Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.379
Filtrar
1.
Epigenomics ; 12(15): 1349-1361, 2020 08.
Artigo em Inglês | MEDLINE | ID: covidwho-740482

RESUMO

After the increasing number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections all over the world, researchers and clinicians are struggling to find a vaccine or innovative therapeutic strategies to treat this viral infection. The severe acute respiratory syndrome coronavirus infection that occurred in 2002, Middle East respiratory syndrome (MERS) and other more common infectious diseases such as hepatitis C virus, led to the discovery of many RNA-based drugs. Among them, siRNAs and antisense locked nucleic acids have been demonstrated to have effective antiviral effects both in animal models and humans. Owing to the high genomic homology of SARS-CoV-2 and severe acute respiratory syndrome coronavirus (80-82%) the use of these molecules could be employed successfully also to target this emerging coronavirus. Trying to translate this approach to treat COVID-19, we analyzed the common structural features of viral 5'UTR regions that can be targeted by noncoding RNAs and we also identified miRNAs binding sites suitable for designing RNA-based drugs to be employed successfully against SARS-CoV-2.


Assuntos
Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , RNA não Traduzido/genética , Terapêutica com RNAi/métodos , Regiões 5' não Traduzidas , Animais , Humanos , Pandemias , RNA não Traduzido/metabolismo
2.
Epigenomics ; 12(15): 1349-1361, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32875809

RESUMO

After the increasing number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections all over the world, researchers and clinicians are struggling to find a vaccine or innovative therapeutic strategies to treat this viral infection. The severe acute respiratory syndrome coronavirus infection that occurred in 2002, Middle East respiratory syndrome (MERS) and other more common infectious diseases such as hepatitis C virus, led to the discovery of many RNA-based drugs. Among them, siRNAs and antisense locked nucleic acids have been demonstrated to have effective antiviral effects both in animal models and humans. Owing to the high genomic homology of SARS-CoV-2 and severe acute respiratory syndrome coronavirus (80-82%) the use of these molecules could be employed successfully also to target this emerging coronavirus. Trying to translate this approach to treat COVID-19, we analyzed the common structural features of viral 5'UTR regions that can be targeted by noncoding RNAs and we also identified miRNAs binding sites suitable for designing RNA-based drugs to be employed successfully against SARS-CoV-2.


Assuntos
Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , RNA não Traduzido/genética , Terapêutica com RNAi/métodos , Regiões 5' não Traduzidas , Animais , Humanos , Pandemias , RNA não Traduzido/metabolismo
3.
Nat Commun ; 11(1): 4076, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796851

RESUMO

Group 3 innate lymphoid cells (ILC3) are an important regulator for immunity, inflammation and tissue homeostasis in the intestine, but how ILC3 activation is regulated remains elusive. Here we identify a new circular RNA (circRNA) circKcnt2 that is induced in ILC3s during intestinal inflammation. Deletion of circKcnt2 causes gut ILC3 activation and severe colitis in mice. Mechanistically, circKcnt2, as a nuclear circRNA, recruits the nucleosome remodeling deacetylase (NuRD) complex onto Batf promoter to inhibit Batf expression; this in turn suppresses Il17 expression and thereby ILC3 inactivation to promote innate colitis resolution. Furthermore, Mbd3-/-Rag1-/- and circKcnt2-/-Rag1-/- mice develop severe innate colitis following dextran sodium sulfate (DSS) treatments, while simultaneous deletion of Batf promotes colitis resolution. In summary, our data support a function of the circRNA circKcnt2 in regulating ILC3 inactivation and resolution of innate colitis.


Assuntos
Colite/imunologia , Colite/metabolismo , Linfócitos/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo , RNA Circular/metabolismo , Animais , Colite/patologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Homeostase , Humanos , Imunidade Inata , Inflamação/imunologia , Inflamação/patologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Canais de Potássio Ativados por Sódio/genética , RNA Circular/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Fatores de Transcrição/genética
4.
Nat Commun ; 11(1): 3557, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678091

RESUMO

Bacteria of the genus Bacteroides are common members of the human intestinal microbiota and important degraders of polysaccharides in the gut. Among them, the species Bacteroides thetaiotaomicron has emerged as the model organism for functional microbiota research. Here, we use differential RNA sequencing (dRNA-seq) to generate a single-nucleotide resolution transcriptome map of B. thetaiotaomicron grown under defined laboratory conditions. An online browser, called 'Theta-Base' ( www.helmholtz-hiri.de/en/datasets/bacteroides ), is launched to interrogate the obtained gene expression data and annotations of ~4500 transcription start sites, untranslated regions, operon structures, and 269 noncoding RNA elements. Among the latter is GibS, a conserved, 145 nt-long small RNA that is highly expressed in the presence of N-acetyl-D-glucosamine as sole carbon source. We use computational predictions and experimental data to determine the secondary structure of GibS and identify its target genes. Our results indicate that sensing of N-acetyl-D-glucosamine induces GibS expression, which in turn modifies the transcript levels of metabolic enzymes.


Assuntos
Bacteroides thetaiotaomicron/genética , Microbioma Gastrointestinal , Pequeno RNA não Traduzido/genética , Transcriptoma , Acetilglucosamina/metabolismo , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Bacteroides thetaiotaomicron/metabolismo , Meios de Cultura/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Bacteriano/genética , Pequeno RNA não Traduzido/química , RNA não Traduzido/genética , Reprodutibilidade dos Testes , Navegador
5.
Nat Commun ; 11(1): 3363, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620750

RESUMO

Studying emerging or neglected pathogens is often challenging due to insufficient information and absence of genetic tools. Dual RNA-seq provides insights into host-pathogen interactions, and is particularly informative for intracellular organisms. Here we apply dual RNA-seq to Orientia tsutsugamushi (Ot), an obligate intracellular bacterium that causes the vector-borne human disease scrub typhus. Half the Ot genome is composed of repetitive DNA, and there is minimal collinearity in gene order between strains. Integrating RNA-seq, comparative genomics, proteomics, and machine learning to study the transcriptional architecture of Ot, we find evidence for wide-spread post-transcriptional antisense regulation. Comparing the host response to two clinical isolates, we identify distinct immune response networks for each strain, leading to predictions of relative virulence that are validated in a mouse infection model. Thus, dual RNA-seq can provide insight into the biology and host-pathogen interactions of a poorly characterized and genetically intractable organism such as Ot.


Assuntos
Regulação Bacteriana da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Doenças Negligenciadas/imunologia , Orientia tsutsugamushi/genética , Tifo por Ácaros/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Genoma Bacteriano , Células Endoteliais da Veia Umbilical Humana , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Sequências Repetitivas Dispersas/genética , Camundongos , Doenças Negligenciadas/microbiologia , Orientia tsutsugamushi/imunologia , Orientia tsutsugamushi/patogenicidade , Proteômica , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Bacteriano/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA-Seq , Tifo por Ácaros/microbiologia , Transcrição Genética , Sequenciamento Completo do Exoma
6.
Nucleic Acids Res ; 48(15): 8509-8528, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32710631

RESUMO

The ribonucleolytic exosome complex is central for nuclear RNA degradation, primarily targeting non-coding RNAs. Still, the nuclear exosome could have protein-coding (pc) gene-specific regulatory activities. By depleting an exosome core component, or components of exosome adaptor complexes, we identify ∼2900 transcription start sites (TSSs) from within pc genes that produce exosome-sensitive transcripts. At least 1000 of these overlap with annotated mRNA TSSs and a considerable portion of their transcripts share the annotated mRNA 3' end. We identify two types of pc-genes, both employing a single, annotated TSS across cells, but the first type primarily produces full-length, exosome-sensitive transcripts, whereas the second primarily produces prematurely terminated transcripts. Genes within the former type often belong to immediate early response transcription factors, while genes within the latter are likely transcribed as a consequence of their proximity to upstream TSSs on the opposite strand. Conversely, when genes have multiple active TSSs, alternative TSSs that produce exosome-sensitive transcripts typically do not contribute substantially to overall gene expression, and most such transcripts are prematurely terminated. Our results display a complex landscape of sense transcription within pc-genes and imply a direct role for nuclear RNA turnover in the regulation of a subset of pc-genes.


Assuntos
Exossomos/genética , Genoma Humano/genética , Fases de Leitura Aberta/genética , RNA/genética , Sítio de Iniciação de Transcrição , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Anotação de Sequência Molecular , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA não Traduzido/genética
7.
Nature ; 585(7824): 298-302, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32669707

RESUMO

Proteins are manufactured by ribosomes-macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as 'red laser'). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease.


Assuntos
Nucléolo Celular/enzimologia , Nucléolo Celular/genética , DNA Ribossômico/genética , RNA Polimerase II/metabolismo , RNA não Traduzido/biossíntese , RNA não Traduzido/genética , Ribossomos/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/fisiologia , DNA Helicases/metabolismo , DNA Intergênico/genética , Humanos , Enzimas Multifuncionais/metabolismo , Biossíntese de Proteínas , Estruturas R-Loop , RNA Helicases/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/metabolismo , Ribonuclease H/metabolismo , Ribossomos/química , Ribossomos/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
8.
Cancer Sci ; 111(9): 3089-3099, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32579791

RESUMO

The telomere is the specialized nucleoprotein complex at the end of the chromosome. Its highly conserved 5'-TTAGGG-3' repeats and shelterin protein complexes form a protective loop structure to maintain the integrity and stability of linear chromosomes. Although human somatic cells gradually shorten telomeres to undergo senescence or crisis, cancer cells activate telomerase, or the recombination-based mechanism to maintain telomeres and exhibit immortality. As the most frequent non-coding mutations in cancer, gain-of-function mutations in the promoter region of the telomerase catalytic subunit, TERT, trigger telomerase activation. Promoter methylation and copy number gain are also associated with the enhanced TERT expression. Although telomerase inhibitors were pioneered from telomere-directed therapeutics, their efficacies are limited to cancer with short telomeres and some hematological malignancies. Other therapeutic approaches include a nucleoside analog incorporated to telomeres and TERT promoter-driven oncolytic adenoviruses. Tankyrase poly(ADP-ribose) polymerase, a positive regulator of telomerase, has been rediscovered as a target for Wnt-driven cancer. Meanwhile, telomeric nucleic acids form a higher-order structure called a G-quadruplex (G4). G4s are formed genome-wide and their dynamics affect various events, including replication, transcription, and translation. G4-stabilizing compounds (G4 ligands) exert anticancer effects and are in clinical investigations. Collectively, telomere biology has provided clues for deeper understanding of cancer, which expands opportunities to discover innovative anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Telômero/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Transformação Celular Neoplásica/genética , Quadruplex G/efeitos dos fármacos , Terapia Genética , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Terapia Viral Oncolítica , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Encurtamento do Telômero/efeitos dos fármacos
9.
Nucleic Acids Res ; 48(12): 6699-6714, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479626

RESUMO

Non-coding RNAs (ncRNAs) participate in various biological processes, including regulating transcription and sustaining genome 3D organization. Here, we present a method termed Red-C that exploits proximity ligation to identify contacts with the genome for all RNA molecules present in the nucleus. Using Red-C, we uncovered the RNA-DNA interactome of human K562 cells and identified hundreds of ncRNAs enriched in active or repressed chromatin, including previously undescribed RNAs. Analysis of the RNA-DNA interactome also allowed us to trace the kinetics of messenger RNA production. Our data support the model of co-transcriptional intron splicing, but not the hypothesis of the circularization of actively transcribed genes.


Assuntos
Cromatina/genética , DNA/genética , Genoma/genética , RNA não Traduzido/genética , Transcrição Genética , Núcleo Celular/genética , Humanos , RNA Mensageiro/genética , RNA não Traduzido/isolamento & purificação , Fatores de Transcrição/genética
10.
Life Sci ; 254: 117761, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413403

RESUMO

With the increase of an aging population and the rising incidence of cardiovascular diseases, heart failure (HF) patients are on the rise every year. Myocardial infarction (MI) is the leading cause of HF in patients among cardiovascular diseases. In clinic, patients with MI are often assessed by biochemical indicators, electrocardiography, brain natriuretic peptide levels, myocardial enzymology, echocardiography and other means to predict the occurrence of HF and ventricular remodeling (VR). But there is still a lack of more accurate evaluation. VR is the basic mechanism of HF. In recent years, the molecular mechanism of VR has been studied mainly from the aspects of myocardial hypertrophy, myocardial fibrosis, inflammation, myocardial energy disorder, apoptosis, autophagy and pyroptosis. Exosomes are considered as the main mediators of intercellular information transmission. In addition, exosomes can promote the migration and transformation of intercellular RNAs, which are highly conserved non-coding RNAs. They can mediate the process of cell proliferation and differentiation of the target cell membrane. Exosomes have protective effects on VR after MI by inhibiting fibrosis, promoting angiogenesis and inhibiting inflammation and pyroptosis. We reviewed the specific protective mechanisms of exosomes for VR after MI. In addition, we discussed the formation of targeted exosomes and the role of non-coding RNAs in VR.


Assuntos
Exossomos/fisiologia , RNA não Traduzido/metabolismo , Remodelação Ventricular/fisiologia , Animais , Exossomos/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , RNA não Traduzido/genética , Função Ventricular Esquerda , Remodelação Ventricular/genética
11.
Nat Commun ; 11(1): 2150, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358519

RESUMO

Somatic cell nuclear transfer (SCNT) in mammals is an inefficient process that is frequently associated with abnormal phenotypes, especially in placentas. Recent studies demonstrated that mouse SCNT placentas completely lack histone methylation (H3K27me3)-dependent imprinting, but how it affects placental development remains unclear. Here, we provide evidence that the loss of H3K27me3 imprinting is responsible for abnormal placental enlargement and low birth rates following SCNT, through upregulation of imprinted miRNAs. When we restore the normal paternal expression of H3K27me3-dependent imprinted genes (Sfmbt2, Gab1, and Slc38a4) in SCNT placentas by maternal knockout, the placentas remain enlarged. Intriguingly, correcting the expression of clustered miRNAs within the Sfmbt2 gene ameliorates the placental phenotype. Importantly, their target genes, which are confirmed to cause SCNT-like placental histology, recover their expression level. The birth rates increase about twofold. Thus, we identify loss of H3K27me3 imprinting as an epigenetic error that compromises embryo development following SCNT.


Assuntos
Histonas/metabolismo , MicroRNAs/genética , Placenta/metabolismo , Proteínas Repressoras/genética , Animais , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Feminino , Impressão Genômica , Camundongos , Família Multigênica/genética , Gravidez , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
12.
Nat Commun ; 11(1): 2205, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371874

RESUMO

Flaviviruses, including Zika virus (ZIKV), utilise host mRNA degradation machinery to produce subgenomic flaviviral RNA (sfRNA). In mammalian hosts, this noncoding RNA facilitates replication and pathogenesis of flaviviruses by inhibiting IFN-signalling, whereas the function of sfRNA in mosquitoes remains largely elusive. Herein, we conduct a series of in vitro and in vivo experiments to define the role of ZIKV sfRNA in infected Aedes aegypti employing viruses deficient in production of sfRNA. We show that sfRNA-deficient viruses have reduced ability to disseminate and reach saliva, thus implicating the role for sfRNA in productive infection and transmission. We also demonstrate that production of sfRNA alters the expression of mosquito genes related to cell death pathways, and prevents apoptosis in mosquito tissues. Inhibition of apoptosis restored replication and transmission of sfRNA-deficient mutants. Hence, we propose anti-apoptotic activity of sfRNA as the mechanism defining its role in ZIKV transmission.


Assuntos
Aedes/genética , Apoptose/genética , Mosquitos Vetores/genética , RNA Viral/genética , Infecção por Zika virus/genética , Zika virus/genética , Aedes/citologia , Aedes/virologia , Animais , Células Cultivadas , Chlorocebus aethiops , Regulação da Expressão Gênica , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mosquitos Vetores/citologia , Mosquitos Vetores/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Células Vero , Replicação Viral/genética , Zika virus/fisiologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
13.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 42(2): 270-274, 2020 Apr 28.
Artigo em Chinês | MEDLINE | ID: mdl-32385037

RESUMO

Endometrial receptivity has become the main cause of in vitro fertilization and pregnancy outcomes in infertile patients,bringing large psychological damage and economic loss to the patients and their family. In recent years,the role of non-coding RNA has increasingly been recognized. The relationship between non-coding RNA and endometrial receptivity is reviewed in this article.


Assuntos
Endométrio/fisiologia , RNA não Traduzido/genética , Implantação do Embrião , Feminino , Fertilização In Vitro , Humanos , Gravidez , Resultado da Gravidez
14.
Gene ; 750: 144756, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389707

RESUMO

Noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) have been extensively studied in biological processes such as disease development, cell proliferation but remained unclear in sex differentiation in organisms. In this study, the transcriptome profiles were comparatively analyzed between male and female gonads in Mauremys mutica. A total of 8237 differentially expressed genes (DEGs), 9573 DE lncRNAs, 84 DE circRNAs and 665 DE miRNAs were identified between male and female gonads. Through gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of the DE RNAs, it was revealed that the DE mRNAs were majorly involved in GO terms, such as 'reproduction', 'reproductive process' and the pathways of 'focal adhesion' and 'oocyte meiosis'. In addition, a co-expression network showed that the expression of gametogenesis and sex differentiation related genes, including dmrt3a, tdrd7, sox14, etc were closely associated with the levels of their corresponding ncRNAs. Intriguingly, the dmrt1 circRNA and its target mRNA were detected upregulated both in adult testis and male producing temperature (MPT) embryos. Our findings demonstrated the sexually dimorphic expression profiles of mRNAs and ncRNAs in turtle gonads, which will provide the index to find out the molecular mechanisms behind the sex differentiation in turtles, even in other environmental sex determination (ESD) species.


Assuntos
Caracteres Sexuais , Tartarugas/genética , Animais , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Ontologia Genética , Gônadas/metabolismo , Masculino , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Diferenciação Sexual , Transcriptoma/genética
15.
Nucleic Acids Res ; 48(12): 6919-6930, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32469055

RESUMO

Noncoding Y RNAs are abundant in animal cells and present in many bacteria. These RNAs are bound and stabilized by Ro60, a ring-shaped protein that is a target of autoantibodies in patients with systemic lupus erythematosus. Studies in bacteria revealed that Y RNA tethers Ro60 to a ring-shaped exoribonuclease, forming a double-ringed RNP machine specialized for structured RNA degradation. In addition to functioning as a tether, the bacterial RNA gates access of substrates to the Ro60 cavity. To identify roles for Y RNAs in mammals, we used CRISPR to generate mouse embryonic stem cells lacking one or both of the two murine Y RNAs. Despite reports that animal cell Y RNAs are essential for DNA replication, cells lacking these RNAs divide normally. However, Ro60 levels are reduced, revealing that Y RNA binding is required for Ro60 to accumulate to wild-type levels. Y RNAs regulate the subcellular location of Ro60, since Ro60 is reduced in the cytoplasm and increased in nucleoli when Y RNAs are absent. Last, we show that Y RNAs tether Ro60 to diverse effector proteins to generate specialized RNPs. Together, our data demonstrate that the roles of Y RNAs are intimately connected to that of their Ro60 partner.


Assuntos
Autoantígenos/genética , RNA Citoplasmático Pequeno/genética , RNA não Traduzido/genética , Ribonucleoproteínas/genética , Animais , Autoanticorpos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citoplasma/genética , Humanos , Camundongos , Conformação de Ácido Nucleico , Estabilidade de RNA/genética , RNA não Traduzido/ultraestrutura
16.
RNA ; 26(9): 1170-1183, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32444459

RESUMO

Influenza A virus (IAV) utilizes cap-snatching to obtain host capped small RNAs for priming viral mRNA synthesis, generating capped hybrid mRNAs for translation. Previous studies have been focusing on canonical cap-snatching, which occurs at the very 5' end of viral mRNAs. Here we discovered noncanonical cap-snatching, which generates capped hybrid mRNAs/noncoding RNAs mapped to the region ∼300 nucleotides (nt) upstream of each mRNA 3' end, and to the 5' region, primarily starting at the second nt, of each virion RNAs (vRNA). Like canonical cap-snatching, noncanonical cap-snatching utilizes a base-pairing between the last nt G of host capped RNAs and a nt C of template RNAs to prime RNA synthesis. However, the nt upstream of this template C is usually A/U rather than just U; prime-realignment occurs less frequently. We also demonstrate that IAV can snatch capped IAV RNAs in addition to host RNAs. Noncanonical cap-snatching likely generates novel mRNAs with start AUG encoded in viral or host RNAs. These findings expand our understanding of cap-snatching mechanisms and suggest that IAV may utilize noncanonical cap-snatching to diversify its mRNAs/ncRNAs.


Assuntos
Vírus da Influenza A/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Células A549 , Pareamento de Bases/genética , Linhagem Celular Tumoral , Humanos , RNA Replicase/genética , RNA Viral/genética , Transcrição Genética/genética
17.
RNA ; 26(9): 1234-1246, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457084

RESUMO

The wide prevalence and regulated expression of long noncoding RNAs (lncRNAs) highlight their functional roles, but the molecular basis for their activities and structure-function relationships remains to be investigated, with few exceptions. Among the relatively few lncRNAs conserved over significant evolutionary distances is the long intergenic noncoding RNA (lincRNA) Cyrano (orthologous to human OIP5-AS1), which contains a region of 300 highly conserved nucleotides within tetrapods, which in turn contains a functional stretch of 26 nt of deep conservation. This region binds to and facilitates the degradation of the microRNA miR-7, a short ncRNA with multiple cellular functions, including modulation of oncogenic expression. We probed the secondary structure of Cyrano in vitro and in cells using chemical and enzymatic probing, and validated the results using comparative sequence analysis. At the center of the functional core of Cyrano is a cloverleaf structure maintained over the >400 million years of divergent evolution that separates fish and primates. This strikingly conserved motif provides interaction sites for several RNA-binding proteins and masks a conserved recognition site for miR-7. Conservation in this region strongly suggests that the function of Cyrano depends on the formation of this RNA structure, which could modulate the rate and efficiency of degradation of miR-7.


Assuntos
Sequência Conservada/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Animais , Humanos , Camundongos , MicroRNAs/genética , Primatas/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Peixe-Zebra
18.
PLoS One ; 15(5): e0222256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374761

RESUMO

kakusei is a non-coding RNA that is overexpressed in foraging bee brain. This study describes a possible role of the IEG kakusei during the daily foraging of honey bees. kakusei was found to be transiently upregulated within two hours during rewarded foraging. Interestingly, during unrewarded foraging the gene was also found to be up-regulated, but immediately lowered when food was not rewarded. Moreover, the kakusei overexpression was diminished within a very short time when the time schedule of feeding was changed. This indicates the potential role of kakusei on the motivation of learned reward foraging. These results provide evidence for a dynamic role of kakusei during for aging of bees, and eventually its possible involvement in learning and memory. Thus the kakusei gene could be used as search tool in finding distinct molecular pathways that mediate diverse behavioral components of foraging.


Assuntos
Abelhas/genética , Abelhas/fisiologia , Comportamento Alimentar , Genes Precoces/fisiologia , Genes de Insetos/fisiologia , Envelhecimento/genética , Animais , Aprendizagem , RNA não Traduzido/genética
19.
Adv Exp Med Biol ; 1220: 117-134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32304083

RESUMO

Liquid biopsy based on the analysis of circulating tumor cells (CTCs) has emerged as an important field of research. Molecular characterization of CTCs can provide insights into cancer biology and biomarkers for the clinic, representing a non-invasive powerful tool for monitoring breast cancer metastasis and predict the therapeutic response. Epigenetic mechanisms play a key role in the control of gene expression and their alteration contributes to cancer development and progression. These epigenetic modifications in CTCs have been described mainly related to modifications of the DNA methylation pattern and changes in the expression profile of noncoding RNAs. Here we summarize the recent findings on the epigenetic characterization of CTCs in breast cancer and their clinical value as tumor biomarkers, and discuss challenges and opportunities in this field.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Epigênese Genética , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais , Metilação de DNA , Humanos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , RNA não Traduzido/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-32320286

RESUMO

To date, studies that have aimed to investigate the role of satellite cells during adult skeletal muscle adaptation and hypertrophy have utilized a nontranslational stimulus and/or have been performed over a relatively short time frame. Although it has been shown that satellite cell depletion throughout adulthood does not drive skeletal muscle loss in sedentary mice, it remains unknown how satellite cells participate in skeletal muscle adaptation to long-term physical activity. The current study was designed to determine whether reduced satellite cell content throughout adulthood would influence the transcriptome-wide response to physical activity and diminish the adaptive response of skeletal muscle. We administered vehicle or tamoxifen to adult Pax7-diphtheria toxin A (DTA) mice to deplete satellite cells and assigned them to sedentary or wheel-running conditions for 13 mo. Satellite cell depletion throughout adulthood reduced balance and coordination, overall running volume, and the size of muscle proprioceptors (spindle fibers). Furthermore, satellite cell participation was necessary for optimal muscle fiber hypertrophy but not adaptations in fiber type distribution in response to lifelong physical activity. Transcriptome-wide analysis of the plantaris and soleus revealed that satellite cell function is muscle type specific; satellite cell-dependent myonuclear accretion was apparent in oxidative muscles, whereas initiation of G protein-coupled receptor (GPCR) signaling in the glycolytic plantaris may require satellite cells to induce optimal adaptations to long-term physical activity. These findings suggest that satellite cells play a role in preserving physical function during aging and influence muscle adaptation during sustained periods of physical activity.


Assuntos
Fibras Musculares Esqueléticas/patologia , Condicionamento Físico Animal , Corrida , Células Satélites de Músculo Esquelético/patologia , Comportamento Sedentário , Adaptação Fisiológica , Animais , Toxina Diftérica/genética , Feminino , Regulação da Expressão Gênica , Glicólise , Hipertrofia , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Oxirredução , Fator de Transcrição PAX7/genética , Fragmentos de Peptídeos/genética , RNA não Traduzido/genética , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA