6233, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277478

RESUMO

The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.


Assuntos
Proteínas Arqueais/química , Methanocaldococcus/metabolismo , Complexos Multiproteicos/química , RNA de Transferência/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Methanocaldococcus/genética , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo
2.
Nucleic Acids Res ; 48(21): 12269-12281, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33231678

RESUMO

Mitochondrial tRNA import is widespread, but mechanistic insights of how tRNAs are translocated across mitochondrial membranes remain scarce. The parasitic protozoan T. brucei lacks mitochondrial tRNA genes. Consequently, it imports all organellar tRNAs from the cytosol. Here we investigated the connection between tRNA and protein translocation across the mitochondrial inner membrane. Trypanosomes have a single inner membrane protein translocase that consists of three heterooligomeric submodules, which all are required for import of matrix proteins. In vivo depletion of individual submodules shows that surprisingly only the integral membrane core module, including the protein import pore, but not the presequence-associated import motor are required for mitochondrial tRNA import. Thus we could uncouple import of matrix proteins from import of tRNAs even though both substrates are imported into the same mitochondrial subcompartment. This is reminiscent to the outer membrane where the main protein translocase but not on-going protein translocation is required for tRNA import. We also show that import of tRNAs across the outer and inner membranes are coupled to each other. Taken together, these data support the 'alternate import model', which states that tRNA and protein import while mechanistically independent use the same translocation pores but not at the same time.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Protozoários/metabolismo , RNA de Protozoário/metabolismo , RNA de Transferência/metabolismo , Trypanosoma brucei brucei/metabolismo , Transporte Biológico , Citosol/metabolismo , Expressão Gênica , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Organismos Geneticamente Modificados , Proteínas de Protozoários/genética , RNA de Protozoário/genética , RNA de Transferência/genética , Trypanosoma brucei brucei/genética
3.
Nucleic Acids Res ; 48(21): 12004-12015, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33196821

RESUMO

Because ambient temperature affects biochemical reactions, organisms living in extreme temperature conditions adapt protein composition and structure to maintain biochemical functions. While it is not feasible to experimentally determine optimal growth temperature (OGT) for every known microbial species, organisms adapted to different temperatures have measurable differences in DNA, RNA and protein composition that allow OGT prediction from genome sequence alone. In this study, we built a 'tRNA thermometer' model using tRNA sequence to predict OGT. We used sequences from 100 archaea and 683 bacteria species as input to train two Convolutional Neural Network models. The first pairs individual tRNA sequences from different species to predict which comes from a more thermophilic organism, with accuracy ranging from 0.538 to 0.992. The second uses the complete set of tRNAs in a species to predict optimal growth temperature, achieving a maximum ${r^2}$ of 0.86; comparable with other prediction accuracies in the literature despite a significant reduction in the quantity of input data. This model improves on previous OGT prediction models by providing a model with minimum input data requirements, removing laborious feature extraction and data preprocessing steps and widening the scope of valid downstream analyses.


Assuntos
Adaptação Fisiológica/genética , Archaea/genética , Bactérias/genética , Genoma Arqueal , Genoma Bacteriano , RNA de Transferência/química , Anticódon/química , Anticódon/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Simulação por Computador , Modelos Genéticos , Redes Neurais de Computação , Conformação de Ácido Nucleico , Filogenia , Estabilidade de RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Temperatura , Termômetros
4.
Medicine (Baltimore) ; 99(48): e23437, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33235128

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is one of the most common forms of primary glomerulonephritis. Recent studies have indicated that small noncoding RNAs, such as tRNA-derived small RNAs (tsRNAs), might be novel biomarkers for glomerulonephritis. We therefore investigated the potential roles and possible functions of the tsRNAs in IgAN. METHOD: Peripheral blood mononuclear cells (PBMCs) were extracted from blood samples of the patients with IgAN and healthy control groups. The expression profiles of tsRNAs were assessed by small RNA sequencing (RNA-Seq) in PBMCs of the IgAN and control groups. Dysregulated tsRNAs were selected for validation by quantitative real-time polymerase chain reaction (qRT-PCR). Target gene prediction and enrichment were performed by bioinformatics analysis. RESULTS: The results revealed that 143 significantly upregulated and 202 significantly downregulated tsRNAs were differentially altered in the IgAN group compared with the control group. Five upregulated tsRNAs (tRF-Val-AAC-007, tRF-Ala-AGC-063, tRF-Gln-CTG-010, tRF-Tyr-GTA-011 and tRF-Thr-AGT-007) and 3 downregulated tsRNAs (tiRNA-Val-TAC-004, tRF-Gly-CCC-005 and tRF-His-GTG-006) were selected for validation by qRT-PCR; the results were consistent with the sequencing data. Gene Ontology (GO) analysis revealed that the target genes predicted by upregulated tsRNAs were mostly enriched in "nucleic acid metabolic process,' "intracellular part,' and "ion binding,' whereas the target genes predicted by downregulated tsRNAs were mostly enriched in "regulation of cellular component organization,' "membrane-bound organelle,' and "ion binding.' Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes predicted by upregulated tsRNAs were mostly enriched in "herpes simplex virus 1 infection,' whereas the target genes predicted by downregulated tsRNAs were mostly enriched in "circadian rhythm CONCLUSIONS:: The present study confirmed the differential expression of tsRNAs in patients with IgAN, and these dysregulated tsRNAs might be novel potential targets for the diagnosis and treatment of IgAN.


Assuntos
Glomerulonefrite por IGA/genética , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , Adulto , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Regulação para Cima
5.
Nat Commun ; 11(1): 5706, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177497

RESUMO

The ribosome is a biomolecular machine that undergoes multiple large-scale structural rearrangements during protein elongation. Here, we focus on a conformational rearrangement during translocation, known as P/E hybrid-state formation. Using a model that explicitly represents all non-hydrogen atoms, we simulated more than 120 spontaneous transitions, where the tRNA molecule is displaced between the P and E sites of the large subunit. In addition to predicting a free-energy landscape that is consistent with previous experimental observations, the simulations reveal how a six-residue gate-like region can limit P/E formation, where sub-angstrom structural perturbations lead to an order-of-magnitude change in kinetics. Thus, this precisely defined set of residues represents a novel target that may be used to control functional dynamics in bacterial ribosomes. This theoretical analysis establishes a direct relationship between ribosome structure and large-scale dynamics, and it suggests how next-generation experiments may precisely dissect the energetics of hybrid formation on the ribosome.


Assuntos
RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Bactérias/genética , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ribossomos/química , Ribossomos/genética , Eletricidade Estática
6.
PLoS One ; 15(11): e0242737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253256

RESUMO

Posttranscriptional modification of tRNA is critical for efficient protein translation and proper cell growth, and defects in tRNA modifications are often associated with human disease. Although most of the enzymes required for eukaryotic tRNA modifications are known, many of these enzymes have not been identified and characterized in several model multicellular eukaryotes. Here, we present two related approaches to identify the genes required for tRNA modifications in multicellular organisms using primer extension assays with fluorescent oligonucleotides. To demonstrate the utility of these approaches we first use expression of exogenous genes in yeast to experimentally identify two TRM1 orthologs capable of forming N2,N2-dimethylguanosine (m2,2G) on residue 26 of cytosolic tRNA in the model plant Arabidopsis thaliana. We also show that a predicted catalytic aspartate residue is required for function in each of the proteins. We next use RNA interference in cultured Drosophila melanogaster cells to identify the gene required for m2,2G26 formation on cytosolic tRNA. Additionally, using these approaches we experimentally identify D. melanogaster gene CG10050 as the corresponding ortholog of human DTWD2, which encodes the protein required for formation of 3-amino-3-propylcarboxyuridine (acp3U) on residue 20a of cytosolic tRNA. We further show that A. thaliana gene AT2G41750 can form acp3U20b on an A. thaliana tRNA expressed in yeast cells, and that the aspartate and tryptophan residues in the DXTW motif of this protein are required for modification activity. These results demonstrate that these approaches can be used to study tRNA modification enzymes.


Assuntos
Proteínas de Arabidopsis , Citosol/enzimologia , Proteínas de Drosophila , RNA de Transferência , tRNA Metiltransferases , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
7.
Nat Commun ; 11(1): 5052, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028817

RESUMO

The mechanism and function of autophagy as a highly-conserved bulk degradation pathway are well studied, but the physiological role of autophagy remains poorly understood. We show that autophagy is involved in the adaptation of Saccharomyces cerevisiae to respiratory growth through its recycling of serine. On respiratory media, growth onset, mitochondrial initiator tRNA modification and mitochondrial protein expression are delayed in autophagy defective cells, suggesting that mitochondrial one-carbon metabolism is perturbed in these cells. The supplementation of serine, which is a key one-carbon metabolite, is able to restore mitochondrial protein expression and alleviate delayed respiratory growth. These results indicate that autophagy-derived serine feeds into mitochondrial one-carbon metabolism, supporting the initiation of mitochondrial protein synthesis and allowing rapid adaptation to respiratory growth.


Assuntos
Adaptação Fisiológica , Autofagia/fisiologia , Proteínas Mitocondriais/biossíntese , Saccharomyces cerevisiae/fisiologia , Carbono/metabolismo , Respiração Celular/fisiologia , Mitocôndrias/metabolismo , Biossíntese de Proteínas/fisiologia , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
8.
Sci Rep ; 10(1): 16202, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004841

RESUMO

Mitochondrial genome provides useful information about species concerning its evolution and phylogenetics. We have taken the advantage of high throughput next-generation sequencing technique to sequence the complete mitogenome of Yellow-billed babbler (Turdoides affinis), a species endemic to Peninsular India and Sri Lanka. Both, reference-based and de-novo assemblies of mitogenome were performed and observed that de-novo assembled mitogenome was most appropriate. The complete mitogenome of yellow-billed babbler (assembled de-novo) was 17,672 bp in length with 53.2% AT composition. Thirteen protein-coding genes along with two rRNAs and 22 tRNAs were detected. The arrangement pattern of these genes was found conserved among Leiothrichidae family mitogenomes. Duplicated control regions were found in the newly sequenced mitogenome. Downstream bioinformatics analysis revealed the effect of translational efficiency and purifying selection pressure over thirteen protein-coding genes in yellow-billed babbler mitogenome. Ka/Ks analysis indicated the highest synonymous substitution rate in the nad6 gene. Evolutionary analysis revealed the conserved nature of all the protein-coding genes across Leiothrichidae family mitogenomes. Our limited phylogeny results placed T. affinis in a separate group, a sister group of Garrulax. Overall, our results provide a useful information for future studies on the evolutionary and adaptive mechanisms of birds belong to the Leiothrichidae family.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial , NADH Desidrogenase/metabolismo , Passeriformes/genética , Filogenia , Biossíntese de Proteínas , Animais , DNA Mitocondrial/análise , NADH Desidrogenase/genética , Passeriformes/classificação , Passeriformes/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Análise de Sequência de DNA
9.
Nucleic Acids Res ; 48(19): 11068-11082, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33035335

RESUMO

tRNAs play a central role during the translation process and are heavily post-transcriptionally modified to ensure optimal and faithful mRNA decoding. These epitranscriptomics marks are added by largely conserved proteins and defects in the function of some of these enzymes are responsible for neurodevelopmental disorders and cancers. Here, we focus on the Trm11 enzyme, which forms N2-methylguanosine (m2G) at position 10 of several tRNAs in both archaea and eukaryotes. While eukaryotic Trm11 enzyme is only active as a complex with Trm112, an allosteric activator of methyltransferases modifying factors (RNAs and proteins) involved in mRNA translation, former studies have shown that some archaeal Trm11 proteins are active on their own. As these studies were performed on Trm11 enzymes originating from archaeal organisms lacking TRM112 gene, we have characterized Trm11 (AfTrm11) from the Archaeoglobus fulgidus archaeon, which genome encodes for a Trm112 protein (AfTrm112). We show that AfTrm11 interacts directly with AfTrm112 similarly to eukaryotic enzymes and that although AfTrm11 is active as a single protein, its enzymatic activity is strongly enhanced by AfTrm112. We finally describe the first crystal structures of the AfTrm11-Trm112 complex and of Trm11, alone or bound to the methyltransferase inhibitor sinefungin.


Assuntos
Proteínas Arqueais , Archaeoglobus fulgidus/enzimologia , RNA Arqueal/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
10.
Nat Commun ; 11(1): 5260, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067428

RESUMO

Protein synthesis is the most expensive process in fast-growing bacteria. Experimentally observed growth rate dependencies of the translation machinery form the basis of powerful phenomenological growth laws; however, a quantitative theory on the basis of biochemical and biophysical constraints is lacking. Here, we show that the growth rate-dependence of the concentrations of ribosomes, tRNAs, mRNA, and elongation factors observed in Escherichia coli can be predicted accurately from a minimization of cellular costs in a mechanistic model of protein translation. The model is constrained only by the physicochemical properties of the molecules and has no adjustable parameters. The costs of individual components (made of protein and RNA parts) can be approximated through molecular masses, which correlate strongly with alternative cost measures such as the molecules' carbon content or the requirement of energy or enzymes for their biosynthesis. Analogous cost minimization approaches may facilitate similar quantitative insights also for other cellular subsystems.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Biossíntese de Proteínas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
11.
Nat Commun ; 11(1): 5441, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116138

RESUMO

With global warming and climate change, breeding crop plants tolerant to high-temperature stress is of immense significance. tRNA 2-thiolation is a highly conserved form of tRNA modification among living organisms. Here, we report the identification of SLG1 (Slender Guy 1), which encodes the cytosolic tRNA 2-thiolation protein 2 (RCTU2) in rice. SLG1 plays a key role in the response of rice plants to high-temperature stress at both seedling and reproductive stages. Dysfunction of SLG1 results in plants with thermosensitive phenotype, while overexpression of SLG1 enhances the tolerance of plants to high temperature. SLG1 is differentiated between the two Asian cultivated rice subspecies, indica and japonica, and the variations at both promoter and coding regions lead to an increased level of thiolated tRNA and enhanced thermotolerance of indica rice varieties. Our results demonstrate that the allelic differentiation of SLG1 confers indica rice to high-temperature tolerance, and tRNA thiolation pathway might be a potential target in the next generation rice breeding for the warming globe.


Assuntos
Genes de Plantas , Oryza/genética , Oryza/fisiologia , Termotolerância/genética , Termotolerância/fisiologia , Variação Genética , Aquecimento Global , Modelos Biológicos , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA de Plantas/metabolismo , RNA de Transferência/metabolismo , Tionucleotídeos/metabolismo
12.
Nat Commun ; 11(1): 5187, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056988

RESUMO

Mitoribosomes are specialized protein synthesis machineries in mitochondria. However, how mRNA binds to its dedicated channel, and tRNA moves as the mitoribosomal subunit rotate with respect to each other is not understood. We report models of the translating fungal mitoribosome with mRNA, tRNA and nascent polypeptide, as well as an assembly intermediate. Nicotinamide adenine dinucleotide (NAD) is found in the central protuberance of the large subunit, and the ATPase inhibitory factor 1 (IF1) in the small subunit. The models of the active mitoribosome explain how mRNA binds through a dedicated protein platform on the small subunit, tRNA is translocated with the help of the protein mL108, bridging it with L1 stalk on the large subunit, and nascent polypeptide paths through a newly shaped exit tunnel involving a series of structural rearrangements. An assembly intermediate is modeled with the maturation factor Atp25, providing insight into the biogenesis of the mitoribosomal large subunit and translation regulation.


Assuntos
Mitocôndrias/metabolismo , Ribossomos Mitocondriais/metabolismo , Neurospora crassa/fisiologia , Biossíntese de Proteínas , Fracionamento Celular , Microscopia Crioeletrônica , Proteínas Fúngicas/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Modelos Moleculares , NAD/metabolismo , Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo
13.
Nature ; 586(7827): 145-150, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968273

RESUMO

Natural products serve as chemical blueprints for most antibiotics in clinical use. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class of antibiotics1. Virginiamycin acetyltransferase (Vat) enzymes are resistance proteins that provide protection against streptogramins2, potent antibiotics against Gram-positive bacteria that inhibit the bacterial ribosome3. Owing to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogues that overcome the resistance conferred by Vat enzymes have not been previously developed2. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with extensive structural variability. Using cryo-electron microscopy and forcefield-based refinement, we characterize the binding of eight analogues to the bacterial ribosome at high resolution, revealing binding interactions that extend into the peptidyl tRNA-binding site and towards synergistic binders that occupy the nascent peptide exit tunnel. One of these analogues has excellent activity against several streptogramin-resistant strains of Staphylococcus aureus, exhibits decreased rates of acetylation in vitro, and is effective at lowering bacterial load in a mouse model of infection. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Estreptogramina Grupo A/síntese química , Estreptogramina Grupo A/farmacologia , Acetilação/efeitos dos fármacos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Antibacterianos/classificação , Carga Bacteriana/efeitos dos fármacos , Sítios de Ligação , Microscopia Crioeletrônica , Feminino , Técnicas In Vitro , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Estreptogramina Grupo A/química , Estreptogramina Grupo A/classificação , Virginiamicina/análogos & derivados , Virginiamicina/química , Virginiamicina/metabolismo
14.
Nat Commun ; 11(1): 4676, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938922

RESUMO

Translation efficiency varies considerably between different mRNAs, thereby impacting protein expression. Translation of the stress response master-regulator ATF4 increases upon stress, but the molecular mechanisms are not well understood. We discover here that translation factors DENR, MCTS1 and eIF2D are required to induce ATF4 translation upon stress by promoting translation reinitiation in the ATF4 5'UTR. We find DENR and MCTS1 are only needed for reinitiation after upstream Open Reading Frames (uORFs) containing certain penultimate codons, perhaps because DENR•MCTS1 are needed to evict only certain tRNAs from post-termination 40S ribosomes. This provides a model for how DENR and MCTS1 promote translation reinitiation. Cancer cells, which are exposed to many stresses, require ATF4 for survival and proliferation. We find a strong correlation between DENR•MCTS1 expression and ATF4 activity across cancers. Furthermore, additional oncogenes including a-Raf, c-Raf and Cdk4 have long uORFs and are translated in a DENR•MCTS1 dependent manner.


Assuntos
Fator 4 Ativador da Transcrição/genética , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Códon , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Neoplasias/genética , Proteínas Oncogênicas/genética , Oncogenes , Fases de Leitura Aberta , RNA Mensageiro , RNA de Transferência/genética , RNA de Transferência/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/genética
15.
Nucleic Acids Res ; 48(17): 9433-9448, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32890397

RESUMO

The fragments that derive from transfer RNAs (tRNAs) are an emerging category of regulatory RNAs. Known as tRFs, these fragments were reported for the first time only a decade ago, making them a relatively recent addition to the ever-expanding pantheon of non-coding RNAs. tRFs are short, 16-35 nucleotides (nts) in length, and produced through cleavage of mature and precursor tRNAs at various positions. Both cleavage positions and relative tRF abundance depend strongly on context, including the tissue type, tissue state, and disease, as well as the sex, population of origin, and race/ethnicity of an individual. These dependencies increase the urgency to understand the regulatory roles of tRFs. Such efforts are gaining momentum, and comprise experimental and computational approaches. System-level studies across many tissues and thousands of samples have produced strong evidence that tRFs have important and multi-faceted roles. Here, we review the relevant literature on tRF biology in higher organisms, single cell eukaryotes, and prokaryotes.


Assuntos
Neoplasias/genética , Doenças do Sistema Nervoso/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Viroses/genética , Animais , Enzimas/metabolismo , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Neoplasias/mortalidade , Estabilidade de RNA , RNA de Transferência/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Estresse Fisiológico/genética
16.
Proc Natl Acad Sci U S A ; 117(34): 20785-20793, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32778592

RESUMO

Transfer RNA (tRNA) activity is tightly regulated to provide a physiological protein translation, and tRNA chemical modifications control its function in a complex with ribosomes and messenger RNAs (mRNAs). In this regard, the correct hypermodification of position G37 of phenylalanine-tRNA, adjacent to the anticodon, is critical to prevent ribosome frameshifting events. Here we report that the tRNA-yW Synthesizing Protein 2 (TYW2) undergoes promoter hypermethylation-associated transcriptional silencing in human cancer, particularly in colorectal tumors. The epigenetic loss of TYW2 induces guanosine hypomodification in phenylalanine-tRNA, an increase in -1 ribosome frameshift events, and down-regulation of transcripts by mRNA decay, such as of the key cancer gene ROBO1. Importantly, TYW2 epigenetic inactivation is linked to poor overall survival in patients with early-stage colorectal cancer, a finding that could be related to the observed acquisition of enhanced migration properties and epithelial-to-mesenchymal features in the colon cancer cells that harbor TYW2 DNA methylation-associated loss. These findings provide an illustrative example of how epigenetic changes can modify the epitranscriptome and further support a role for tRNA modifications in cancer biology.


Assuntos
Neoplasias do Colo/genética , Mudança da Fase de Leitura do Gene Ribossômico , RNA de Transferência/genética , Ribossomos/genética , tRNA Metiltransferases/deficiência , Adulto , Idoso , Anticódon/genética , Anticódon/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Neoplasias do Colo/metabolismo , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , Fenilalanina/genética , Fenilalanina/metabolismo , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
17.
Nat Commun ; 11(1): 4104, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796835

RESUMO

Transfer RNAs (tRNA) are quintessential in deciphering the genetic code; disseminating nucleic acid triplets into correct amino acid identity. While this decoding function is clear, an emerging theme is that tRNA abundance and functionality can powerfully impact protein production rate, folding, activity, and messenger RNA stability. Importantly, however, the expression pattern of tRNAs is obliquely known. Here we present Quantitative Mature tRNA sequencing (QuantM-tRNA seq), a technique to monitor tRNA abundance and sequence variants secondary to RNA modifications. With QuantM-tRNA seq, we assess the tRNA transcriptome in mammalian tissues. We observe dramatic distinctions in isodecoder expression and known tRNA modifications between tissues. Remarkably, despite dramatic changes in tRNA isodecoder gene expression, the overall anticodon pool of each tRNA family is similar across tissues. These findings suggest that while anticodon pools appear to be buffered via an unknown mechanism, underlying transcriptomic and epitranscriptomic differences suggest a more complex tRNA regulatory landscape.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA de Transferência/metabolismo , Animais , Anticódon/genética , Northern Blotting , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , RNA Mensageiro/metabolismo , RNA de Transferência/genética
18.
Nat Commun ; 11(1): 4304, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855412

RESUMO

Ribosome-mediated polymerization of backbone-extended monomers into polypeptides is challenging due to their poor compatibility with the translation apparatus, which evolved to use α-L-amino acids. Moreover, mechanisms to acylate (or charge) these monomers to transfer RNAs (tRNAs) to make aminoacyl-tRNA substrates is a bottleneck. Here, we rationally design non-canonical amino acid analogs with extended carbon chains (γ-, δ-, ε-, and ζ-) or cyclic structures (cyclobutane, cyclopentane, and cyclohexane) to improve tRNA charging. We then demonstrate site-specific incorporation of these non-canonical, backbone-extended monomers at the N- and C- terminus of peptides using wild-type and engineered ribosomes. This work expands the scope of ribosome-mediated polymerization, setting the stage for new medicines and materials.


Assuntos
Aminoácidos Cíclicos/metabolismo , Biossíntese Peptídica , Ribossomos/metabolismo , Aminoacilação de RNA de Transferência , Engenharia Genética , Mutação , Polimerização , RNA de Transferência/metabolismo , Ribossomos/genética
19.
Nat Commun ; 11(1): 4269, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859890

RESUMO

Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 genes responsible for mt-tRNA modifications are provided. We identify two genes required for queuosine (Q) formation in mt-tRNAs. Our results provide insight into the molecular mechanisms underlying the decoding system and could help to elucidate the molecular pathogenesis of human mitochondrial diseases caused by aberrant tRNA modifications.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mitocondrial/química , RNA de Transferência/química , Feminino , Código Genético , Células HEK293 , Células HeLa , Humanos , Espectrometria de Massas , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Estrutura Molecular , Nucleosídeo Q/biossíntese , Nucleosídeo Q/química , Fosforilação Oxidativa , Placenta , Gravidez , RNA Mitocondrial/isolamento & purificação , RNA Mitocondrial/metabolismo , RNA de Transferência/isolamento & purificação , RNA de Transferência/metabolismo , RNA-Seq
20.
Nat Commun ; 11(1): 3830, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737313

RESUMO

The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Elongação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/química , RNA Mitocondrial/química , RNA de Transferência/química , Proteínas Ribossômicas/química , Ribossomos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA