Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.381
Filtrar
1.
Methods Mol Biol ; 2721: 183-195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37819523

RESUMO

In recent years, several genome-wide approaches based on RNA sequencing (RNA-seq) have been developed. These methods allow a comprehensive and dynamic view of the structure and function of the multi-layered RNA pathways and networks. Many of these approaches, including the promising one of single-cell transcriptome analysis, have been successfully applied to Pseudomonas aeruginosa. However, we are only at the beginning because only a few surrounding conditions have been considered. Here, we aim to illustrate the different types of approaches based on RNA-seq that will lead us in the future to a better understanding of the dynamics of RNA biology in P. aeruginosa.


Assuntos
Pseudomonas aeruginosa , RNA , RNA/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Genoma , Sequência de Bases , Transcriptoma , Análise de Sequência de RNA
2.
Life Sci Alliance ; 7(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935465

RESUMO

Protein-RNA complexes exist in many forms within the cell, from stable machines such as the ribosome to transient assemblies like the spliceosome. All protein-RNA assemblies rely on spatially and temporally coordinated interactions between specific proteins and RNAs to achieve a functional form. RNA folding and structure are often critical for successful protein binding and protein-RNA complex formation. RNA modifications change the chemical nature of a given RNA and often alter its folding kinetics. Both these alterations can affect how and if proteins or other RNAs can interact with the modified RNA and assemble into complexes. N6-methyladenosine (m6A) is the most common base modification on mRNAs and regulatory noncoding RNAs and has been shown to impact RNA structure and directly modulate protein-RNA interactions. In this review, focusing on the mechanisms and available quantitative information, we discuss first how the METTL3/14 m6A writer complex is specifically targeted to RNA assisted by protein-RNA and other interactions to enable site-specific and co-transcriptional RNA modification and, once introduced, how the m6A modification affects RNA folding and protein-RNA interactions.


Assuntos
RNA não Traduzido , RNA , RNA/metabolismo , RNA Mensageiro/metabolismo , Ligação Proteica , Ribossomos/metabolismo
3.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119605, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821055

RESUMO

The inflammatory response is a key process in periodontitis. The N6-methyladenosine (m6A) modification has been proven to be involved in various physiological and pathological processes. This study aims to investigate the role and downstream mechanism of N6-adenosine-enzyme subunits methyltransferase (METTL) 3 and 14 in the inflammatory response of periodontal ligament cells (PDLCs). The total m6A content and the expression of METTL3 and METTL14 were upregulated in lipopolysaccharide (LPS)-stimulated PDLCs. Knockdown of METTL3 or METTL14 suppressed the LPS-induced interleukin (IL)-6 expression, as shown by quantitative polymerase chain reaction (qPCR) and enzyme linked immunosorbent assay (ELISA). Mechanistically, conjoint analysis of m6A sequencing of METTL3-knockdown and METTL14-knockdown PDLCs revealed that the expression of solute carrier family 39 member 9 (SLC39A9) was mediated in a m6A-dependent manner. The suppression of LPS-induced IL-6 by METTL3 or METTL14 knockdown was partially counteracted by SLC39A9 knockdown, which induced downregulation of intracellular zinc via immunofluorescence staining. Amplicon bisulfite sequencing (AmpBS) demonstrated that METTL3/14 knockdown increased the methylation at one position of the IL-6 promoter, while SLC39A9 knockdown decreased it, which was basically consistent with the intracellular zinc concentration and negatively associated with IL-6 expression. Moreover, METTL3 or METTL14 knockdown attenuated the LPS-induced phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK), which was partially counteracted by SLC39A9 knockdown. These results revealed the "LPS-METTL3/14-SLC39A9-zinc-IL-6" axis and involvement of p38 and JNK MAPK signaling pathway in the inflammatory responses of PDLCs.


Assuntos
Metilação de DNA , Interleucina-6 , Metilação de DNA/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Ligamento Periodontal/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/metabolismo , Zinco
4.
J Surg Res ; 293: 433-442, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812877

RESUMO

INTRODUCTION: Massive intestinal loss resulting in short bowel syndrome has been linked to intestinal failure associated liver disease. Efforts to elucidate the driving force behind the observed hepatic injury have identified inflammatory mediators, alterations in the microbiome, extent of structural and functional intestinal adaptation, and toxic shifts in the bile acid pool. In the present study, we posit that ileocecal resection interrupts the delivery of these hepatotoxic substances to the liver by physically disrupting the enterohepatic circulation, thereby shielding the liver from exposure to the aforementioned noxious stimuli. METHODS: Mice underwent sham, 50% proximal, or 50% distal small bowel resection (SBR), with or without tauroursodeoxycolic acid supplementation. Enterohepatic signaling and nonsense-mediated ribonucleic acid (RNA) decay were evaluated and correlated with hepatic injury. RESULTS: When compared to 50% proximal SBR, mice that underwent ileocecal resection exhibited reduced hepatic oxidative stress and exhibited a more physiological bile acid profile with increased de novo bile acid synthesis, enhanced colonic bile acid signaling, and reduced hepatic proliferation. Distal intestinal resection promoted an adaptive response including via the nonsense-mediated RNA decay pathway to satisfactorily process injurious messenger RNA and successfully maintain homeostasis. By contrast, this adaptive response was not observed in the proximal SBR group and hepatic injury persisted. CONCLUSIONS: In summary, interruption of enterohepatic circulation via ileocecal resection abrogates the liver's exposure to toxic and inflammatory mediators while promoting physiological adaptations in bile acid metabolism and maintaining existing homeostatic pathways.


Assuntos
Hepatopatias , RNA , Camundongos , Animais , RNA/metabolismo , Fígado/cirurgia , Fígado/metabolismo , Hepatopatias/metabolismo , Ácidos e Sais Biliares/metabolismo , Mediadores da Inflamação/metabolismo
5.
Bioorg Chem ; 142: 106969, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988784

RESUMO

Nucleolus was an important cellular organelle. The abnormal morphology and number of the nucleolus have been considered as diagnostic biomarkers for some human diseases. However, the imaging agent based on nucleolus was limited. In this manuscript, a series of nucleolar fluorescent probes based on naphthalimide derivatives (NI-1 âˆ¼ NI-5) had been designed and synthesized. NI-1 âˆ¼ NI-5 could penetrate cell membranes and nuclear membranes, achieve clear nucleolar staining in living cells. These results suggested that the presence of amino groups on the side chains of naphthalimide backbone could enhance the targeting to the cell nucleolus. In addition, the molecular docking results showed that NI-1 âˆ¼ NI-5 formed hydrogen bonds and hydrophobic interactions with RNA, and exhibited enhanced fluorescence upon binding with RNA. These results will provide favorable support for the diagnosis and treatment of nucleolus-related diseases in the future.


Assuntos
Nucléolo Celular , Naftalimidas , Humanos , Nucléolo Celular/metabolismo , Simulação de Acoplamento Molecular , RNA/metabolismo
6.
Nat Commun ; 14(1): 7972, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042877

RESUMO

Off-target interactions between antisense oligonucleotides (ASOs) with state-of-the-art modifications and biological components still pose clinical safety liabilities. To mitigate a broad spectrum of off-target interactions and enhance the safety profile of ASO drugs, we here devise a nanoarchitecture named BRace On a THERapeutic aSo (BROTHERS or BRO), which is composed of a standard gapmer ASO paired with a partially complementary peptide nucleic acid (PNA) strand. We show that these non-canonical ASO/PNA hybrids have reduced non-specific protein-binding capacity. The optimization of the structural and thermodynamic characteristics of this duplex system enables the operation of an in vivo toehold-mediated strand displacement (TMSD) reaction, effectively reducing hybridization with RNA off-targets. The optimized BROs dramatically mitigate hepatotoxicity while maintaining the on-target knockdown activity of their parent ASOs in vivo. This technique not only introduces a BRO class of drugs that could have a transformative impact on the extrahepatic delivery of ASOs, but can also help uncover the toxicity mechanism of ASOs.


Assuntos
Oligonucleotídeos Antissenso , Ácidos Nucleicos Peptídicos , Masculino , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , RNA/metabolismo , Ligação Proteica , Hibridização de Ácido Nucleico , Oligonucleotídeos Fosforotioatos/química
7.
Nat Commun ; 14(1): 7991, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042949

RESUMO

Mitochondria contain their own genetic information and a dedicated translation system to express it. The mitochondrial ribosome is assembled from mitochondrial-encoded RNA and nuclear-encoded ribosomal proteins. Assembly is coordinated in the mitochondrial matrix by biogenesis factors that transiently associate with the maturing particle. Here, we present a structural snapshot of a large mitoribosomal subunit assembly intermediate containing 7 biogenesis factors including the GTPases GTPBP7 and GTPBP10. Our structure illustrates how GTPBP10 aids the folding of the ribosomal RNA during the biogenesis process, how this process is related to bacterial ribosome biogenesis, and why mitochondria require two biogenesis factors in contrast to only one in bacteria.


Assuntos
Ribossomos Mitocondriais , RNA , Ribossomos Mitocondriais/metabolismo , RNA/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
8.
J Vis Exp ; (201)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38047558

RESUMO

Mosquitoes are effective vectors of deadly diseases and can navigate their chemical environment using chemosensory receptors expressed in their olfactory appendages. Understanding how chemosensory receptors are spatially organized in the peripheral olfactory appendages can offer insights into how odor is encoded in the mosquito olfactory system and inform new ways to combat the spread of mosquito-borne diseases. The emergence of third-generation hybridization chain reaction RNA whole-mount fluorescence in situ hybridization (HCR RNA WM-FISH) allows for spatial mapping and simultaneous expression profiling of multiple chemosensory genes. Here, we describe a stepwise approach for performing HCR RNA WM-FISH on the Anopheles mosquito antenna and maxillary palp. We investigated the sensitivity of this technique by examining the expression profile of ionotropic olfactory receptors. We asked if the HCR WM-FISH technique described was suitable for multiplexed studies by tethering RNA probes to three spectrally distinct fluorophores. Results provided evidence that HCR RNA WM-FISH is robustly sensitive to simultaneously detect multiple chemosensory genes in the antenna and maxillary palp olfactory appendages. Further investigations attest to the suitability of HCR WM-FISH for co-expression profiling of double and triple RNA targets. This technique, when applied with modifications, could be adaptable to localize genes of interest in the olfactory tissues of other insect species or in other appendages.


Assuntos
Anopheles , Receptores Odorantes , Animais , RNA/metabolismo , Hibridização in Situ Fluorescente , Mosquitos Vetores , Olfato/genética , Anopheles/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
9.
Brief Bioinform ; 25(1)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38040490

RESUMO

RNA biology has risen to prominence after a remarkable discovery of diverse functions of noncoding RNA (ncRNA). Most untranslated transcripts often exert their regulatory functions into RNA-RNA complexes via base pairing with complementary sequences in other RNAs. An interplay between RNAs is essential, as it possesses various functional roles in human cells, including genetic translation, RNA splicing, editing, ribosomal RNA maturation, RNA degradation and the regulation of metabolic pathways/riboswitches. Moreover, the pervasive transcription of the human genome allows for the discovery of novel genomic functions via RNA interactome investigation. The advancement of experimental procedures has resulted in an explosion of documented data, necessitating the development of efficient and precise computational tools and algorithms. This review provides an extensive update on RNA-RNA interaction (RRI) analysis via thermodynamic- and comparative-based RNA secondary structure prediction (RSP) and RNA-RNA interaction prediction (RIP) tools and their general functions. We also highlighted the current knowledge of RRIs and the limitations of RNA interactome mapping via experimental data. Then, the gap between RSP and RIP, the importance of RNA homologues, the relationship between pseudoknots, and RNA folding thermodynamics are discussed. It is hoped that these emerging prediction tools will deepen the understanding of RNA-associated interactions in human diseases and hasten treatment processes.


Assuntos
Biologia Computacional , RNA , Humanos , RNA/metabolismo , Biologia Computacional/métodos , RNA não Traduzido/genética , Genômica , Dobramento de RNA , Conformação de Ácido Nucleico , Algoritmos
10.
J Immunother Cancer ; 11(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040417

RESUMO

BACKGROUND: Limited response to programmed death ligand-1 (PD-L1)/programmed death 1 (PD-1) immunotherapy is a major hindrance of checkpoint immunotherapy in non-small cell lung cancer (NSCLC). The abundance of PD-L1 on the tumor cell surface is crucial for the responsiveness of PD-1/PD-L1 immunotherapy. However, the negative control of PD-L1 expression and the physiological significance of the PD-L1 inhibition in NSCLC immunotherapy remain obscure. METHODS: Bioinformatics analysis was performed to profile and investigate the long non-coding RNAs that negatively correlated with PD-L1 expression and positively correlated with CD8+T cell infiltration in NSCLC. Immunofluorescence, in vitro PD-1 binding assay, T cell-induced apoptosis assays and in vivo syngeneic mouse models were used to investigate the functional roles of LINC02418 and mmu-4930573I07Rik in regulating anti-PD-L1 therapeutic efficacy in NSCLC. The molecular mechanism of LINC02418-enhanced PD-L1 downregulation was explored by immunoprecipitation, RNA immunoprecipitation (RIP), and ubiquitination assays. RIP, luciferase reporter, and messenger RNA degradation assays were used to investigate the m6A modification of LINC02418 or mmu-4930573I07Rik expression. Bioinformatics analysis and immunohistochemistry (IHC) verification were performed to determine the significance of LINC02418, PD-L1 expression and CD8+T cell infiltration. RESULTS: LINC02418 is a negative regulator of PD-L1 expression that positively correlated with CD8+T cell infiltration, predicting favorable clinical outcomes for patients with NSCLC. LINC02418 downregulates PD-L1 expression by enhancing PD-L1 ubiquitination mediated by E3 ligase Trim21. Both hsa-LINC02418 and mmu-4930573I07Rik (its homologous RNA in mice) regulate PD-L1 therapeutic efficacy in NSCLC via Trim21, inducing T cell-induced apoptosis in vitro and in vivo. Furthermore, METTL3 inhibition via N6-methyladenosine (m6A) modification mediated by YTHDF2 reader upregulates hsa-LINC02418 and mmu-4930573I07Rik. In patients with NSCLC, LINC02418 expression is inversely correlated with PD-L1 expression and positively correlated with CD8+T infiltration. CONCLUSION: LINC02418 functions as a negative regulator of PD-L1 expression in NSCLC cells by promoting the degradation of PD-L1 through the ubiquitin-proteasome pathway. The expression of LINC02418 is regulated by METTL3/YTHDF2-mediated m6A modification. This study illuminates the underlying mechanisms of PD-L1 negative regulation and presents a promising target for improving the effectiveness of anti-PD-L1 therapy in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1 , Imunoterapia , RNA/metabolismo , RNA/uso terapêutico , Ubiquitinação , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/uso terapêutico
11.
Cell Mol Life Sci ; 80(12): 352, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935993

RESUMO

To be functional, some RNAs require a processing step involving splicing events. Each splicing event necessitates an RNA ligation step. RNA ligation is a process that can be achieved with various intermediaries such as self-catalysing RNAs, 5'-3' and 3'-5' RNA ligases. While several types of RNA ligation mechanisms occur in human, RtcB is the only 3'-5' RNA ligase identified in human cells to date. RtcB RNA ligation activity is well known to be essential for the splicing of XBP1, an essential transcription factor of the unfolded protein response; as well as for the maturation of specific intron-containing tRNAs. As such, RtcB is a core factor in protein synthesis and homeostasis. Taking advantage of the high homology between RtcB orthologues in archaea, bacteria and eukaryotes, this review will provide an introduction to the structure of RtcB and the mechanism of 3'-5' RNA ligation. This analysis is followed by a description of the mechanisms regulating RtcB activity and localisation, its known partners and its various functions from bacteria to human with a specific focus on human cancer.


Assuntos
RNA Ligase (ATP) , Fatores de Transcrição , Humanos , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/química , RNA Ligase (ATP)/metabolismo , Fatores de Transcrição/metabolismo , RNA/metabolismo , Resposta a Proteínas não Dobradas , RNA de Transferência/genética , RNA de Transferência/metabolismo , Splicing de RNA/genética
12.
Methods Enzymol ; 692: 23-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37925181

RESUMO

Posttranscriptional RNA modifications occur in almost all types of RNA in all life forms. As an abundant RNA modification in mammals, pseudouridine (Ψ) regulates diverse biological functions of different RNA species such as ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), etc. However, the functional investigation of mRNA pseudouridine (Ψ) has been hampered by the lack of a quantitative method that can efficiently map Ψ transcriptome-wide. We developed bisulfite-induced deletion sequencing (BID-seq), with the optimized bisulfite-based chemical reaction to convert pseudouridine selectively and completely into Ψ-BS adduct without cytosine deamination. The Ψ-BS adduct can be further read out as deletion signatures during reverse transcription. The deletion ratios induced by Ψ sites were used for estimating the modification stoichiometry at each modified site. BID-seq starts with 10-20 ng polyA+ RNA and detects thousands of mRNA Ψ sites with stoichiometry information in cell lines and tissues. We uncovered consensus motifs for Ψ in mammalian mRNA and assigned specific 'writer' proteins to individual Ψ deposition. BID-seq also confirmed the presence of Ψ within stop codons of mammalian mRNA. BID-seq set the stage for future investigations of Ψ functions in diverse biological processes.


Assuntos
Pseudouridina , RNA , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pseudouridina/metabolismo , RNA/metabolismo , Sulfitos/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Processamento Pós-Transcricional do RNA , Mamíferos/genética , Mamíferos/metabolismo
13.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958681

RESUMO

Endothelial cells (ECs) are a key target for cardioprotection due to their role in preserving cardiac microvasculature and homeostasis after myocardial infarction (MI). Our goal is to identify the genes involved in post-MI EC proliferation, EC apoptosis, and angiogenesis regulation via RNA-sequencing transcriptomic datasets. Using eight studies from the Gene Expression Omnibus, RNA-sequencing data from 92 mice submitted to different times of coronary ischemia or sham were chosen. Functional enrichment analysis was performed based on gene ontology biological processes (BPs). Apoptosis-related BPs are activated up to day 3 after ischemia onset, whereas endothelial proliferation occurs from day 3 onwards, including an overrepresentation of up to 37 genes. Endothelial apoptosis post-MI is triggered via both the extrinsic and intrinsic signaling pathways, as reflected by the overrepresentation of 13 and 2 specific genes, respectively. BPs implicated in new vessel formation are upregulated soon after ischemia onset, whilst the mechanisms aiming at angiogenesis repression can be detected at day 3. Overall, 51 pro-angiogenic and 29 anti-angiogenic factors displayed altered transcriptomic expression post-MI. This is the first study using RNA sequencing datasets to evaluate the genes participating in post-MI endothelium physiology and angiogenesis regulation. These novel data could lay the groundwork to advance understanding of the implication of ECs after MI.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Camundongos , Animais , Células Endoteliais/metabolismo , Neovascularização Fisiológica/genética , Infarto do Miocárdio/metabolismo , RNA/metabolismo , Análise de Sequência de RNA
14.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958738

RESUMO

A significant number of discoveries in past two decades have established the importance of long-distance signaling in controlling plant growth, development, and biotic and abiotic stress responses. Numerous mobile signals, such as mRNAs, proteins, including RNA-binding proteins, small RNAs, sugars, and phytohormones, are shown to regulate various agronomic traits such as flowering, fruit, seed development, and tuberization. Potato is a classic model tuber crop, and several mobile signals are known to govern tuber development. However, it is unknown if these mobile signals have any synergistic effects on potato crop improvement. Here, we employed a simple innovative strategy to test the cumulative effects of a key mobile RNA, StBEL5, and its RNA-binding proteins, StPTB1, and -6 on tuber productivity of two potato cultivars, Solanum tuberosum cv. Désirée and subspecies andigena, using a multi-gene stacking approach. In this approach, the coding sequences of StBEL5 and StPTB1/6 are driven by their respective native promoters to efficiently achieve targeted expression in phloem for monitoring tuber productivity. We demonstrate that this strategy resulted in earliness for tuberization and enhanced tuber productivity by 2-4 folds under growth chamber, greenhouse, and field conditions. This multi-gene stacking approach could be adopted to other crops, whose agronomic traits are governed by mobile macromolecules, expanding the possibilities to develop crops with improved traits and enhanced yields.


Assuntos
RNA , Solanum tuberosum , RNA/metabolismo , Solanum tuberosum/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958962

RESUMO

The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.


Assuntos
RNA , Homeostase do Telômero , Animais , RNA/metabolismo , Drosophila/genética , Envelhecimento/genética , Telômero/genética , Instabilidade Genômica
16.
Nat Commun ; 14(1): 7555, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985764

RESUMO

Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone. Single cell RNA-sequencing identifies an angiogenic infarct macrophage population with high Itga5 expression. The angiogenic effects of integrin α5 in macrophages involve upregulation of Vascular Endothelial Growth Factor A. RNA-sequencing of the macrophage transcriptome in vivo and in vitro followed by bioinformatic analysis identifies several intracellular kinases as potential downstream targets of integrin α5. Neutralization assays demonstrate that the angiogenic actions of integrin α5-stimulated macrophages involve activation of Focal Adhesion Kinase and Phosphoinositide 3 Kinase cascades.


Assuntos
Integrina alfa5 , Infarto do Miocárdio , Camundongos , Animais , Integrina alfa5/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , RNA/metabolismo
17.
Nat Commun ; 14(1): 7323, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953271

RESUMO

PUF proteins are characterized by globular RNA-binding domains. They also interact with partner proteins that modulate their RNA-binding activities. Caenorhabditis elegans PUF protein fem-3 binding factor-2 (FBF-2) partners with intrinsically disordered Lateral Signaling Target-1 (LST-1) to regulate target mRNAs in germline stem cells. Here, we report that an intrinsically disordered region (IDR) at the C-terminus of FBF-2 autoinhibits its RNA-binding affinity by increasing the off rate for RNA binding. Moreover, the FBF-2 C-terminal region interacts with its globular RNA-binding domain at the same site where LST-1 binds. This intramolecular interaction restrains an electronegative cluster of amino acid residues near the 5' end of the bound RNA to inhibit RNA binding. LST-1 binding in place of the FBF-2 C-terminus therefore releases autoinhibition and increases RNA-binding affinity. This regulatory mechanism, driven by IDRs, provides a biochemical and biophysical explanation for the interdependence of FBF-2 and LST-1 in germline stem cell self-renewal.


Assuntos
Proteínas de Caenorhabditis elegans , RNA , Animais , RNA/genética , RNA/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
J Transl Med ; 21(1): 810, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964279

RESUMO

Epitranscriptomic abnormalities, which are highly prevalent in primary central nervous system malignancies, have been identified as crucial contributors to the development and progression of gliomas. RNA epitranscriptomic modifications, particularly the reversible modification methylation, have been observed throughout the RNA cycle. Epitranscriptomic modifications, which regulate RNA transcription and translation, have profound biological implications. These modifications are associated with the development of several cancer types. Notably, three main protein types-writers, erasers, and readers, in conjunction with other related proteins, mediate these epitranscriptomic changes. This review primarily focuses on the role of recently identified RNA methylation modifications in gliomas, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), and N1-methyladenosine (m1A). We delved into their corresponding writers, erasers, readers, and related binding proteins to propose new approaches and prognostic indicators for patients with glioma.


Assuntos
Glioma , Transcriptoma , Humanos , Metilação , RNA/metabolismo , 5-Metilcitosina/metabolismo , Glioma/genética
19.
Nat Commun ; 14(1): 7390, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968266

RESUMO

Stress granules (SGs) are highly dynamic cytoplasmic membrane-less organelles that assemble when cells are challenged by stress. RNA molecules are sorted into SGs where they play important roles in maintaining the structural stability of SGs and regulating gene expression. Herein, we apply a proximity-dependent RNA labeling method, CAP-seq, to comprehensively investigate the content of SG-proximal transcriptome in live mammalian cells. CAP-seq captures 457 and 822 RNAs in arsenite- and sorbitol-induced SGs in HEK293T cells, respectively, revealing that SG enrichment is positively correlated with RNA length and AU content, but negatively correlated with translation efficiency. The high spatial specificity of CAP-seq dataset is validated by single-molecule FISH imaging. We further apply CAP-seq to map dynamic changes in SG-proximal transcriptome along the time course of granule assembly and disassembly processes. Our data portray a model of AU-rich and translationally repressed SG nanostructure that are memorized long after the removal of stress.


Assuntos
Grânulos Citoplasmáticos , RNA , Humanos , Animais , RNA/metabolismo , Células HEK293 , Grânulos Citoplasmáticos/metabolismo , Estresse Fisiológico/genética , Mamíferos/genética
20.
OMICS ; 27(11): 526-535, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943672

RESUMO

Circular RNAs (circRNAs) are of relevance to regenerative medicine and play crucial roles in post-transcriptional and translational regulation of biological processes. circRNAs are a class of RNA molecules that are formed through a unique splicing process, resulting in a covalently closed-loop structure. Recent advancements in RNA sequencing technologies and specialized computational tools have facilitated the identification and functional characterization of circRNAs. These molecules are known to exhibit stability, developmental regulation, and specific expression patterns in different tissues and cell types across various organisms. However, our understanding of circRNA expression and putative function in model organisms for regeneration is limited. In this context, this study reports, for the first time, on the repertoire of circRNAs in axolotl, a widely used model organism for regeneration. We generated RNA-seq data from intact limb, wound, and blastema tissues of axolotl during limb regeneration. The analysis revealed the presence of 35,956 putative axolotl circRNAs, among which 5331 unique circRNAs exhibited orthology with human circRNAs. In silico data analysis underlined the potential roles of axolotl circRNAs in cell cycle, cell death, and cell senescence-related pathways during limb regeneration, suggesting the participation of circRNAs in regulation of diverse functions pertinent to regenerative medicine. These new observations help advance our understanding of the dynamic landscape of axolotl circRNAs, and by extension, inform future regenerative medicine research and innovation that harness this model organism.


Assuntos
MicroRNAs , RNA Circular , Animais , Humanos , RNA Circular/genética , RNA/genética , RNA/metabolismo , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Medicina Regenerativa , Análise de Sequência de RNA/métodos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...