Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.539
Filtrar
1.
Ecotoxicol Environ Saf ; 203: 111054, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888616

RESUMO

Quinclorac (3,7-dichloroquinoline-8-carboxylic acid, QNC) is a highly selective auxin herbicide that is typically applied to paddy rice fields. Its residue is a serious problem in crop rotations. In this study, Oryza sativa L. seedlings was used as a model plant to explore its biochemical response to abiotic stress caused by QNC and nZVI coexposure, as well as the interactions between QNC and nZVI treatments. Exposure to 5 and 10 mg/L QNC reduced the fresh biomass by 26.6% and 33.9%, respectively, compared to the control. The presence of 50 and 250 mg/L nZVI alleviated the QNC toxicity, but the nZVI toxicity was aggravated by the coexist of QNC. Root length was enhanced upon exposure to low or medium doses of both QNC and nZVI, whereas root length was inhibited under high-dose coexposure. Both nZVI and QNC, either alone or in combination, significantly inhibited the biosynthesis of chlorophyll, and the inhibition rate increased with elevated nZVI and QNC concentration. It was indicated that nZVI or QNC can affect the plant photosynthesis, and there was a significant interaction between the two treatments. Effects of QNC on the antioxidant response of Oryza sativa L. differed in the shoots and roots; generally, the introduction of 50 and 250 mg/L nZVI alleviated the oxidative stress (POD in shoots, SOD and MDA in roots) induced by QNC. However, 750 mg/kg nZVI seriously damaged Oryza sativa L. seedlings, which likely resulted from active iron deficiency. QNC could be removed from the culture solution by nZVI; as a result, nZVI suppressed QNC uptake by 20%-30%.


Assuntos
Antioxidantes/metabolismo , Ferro/toxicidade , Nanopartículas/toxicidade , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/toxicidade , Poluentes do Solo/toxicidade , Transporte Biológico , Biomassa , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
2.
Ecotoxicol Environ Saf ; 203: 110961, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888621

RESUMO

Cadmium (Cd), which seriously affects plant growth and crop production, is harmful to humans. Previous studies revealed ryegrass (Lolium multiflorum Lam.) exhibits Cd tolerance, and may be useful as a potential hyperaccumulator because of its wide distribution. In this study, the physiological and transcriptional responses of two ryegrass cultivars [i.e., high (LmHC) and low (LmLC) Cd tolerance] to Cd stress were investigated and compared. The Cd tolerance of LmHC was greater than that of LmLC at various Cd concentrations. The uptake of Evans blue dye revealed that Cd-induced root cell mortality was higher in LmLC than in LmHC after a 12-h Cd treatment. Furthermore, the content and influx rate of Cd in LmLC roots were greater than in LmHC roots under Cd stress conditions. The RNA sequencing and quantitative real-time PCR data indicated that the Cd transport regulatory genes (ABCG37, ABCB4, NRAMP4, and HMA5) were differentially expressed between the LmLC and LmHC roots. This expression-level diversity may contribute to the differences in the Cd accumulation and translocation between LmLC and LmHC. These findings may help clarify the physiological and molecular mechanisms underlying ryegrass responses to Cd toxicity. Additionally, ryegrass may be able to hyperaccumulate toxic heavy metals during the phytoremediation of contaminated soil.


Assuntos
Adaptação Biológica , Cádmio/metabolismo , Lolium/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Transcrição Genética/efeitos dos fármacos , Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Genes de Plantas , Lolium/química , Lolium/genética , Raízes de Plantas/química , Raízes de Plantas/genética , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Ecotoxicol Environ Saf ; 203: 110999, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888604

RESUMO

Aluminium (Al) is a key element that plays a major role in inhibiting plant growth and productivity under acidic soils. While lipids may be involved in plant tolerance/sensitivity to Al, the role of monogalactosyldiacylglycerol (MGDG) in Al response remains unknown. In this study, Arabidopsis MGDG synthase (AtMGD) mutants (mgd1, mgd2 and mgd3) and wild-type (Col-0) plants were treated with AlCl3; the effect of aluminium on root growth, aluminium distribution, plasma membrane integrity, lipid peroxidation, hydrogen peroxide content and membrane lipid compositions were analysed. Under Al stress, mgd mutants exhibited a more severe root growth inhibition, plasma membrane integrity damage and lipid peroxidation compared to Col-0. Al accumulation in root tips showed no difference between Col-0 and mutants under Al stress. Lipid analysis demonstrated that under Al treatment the MGDG content in all plants and MGDG/DGDG (digalactosyldiacylglycerol) remarkably reduced, especially in mutants impairing the stability and permeability of the plasma membrane. These results indicate that the Arabidopsis mgd mutants are hypersensitive to Al stress due to the reduction in MGDG content, and this is of great significance in the discovery of effective measures for plants to inhibit aluminium toxicity.


Assuntos
Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Galactolipídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Alumínio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Galactolipídeos/genética , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
4.
Ecotoxicol Environ Saf ; 202: 110958, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800230

RESUMO

Phytoremediation is an effective way to repair heavy metal contaminated soil and rhizosphere microorganisms play an important role in plant regulation. Nevertheless, little information is known about the variation of microbial metabolic activities and community structure in rhizosphere during phytoremediation. In this study, the rhizosphere soil microbial metabolic activities and community structure of Trifolium repensL. during Cd-contaminated soil phytoremediation, were analyzed by Biolog EcoPlate™ and high-throughput sequencing. The uptake in the roots of Trifolium repensL. grown in 5.68 and 24.23 mg/kg Cd contaminated soil was 33.51 and 84.69 mg/kg respectively, causing the acid-soluble Cd fractions decreased 7.3% and 5.4%. Phytoremediation significantly influenced microbial community and Trifolium repensL. planting significantly increased the rhizosphere microbial population, diversity, the relative abundance of plant growth promoting bacteria (Kaistobacter and Flavisolibacter), and the utilization of difficultly metabolized compounds. The correlation analysis among substrate utilization and microbial communities revealed that the relative abundance increased microorganisms possessed stronger carbon utilization capacity, which was beneficial to regulate the stability of plant-microbial system. Collectively, the results of this study provide fundamental insights into the microbial metabolic activities and community structure during heavy metal contaminated soil phytoremediation, which may aid in the bioregulation of phytoremediation.


Assuntos
Cádmio/toxicidade , Microbiota/efeitos dos fármacos , Rizosfera , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Trifolium/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Poluentes do Solo/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/microbiologia
5.
Ecotoxicol Environ Saf ; 203: 110964, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678754

RESUMO

Soil salinization is the most common abiotic stress limiting agricultural productivity worldwide. Recent research has suggested that the application of silicon (Si) has beneficial effects against salt stress in sorghum (Sorghum bicolor L. Moench) and sunflower (Helianthus annuus L.) by regulating the antioxidant system, mineral nutrients, and other important mechanisms. However, whether these effects can be achieved through foliar application of Si, or whether Si application affects Si-accumulating (e.g., sorghum), and intermediate-Si-accumulating (e.g., sunflower) plant species differently, remains unclear. This study investigated different methods of Si application in attenuating the detrimental effects of salt stress, based on the biological responses of two distinct species of Si accumulators, under greenhouse conditions. Two pot experiments were designed as a factorial (2 × 4), randomized complete blocks design (RCBD) with control and salt-stress groups (0 and 100 mmol.L-1 NaCl), and four Si-treatment groups: control (no Si), foliar application (28.6 mmol.L-1), root application (2 mmol.L-1), and combined foliar and root applications. Our results showed that the harmful effects of salt stress were attenuated by Si treatments in both plant species, which decreased Na+ uptake and lipid peroxidation, and increased Si and K+ uptake, relative leaf water content, antioxidant enzyme activities, leaf area, and shoot dry matter. These results were more prominent when Si was applied via nutrient solution in the sorghum plants, and the combined foliar and root applications of Si in sunflower plants. In addition, foliar application of Si alone is an efficient alternative in attenuating the effects of salinity in both plant species when Si is not available in the growth medium. These results suggest that the Si application method plays an important role in Na+ detoxification by modifying the antioxidative defense mechanism, which could actively mediate some important physiological and biochemical processes and helps to increase the shoot dry matter production in sorghum and sunflower plants under salt stress.


Assuntos
Antioxidantes/metabolismo , Helianthus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Salino , Silício/farmacologia , Sorghum/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Helianthus/metabolismo , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Distribuição Aleatória , Salinidade , Solo/química , Sorghum/metabolismo
6.
Ecotoxicol Environ Saf ; 203: 110978, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678757

RESUMO

In this study, hydroponic experiments were conducted to elucidate mechanism(s) that are associated with differential effects of low (5 µM) and high (25 µM) dose of cadmium (Cd) stress in tomato. Furthermore, emphasis has also been focused on any involvement of endogenous hydrogen sulfide (H2S) in differential behaviour of low and high doses of Cd stress. At low dose of Cd, root growth i.e. root fresh weight, length and fitness did not significantly alter when compared to the control seedlings. Though at low dose of Cd, cellular accumulation of Cd was slightly increased but this was accompanied by higher endogenous H2S and phytochelatins, L-cysteine desulfhydrase (DES) activity, activities of glutathione biosynthetic and AsA-GSH cycle enzymes, and maintained redox status of ascorbate and glutathione. However, addition of hypotaurine (HT, a scavenger of H2S) resulted in greater toxicity, even at low dose of Cd, and these responses resembled with higher dose of Cd stress such as greater decline in root growth, endogenous H2S and phytochelatins, activities of DES, glutathione biosynthesis and AsA-GSH cycle enzymes, disturbed redox status of ascorbate and glutathione which collectively led to higher oxidative stress in tomato roots. Moreover, addition of HT with higher dose of Cd also further enhanced its toxicity. Collectively, the results showed that differential behaviour of low and high dose of Cd stress is mediated by differential regulation of biochemical attributes in which endogenous H2S has a crucial role.


Assuntos
Cádmio/toxicidade , Sulfeto de Hidrogênio/metabolismo , Lycopersicon esculentum/efeitos dos fármacos , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
7.
PLoS One ; 15(7): e0236424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730292

RESUMO

Grapevines, although adapted to occasional drought or salt stress, are relatively sensitive to growth- and yield-limiting salinity stress. To understand the molecular mechanisms of salt tolerance and endoplasmic reticulum (ER) stress and identify genes commonly regulated by both stresses in grapevine, we investigated transcript profiles in leaves of the salt-tolerant grapevine rootstock 1616C under salt- and ER-stress. Among 1643 differentially expressed transcripts at 6 h post-treatment in leaves, 29 were unique to ER stress, 378 were unique to salt stress, and 16 were common to both stresses. At 24 h post-treatment, 243 transcripts were unique to ER stress, 1150 were unique to salt stress, and 168 were common to both stresses. GO term analysis identified genes in categories including 'oxidative stress', 'protein folding', 'transmembrane transport', 'protein phosphorylation', 'lipid transport', 'proteolysis', 'photosynthesis', and 'regulation of transcription'. The expression of genes encoding transporters, transcription factors, and proteins involved in hormone biosynthesis increased in response to both ER and salt stresses. KEGG pathway analysis of differentially expressed genes for both ER and salt stress were divided into four main categories including; carbohydrate metabolism, amino acid metabolism, signal transduction and lipid metabolism. Differential expression of several genes was confirmed by qRT-PCR analysis, which validated our microarray results. We identified transcripts for genes that might be involved in salt tolerance and also many genes differentially expressed under both ER and salt stresses. Our results could provide new insights into the mechanisms of salt tolerance and ER stress in plants and should be useful for genetic improvement of salt tolerance in grapevine.


Assuntos
Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/genética , Estresse Salino/genética , Vitis/genética , Metabolismo dos Carboidratos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Análise de Sequência com Séries de Oligonucleotídeos , Osmose , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/metabolismo , Tunicamicina/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-32580091

RESUMO

Little information is available on the interaction of CuO nanoparticles (nCuO) with tuberous roots. In this study, Beauregard-14 (B-14, low lignin) and Covington (COV, high lignin) sweetpotato varieties were cultivated until maturity in soil amended with nCuO, bulk copper oxide (bCuO) and CuCl2 at 25-125 mg/kg. The Cu treatments had no significant influence on chlorophyll content. Gas exchange parameters were not affected in B-14. In COV, however, at 125 mg/kg treatments, bCuO reduced the intercellular CO2 (11%), while CuCl2 increased it by 7%, compared with control (p ≤ 0.035). At 25 mg/kg nCuO increased the length of COV roots (20.7 ± 2.0 cm vs. 14.6 ± 0.8 cm, p ≤ 0.05). In periderm of B-14, nCuO, at 125 mg/kg, increased Mg by 232%, while the equivalent concentration of CuCl2 reduced P by 410%, compared with control (p ≤ 0.05). The data suggest the potential application of nCuO as nanofertilizer for sweetpotato storage root production.


Assuntos
Cobre/farmacologia , Ipomoea batatas/efeitos dos fármacos , Nanopartículas Metálicas , Raízes de Plantas/efeitos dos fármacos , Óxidos , Solo
9.
Bull Environ Contam Toxicol ; 105(1): 51-61, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32561951

RESUMO

Tissue culture of Berula erecta is suitable cultivation system for research purposes connected with contamination and phytoremediation studies. In previous investigation we determined the optimal dose concentration at which Se stimulates plant growth and positively affects the antioxidative status in this experimental system. In current study, we investigate its response to exposure to lead (Pb) and further the possible protective effect of Se(IV) against Pb exposure. Plants were grown in 10 and 50 mg Pb L-1 solution without and with added Se (0.1 mg L-1) for six weeks. Plants possessed a high affinity to uptake Pb and Se in roots. Addition of Pb inhibited roots elongations and the plant height. In contrast, the combined effect of Se + Pb treatment was reflected in increased weight of plants when compared to Pb treatment alone. Pb decreased the amount of chlorophylls and consequently photochemical efficiency was lowered, whereas in Pb + Se treatment the photochemical efficiency was higher. Furthermore, Pb treatment caused a gradual increase in glutathione in both roots and shoots, however, to a greater percentage in shoots when compared to controls. Exposure to both Pb and Se did not cause any significant changes in root's glutathione level when compared to Pb treatment alone. In shoots, the combined treatment lowered the glutathione significantly, but the levels remained 50% above those of untreated control samples, reflecting that this might be related with the antioxidative effects of Se treatment.


Assuntos
Antioxidantes , Apiaceae , Chumbo/toxicidade , Selênio , Biodegradação Ambiental , Glutationa , Raízes de Plantas/efeitos dos fármacos , Plantas/efeitos dos fármacos
10.
Ecotoxicol Environ Saf ; 201: 110805, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540618

RESUMO

Screening new accumulators of heavy metal and identifying their tolerance, enrichment capacity of heavy metals are currently hot issues in phytoremediation research. A series of hydroponic experiments were conducted to analyze the effects of glutathione and phytochelatins in roots, stems, and leaves of Perilla frutescens under cadmium stress. The results showed that the non-protein thiols in roots and stems mainly existed in the form of GSH, PC2, PC3, and PC4 under Cd stress condition, while in leaves they existed in the form of GSH, PC2, and PC3. Furthermore, the contents of GSH and PCs positively correlated with Cd, but negatively correlated with root vigor and chlorophyll content under Cd stress conditions. After 21 days of treatments, the contents of Cd in different parts of the plant were 1465.2-3092.9 mg· kg-1 in the roots, 199.6-478.4 mg·kg-1 in the stems and 61.3-96.9 mg· kg-1 in the leaves at 2, 5, 10 mg·L-1 Cd levels respectively, and the amount of Cd uptakes were up to 3547.7-5701.7 µg·plant-1. Therefore, P. frutescens performed high capacity in Cd accumulation, and PCs played a key role in Cd tolerance. The application prospect of the plant in phytoremediation Cd polluted soil was also discussed.


Assuntos
Cádmio/toxicidade , Glutationa/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Perilla frutescens/metabolismo , Fitoquelatinas/biossíntese , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Cádmio/metabolismo , Clorofila/metabolismo , Perilla frutescens/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Compostos de Sulfidrila/metabolismo
11.
Ecotoxicol Environ Saf ; 201: 110784, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485494

RESUMO

Biscutella auriculata L. is one of the rare species that is able to grow in a very contaminated mining area in Villamayor de Calatrava (Ciudad Real, Spain). In an effort to understand the mechanisms involved in the tolerance of this plant to high metal concentrations, we grew B. auriculata in the presence of 125 µM Cd(NO3)2 for 15 days and analysed different parameters associated with plant growth, nitric oxide and reactive oxygen species metabolism, metal uptake and translocation, photosynthesis rate and biothiol (glutathione and phytochelatins) content. Treatment with Cd led to growth inhibition in both the leaves and the roots, as well as a reduction of photosynthetic parameters, transpiration and stomatal conductance. The metal was mainly accumulated in the roots and in the vascular tissue, although most Cd was detected in areas surrounding their epidermal cells, while in the leaves the metal accumulated mainly in spongy mesophyll, stomata and trichrome. Based on the Cd bioaccumulation (5.93) and translocation (0.15) factors, this species denoted enrichment of the metal in the roots and its low translocation to the upper tissues. Biothiol analysis showed a Cd-dependent increase of reduced glutathione (GSH) as well as the phytochelatins (PC2 and PC3) in both roots and leaves. Cd-promoted oxidative damage occurred mainly in the leaves due to disturbances in enzymatic and nonenzymatic antioxidants, while the roots did not show significant damage as a result of induction of antioxidant defences. It can be concluded that B. auriculata is a new Cd-tolerant plant with an ability to activate efficient metal-sequestering mechanisms in the root surface and leaves and to induce PCs, as well as antioxidative defences in roots.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Brassicaceae/efeitos dos fármacos , Cádmio/toxicidade , Mineração , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Brassicaceae/metabolismo , Cádmio/metabolismo , Glutationa/metabolismo , Modelos Teóricos , Oxirredução , Fotossíntese/efeitos dos fármacos , Fitoquelatinas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Espanha
12.
Chemosphere ; 257: 127247, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32534296

RESUMO

Chelate-assisted phytoextraction by high biomass producing macrophyte plant Typha latifolia L. commonly known as cattail, is gaining much attention worldwide. The present study investigated the effects of Lead (Pb) and Mercury (Hg) on physiology and biochemistry of plant, Pb and Hg uptake in T. latifolia with and without citric acid (CA) amendment. The uniform seedlings of T. latifolia were treated with various concentrations in the hydroponics as: Pb and Hg (1, 2.5, 5 mM) each alone and/or with CA (5 mM). After four weeks of treatments, the results revealed that Pb and Hg significantly reduced the plant agronomic traits as compare to non-treated plants. The addition of CA improved the plant physiology and enhanced the antioxidant enzymes activities to overcome Pb and Hg induced oxidative damage and electrolyte leakage. Our results depicted that Pb and Hg uptake and accumulation by T. latifolia was dose depend whereas, the addition of CA further increased the concentration and accumulation of Pb and Hg by up to 22 & 35% Pb and 72 & 40% Hg in roots, 25 & 26% Pb and 85 & 60% Hg in stems and 22 & 15 Pb and 100 & 58% Hg in leaves respectively compared to Pb and Hg treated only plants. On other hand, the root-shoot translocation factor was ≥1 and bioconcentration factor was also ≥2 for both Pb & Hg. The results also revealed that T. latifolia showed greater tolerance towards Hg and accumulated higher Hg in all parts compared with Pb.


Assuntos
Ácido Cítrico/metabolismo , Chumbo/metabolismo , Mercúrio/metabolismo , Poluentes do Solo/metabolismo , Typhaceae/fisiologia , Biodegradação Ambiental , Biomassa , Folhas de Planta/química , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes do Solo/análise , Typhaceae/efeitos dos fármacos
13.
Ecotoxicol Environ Saf ; 201: 110735, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480163

RESUMO

Methyl jasmonate (Me-JA) is a plant growth regulator known for modulating plant responses to various abiotic and biotic stresses. The unavoidable arsenic (As) contamination in rice (Oryza sativa) results in reduced crop yield and greater carcinogenic risk to humans. The present work examines the significance of Me-JA induced molecular signaling and tolerance towards arsenic toxicity in rice. The arsenite (AsIII; 25 µM) stress hampered the overall growth and development of the rice seedling. However, the co-application (25 µM AsIII+0.25 µM Me-JA) resulted in increased biomass, chlorophyll content, enhanced antioxidant enzyme activities as compared to AsIII treated plants. The co-application also demonstrated a marked decrease in malondialdehyde content, electrolyte leakage and accumulation of total AsIII content (root + shoot) as compared to AsIII treated plants. The co-application also modulated the expression of genes involved in downstream JA signaling pathway (OsCOI, OsJAZ3, OsMYC2), AsIII uptake (OsLsi1, OsLsi2, OsNIP1;1, OsNIP3;1), translocation (OsLsi6, and OsINT5) and detoxification (OsNRAMP1, OsPCS2, and OsABCC2) which revealed the probable adaptive response of the rice plant to cope up arsenic stress. Our findings reveal that Me-JA alleviates AsIII toxicity by modulating signaling components involved in As uptake, translocation, and detoxification and JA signaling in rice. This study augments our knowledge for the future use of Me-JA in improving tolerance against AsIII stress.


Assuntos
Acetatos/farmacologia , Arsênico/toxicidade , Ciclopentanos/farmacologia , Oryza/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Acetatos/metabolismo , Arsênico/metabolismo , Arsenitos/metabolismo , Arsenitos/toxicidade , Transporte Biológico , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-32353678

RESUMO

Nitric oxide (NO) has signalling roles in plant stress responses. Cadmium (Cd) and arsenic (As) soil pollutants alter plant development, mainly the root-system, by increasing NO-content, triggering reactive oxygen species (ROS), and forming peroxynitrite by NO-reaction with the superoxide anion. Interactions of NO with ROS and peroxynitrite seem important for plant tolerance to heavy metal(oid)s, but the mechanisms underlying this process remain unclear. Our goal was to investigate NO-involvement in rice (Oryza sativa L.) root-system after exposure to Cd or As, to highlight possible differences in NO-behaviour between the two pollutants. To the aim, morpho-histological, chemical and epifluorescence analyses were carried out on roots of different origin in the root-system, under exposure to Cd or As, combined or not with sodium nitroprusside (SNP), a NO-donor compound. Results show that increased intracellular NO levels alleviate the root-system alterations induced by Cd, i.e., inhibition of adventitious root elongation and lateral root formation, increment in lignin deposition in the sclerenchyma/endodermis cell-walls, but, even if reducing As-induced endodermis lignification, do not recover the majority of the As-damages, i.e., enhancement of AR-elongation, reduction of LR-formation, anomalous tissue-proliferation. However, NO decreases both Cd and As uptake, without affecting the pollutants translocation-capability from roots to shoots. Moreover, NO reduces the Cd-induced, but not the As-induced, ROS levels by triggering peroxynitrite production. Altogether, results highlight a different behaviour of NO in modulating rice root-system response to the toxicity of the heavy metal Cd and the metalloid As, which depends by the NO-interaction with the specific pollutant.


Assuntos
Arsênico , Cádmio , Óxido Nítrico , Oryza , Raízes de Plantas , Arsênico/toxicidade , Cádmio/toxicidade , Óxido Nítrico/farmacologia , Oryza/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade
15.
Artigo em Inglês | MEDLINE | ID: mdl-32472470

RESUMO

A short term pot trail was employed to evaluate the exposure of mixed heavy metals (Cu, Pb and Zn) on growth, radial oxygen loss (ROL) and root anatomy in Bruguiera gymnorrhiza. The possible function of BgC4H, a cytochrome P450 gene, on root lignification was also discussed. The exposures of mixed Cu, Pb and Zn directly reduce O2 leakage at root surface. The reduced ROL inhibited by heavy metals was mainly ascribed by the changes in root anatomical features, such as decreased root porosity together with increased lignification within the exodermis. BgC4H was found to be up-regulated after 0.5-day metal exposure, and remained higher transcript levels within 3-day metal exposure when compared to control roots. Besides, the inhibited photosynthesis may also result in less oxygen can be transported to the underground roots. In summary, the mangrove B. gymnorrhiza appeared to react to external mixed metal contaminants by developing a lignified and impermeable exodermis, and such a root barrier induced by mixed Cu, Pb and Zn appeared to be an adaptive response to block metal ions enters into the roots.


Assuntos
Metais Pesados/toxicidade , Oxigênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Rhizophoraceae , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Cobre , Chumbo , Raízes de Plantas/fisiologia , Zinco
16.
Chemosphere ; 251: 126424, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443239

RESUMO

Phytoremediation via phyto-extraction is well recognized and sustainable principle for the economical removal of heavy metals from contaminated water and soil. The twofold objective of the present research work was to investigate the remediation potential of fenugreek for Cu under the influence of ascorbic acid (AA). The effect of copper-ascorbic acid chelation on the growth regulation of fenugreek (Trigonella foenum-graceum L.) and its potential to accumulate Cu was investigated in hydroponic medium to optimize concentration with complete randomized design (CRD). Juvenile fenugreek plants were treated with different treatments of AA (5 mM) and Cu (100, 250 and 500 µM). The different morpho-physiological parameters of fenugreek plant such as growth, biomass and chlorophylls were significantly reduced under Cu stress. However, the activities of antioxidant enzymes, electrolyte leakage and reactive oxygen species enhanced with increasing concentration of applied Cu. Results indicated significant increase in plant growth, biomass, physiology and antioxidant enzymes and decrease in reactive oxygen species and electrolyte production in AA mediated fenugreek plants compared to controls and Cu only treated plants. However, it was also found that AA enhanced Cu concentration maximum up to 42% in leaf, 18% in stem and 45% in roots as compared to Cu treated only plants. Moreover, application of AA signified the research results revealing to act as growth regulator and chelator under Cu stress.


Assuntos
Biodegradação Ambiental , Cobre/metabolismo , Poluentes do Solo/metabolismo , Trigonella/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/farmacologia , Biomassa , Clorofila , Cobre/análise , Metais Pesados/metabolismo , Folhas de Planta/química , Raízes de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Solo , Poluentes do Solo/análise
17.
Ecotoxicol Environ Saf ; 200: 110779, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460045

RESUMO

Melon is of great value in food, medicine and industry. In recent years, the continuous cropping obstacles of melon is increasingly prominent, which seriously affects the cultivation. Autotoxicity is the key factor for the obstacles. Root is the first line against autotoxicity and main organs for autotoxins secretion. Some physiological responses and differentially expressed genes (DEGs) related to autotoxicity are only limited to root system. Considering the lack of relevant research, physiological researches combined with transcriptome sequencing of melon seedling after autotoxicity stress mediated by root exudates (RE) was performed to help characterize the response mechanism to autotoxicity in melon roots. The results showed that autotoxicity inhibited root morphogenesis of melon seedlings, induced the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation in roots, and activated most antioxidant enzymes. Compared with the control group, the osmoregulation substance content was always at a high level. DEGs response to autotoxicity in roots were distinguished from that in leaves. Functional annotation of these DEGs suggested that autotoxicity affected biological regulation in a negative manner. DEGs were mainly involved in the synthesis of antioxidants, DNA damage and metabolism, and stress response. These setbacks were associated with the deterioration of root morphogenesis, generation of dwarf and slender roots, and ultimately leading to plant death. The results may provide important information for revealing the response mechanism of root to autotoxicity, and provide theoretical basis for solving the continuous cropping obstacles in melon.


Assuntos
Produção Agrícola/métodos , Cucumis melo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Transcriptoma/efeitos dos fármacos , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Peroxidação de Lipídeos/efeitos dos fármacos , Osmorregulação/efeitos dos fármacos , Estresse Oxidativo/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
18.
Ecotoxicol Environ Saf ; 199: 110727, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32446101

RESUMO

Sulfonamides (SAs) are antibiotics widely used in clinical practice, livestock and poultry production, and the aquaculture industry. The compounds enter the soil environment largely through livestock and poultry manure application to farmland. SAs not only affect plant growth, but also pose a potential threat to human health through SA residues in plant tissues. In particular, sulfamethoxazole (SMZ) has been classified as a Category 3 carcinogen by the World Health Organization, and thus its soil ecological toxicity and possible health risks are of concern. Using A. thaliana as a model plant, stress responses and biological residues of sulfadiazine (SD), sulfametoxydiazine (SMD), and SMZ were investigated in the present study. Root length and aboveground plant biomass were significantly inhibited by the three types of SA, whereas lateral roots exposed to SMD grew vigorously. The contents of chlorophyll a and chlorophyll b and photosystem II maximum photochemical quantum yield declined with increase in drug concentration, which indicated that exposure to SAs affected photosynthesis and inhibited chlorophyll synthesis in A. thaliana. With increase in drug concentration, reactive oxygen species (ROS) accumulation in the leaves increased significantly. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were activated at low SA concentrations, but increased lipid peroxidation occurred with increase in SA concentration. Of the three compounds, SMZ was the most toxic to A. thaliana, followed by SD, and SMD was the least toxic. The results indicated that the risk of SMD entering an organism through the food chain is greater than that for SMZ and SD.


Assuntos
Antibacterianos/toxicidade , Arabidopsis/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Sulfanilamidas/toxicidade , Antioxidantes/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Clorofila/metabolismo , Clorofila A/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
PLoS One ; 15(5): e0228515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407318

RESUMO

BACKGROUND: Recently, it was found that 1% Phytagel plates used to conduct Arabidopsis thaliana seedling phenotypic analysis no longer reproduced previously published results. This Phytagel, which is produced in China (Phytagel C), has replace American-made Phytagel (Phytagel), which is no longer commercially available. In this study, we present the impact of Phytagel produced in the United States vs. China on seedling phenotypic analysis. As a part of this study, an alternative gelling agent has been identified that is capable of reproducing previously published seedling morphometrics. RESULTS: Phytagel and Phytagel C were investigated based on their ability to reproduce the subtle phenotype of the sob3-4 esc-8 double mutant. Fluence-rate-response analysis of seedlings grown on 1% Phytagel C plates failed to replicate the sob3-4 esc-8 subtle phenotype seen on 1% Phytagel. Furthermore, root penetrance analysis showed a significant difference between sob3-4 esc-8 seedlings grown on 1% Phytagel and 1% Phytagel C. It was also found that 1% Phytagel C was significantly harder than 1% Phytagel. As a replacement for Phytagel C, Gellan was tested. 1% Gellan was able to reproduce the subtle phenotype of sob3-4 esc-8. Furthermore, there was no significant difference in root penetration of the wild type or sob3-4 esc-8 seedlings between 1% Phytagel and 1% Gellan. This may be due to the significant reduction in hardness in 1% Gellan plates compared to 1% Phytagel plates. Finally, we tested additional concentrations of Gellan and found that seedlings on 0.6% Gellan looked more uniform while also being able to reproduce previously published results. CONCLUSIONS: Phytagel has been the standard gelling agent for several studies involving the characterization of subtle seedling phenotypes. After production was moved to China, Phytagel C was no longer capable of reproducing these previously published results. An alternative gelling agent, Gellan, was able to reproduce previously published seedling phenotypes at both 1% and 0.6% concentrations. The information provided in this manuscript is beneficial to the scientific community as whole, specifically phenomics labs, as it details key problematic differences between gelling agents that should be performing identically (Phytagel and Phytagel C).


Assuntos
Arabidopsis/crescimento & desenvolvimento , Géis/farmacologia , Reprodução/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fenômica , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Reprodução/genética , Plântula/efeitos dos fármacos , Plântula/genética
20.
Chemosphere ; 256: 127046, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32438129

RESUMO

Although it was well known that arbuscular mycorrhizal fungus (AMF) inoculation significantly increased atrazine dissipation in the soil, the effect of AMF on bacterial community, especially potential atrazine-degrading bacteria mediating atrazine dissipation has been overlooked. In the present study, there were four different treatments: Funnelliformis mosseae inoculation with or without atrazine; and non-AMF inoculation with or without atrazine. F. mosseae significantly increased atrazine dissipation rate from 28.7% to 53.3%. Then 16S rRNA gene sequencing results indicated that bacteria community differed significantly by F. mosseae inoculation and atrazine addition. The Shannon index decreased significantly with AMF and atrazine at phylum and family level, and significant inhibition of atrazine on evenness was also observed. LEFSe analysis revealed that Terrimonas and Arthrobacter were significantly associated with F. mosseae, as well as unidentified_Nitrospiraceae associated with atrazine addition. There are several bacterial taxa associated with both F. mosseae inoculation and atrazine addition. Totally, twelve atrazine-degrading bacterial genera (>0.10%) were identified. When atrazine was added, the abundance of Arthrobacter, Burkholderia, Mycobacterium and Streptomyces increased in F. mosseae inoculation treatment, but Nocardioides, Pseudomonas, Bradyrhizobium, Rhizobium, Rhodobacter, Methylobacterium, Bosea and Shinella decreased. In the presence of atrazine, activities of dehydrogenase, urease, acid and alkaline phosphatase in F. mosseae inoculation treatment were significantly higher than those in non-inoculation. However, there was no significant relationship between bacterial community and any soil enzyme activity in four treatments. Our findings reveal the potential relationship between soil bacterial community and AMF inoculation during atrazine dissipation.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Micorrizas/fisiologia , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Glomeromycota/fisiologia , Raízes de Plantas/efeitos dos fármacos , RNA Ribossômico 16S , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA