Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.567
Filtrar
1.
J Agric Food Chem ; 67(45): 12408-12418, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31644287

RESUMO

Vegetables are an ideal source of human Se intake; it is important to understand selenium (Se) speciation in plants due to the distinct biological functions of selenocompounds. In this hydroponic study, the accumulation and assimilation of selenite and selenate in pak choi (Brassica rapa), a vastly consumed vegetable, were investigated at 1-168 h with HPLC speciation and RNA-sequencing. The results showed that the Se content in shoots and Se translocation factors with selenate addition were at least 10.81 and 11.62 times, respectively, higher than those with selenite addition. Selenite and selenate up-regulated the expression of SULT1;1 and PHT1;2 in roots by over 240% and 400%, respectively. Selenite addition always led to higher proportions of seleno-amino acids, while SeO42- was dominant under selenate addition (>49% of all Se species in shoots). However, in roots, SeO42- proportions declined substantially by 51% with a significant increase of selenomethionine proportions (63%) from 1 to 168 h. Moreover, with enhanced transcript of methionine gamma-lyase (60% of up-regulation compared to the control) plus high levels of methylselenium in shoots (approximately 70% of all Se species), almost 40% of Se was lost during the exposure under the selenite treatment. This work provides evidence that pak choi can rapidly transform selenite to methylselenium, and it is promising to use the plant for Se biofortification.


Assuntos
Brassica rapa/genética , Brassica rapa/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Biotransformação , Brassica rapa/química , Brassica rapa/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Hidroponia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ácido Selênico/análise , Ácido Selenioso/análise , Selênio/análise , Análise de Sequência de RNA
2.
Plant Mol Biol ; 101(4-5): 487-498, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31560104

RESUMO

KEY MESSAGE: The transcriptional profile of roots is highly affected by shoot illumination. Transcriptogram analysis allows the identification of cellular processes that are not detected by DESeq. Light is a key environmental factor regulating plant growth and development. Arabidopsis thaliana seedlings grown under light display a photomorphogenic development pattern, showing short hypocotyl and long roots. On the other hand, when grown in darkness, they display skotomorphogenic development, with long hypocotyls and short roots. Although many signals from shoots might be important for triggering root growth, the early transcriptional responses that stimulate primary root elongation are still unknown. Here, we aimed to investigate which genes are involved in the early photomorphogenic root development of dark grown roots. We found that 1616 genes 4 days after germination (days-old), and 3920 genes 7 days-old were differently expressed in roots when the shoot was exposed to light. Of these genes, 979 were up regulated in 4 days and 2784 at 7 days-old. We compared the functional categorization of differentially regulated processes by two methods: GO term enrichment and transcriptogram analysis. Expression analysis of nine selected candidate genes in roots confirmed the data observed in the RNA-seq analysis. Loss-of-function mutants of these selected differentially expressed genes suggest the involvement of these genes in root development in response to shoot illumination. Our findings are consistent with the observation that dark grown roots respond to the shoot-perceived aboveground light environment.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Escuridão , Iluminação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
3.
J Agric Food Chem ; 67(36): 10235-10244, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31436988

RESUMO

Tea provides a rich taste and has healthy properties due to its variety of bioactive compounds, such as theanine, catechins, and caffeine. Theanine is the most abundant free amino acid (40%-70%) in tea leaves. Key genes related to theanine biosynthesis have been studied, but relatively little is known about the regulatory mechanisms of theanine accumulation in tea leaves. Herein, we analyzed theanine content in tea (Camellia sinensis) and oil tea (Camellia oleifera) and found it to be higher in the roots than in other tissues in both species. The theanine content was significantly higher in tea than oil tea. To explore the regulatory mechanisms of theanine accumulation, we identified genes involved in theanine biosynthesis by RNA-Seq analysis and compared theanine-related modules. Moreover, we cloned theanine synthase (TS) promoters from tea and oil tea plants and found that a difference in TS expression and cis-acting elements may explain the difference in theanine accumulation between the two species. These data provide an important resource for regulatory mechanisms of theanine accumulation in tea plants.


Assuntos
Camellia sinensis/genética , Camellia/genética , Glutamatos/biossíntese , Proteínas de Plantas/genética , Transcriptoma , Camellia/química , Camellia/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Glutamatos/análise , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
4.
J Agric Food Chem ; 67(35): 9738-9748, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31411877

RESUMO

The presence of chromium (Cr) in cultivated fields affects carbohydrate metabolism of rice (Oryza sativa L.) and weakens its productivity. Little is known about the molecular mechanism of sucrose metabolism underlying Cr stress response in rice plants. In the present study, the transcriptome map of sucrose metabolism in rice seedlings exposed to both trivalent and hexavalent chromium was investigated using Agilent 4 × 44K rice microarray analysis. Results indicated that Cr exposure (3 days) significantly (p < 0.05) improved sucrose accumulation, and altered the activities of sucrose synthetase, sucrose phosphate phosphatase, and amylosynthease in rice tissues. We identified 119 differentially regulated genes involved in 17 sucrose metabolizing enzymes and found that gene responses in roots were significantly (p < 0.05) stronger than in shoots under both Cr(III) and Cr(VI) treatment. The network maps of gene regulation responsible for sucrose metabolism in rice plants provide a theoretical basis for further cultivating Cr-resistant rice cultivars through molecular genetic improvement.


Assuntos
Cromo/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/metabolismo , Poluentes do Solo/farmacologia , Sacarose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
5.
DNA Cell Biol ; 38(10): 1056-1068, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31403329

RESUMO

The AP2/ERF (APETALA2/ETHYLENE RESPONSE FACTOR) transcription factor represents one of the largest plant-specific transcriptional regulators in plants. ERF plays important roles in the regulation of various developmental processes and acts as a mediator in plant external stress responses. However, the research of the ERF gene family is still limited in alfalfa (Medicago sativa L.), one of the most important forage legume species in the world. In the present study, a total of 159 ERF genes were identified, and the phylogenetic reconstruction, classification, conserved motifs, signal peptide prediction, and expression patterns under salt, drought, and low-temperature stresses of these ERF genes were comprehensively analyzed. The ERF genes family in alfalfa could be classified into 10 groups and predicted to be strongly homologous. Based on the structure and functions relationships, the III and IV subfamilies were more likely to play functions in abiotic stresses and 18 MsERF genes were selected for further quantitative real-time PCR validation in different stresses treatment. The results showed that all these MsERF genes were upregulated under three stresses except MsERF008. This study identified the possibility of abiotic tolerance candidate genes playing various roles in stress resistance at the whole-genome level, which would provide primary understanding for exploring ERF-mediated tolerance in alfalfa.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Medicago sativa/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Temperatura Baixa , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Secas , Perfilação da Expressão Gênica , Medicago sativa/classificação , Medicago sativa/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Mapeamento de Interação de Proteínas , Isoformas de Proteínas , Salinidade , Estresse Fisiológico
6.
J Sci Food Agric ; 99(14): 6418-6430, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31294466

RESUMO

BACKGROUND: Dracocephalum kotschyi Boiss. is a valuable source of rosmarinic acid (RA) and methoxylated hydroxyflavones (such as xanthomicrol and cirsimaritin) with antioxidative and antiplatelet effects and with antiproliferative potential against various cancer cells. The extensive application of nanotechnology in hairy root cultures is a new sustainable production platform for producing these active constituents. In the present study, hairy roots derived from 4-week-old leaves and Agrobacterium rhizogenes strain ATCC15834 were used to investigate the impact of various concentrations of iron oxide nanoparticles (Fe NPs) in two elicitation time exposures (24 and 48 h) on growth, antioxidant enzyme activity, total phenolic and flavonoid content (TPC and TFC), and some polyphenols. Gene expression levels of phenylalanine ammonia-lyase (pal) and rosmarinic acid synthase (ras) were also analyzed. RESULTS: Iron nanoparticles enhanced biomass accumulation in hairy roots. The treatment time and Fe NP dosage largely improved the activity of antioxidant enzymes, TPC and TFC. The highest RA (1194 µg g-1 FW) content (9.7-fold), compared to controls, was detected with 24 h of exposure to 75 mg L-1 Fe NP, which was consistent with the expression of pal and ras genes under the influence of elicitation. The xanthomicrol, cirsimaritin, and isokaempferide content was increased 11.87, 3.85, and 2.27-fold, respectively. CONCLUSION: Stimulation of D. kotschyi hairy roots by Fe NPs led to a significant increase in the induction and production of important pharmaceutical compounds such as rosmarinic acid and xanthomicrol. © 2019 Society of Chemical Industry.


Assuntos
Antineoplásicos Fitogênicos/biossíntese , Compostos Férricos/farmacologia , Flavonoides/biossíntese , Lamiaceae/efeitos dos fármacos , Lamiaceae/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Lamiaceae/genética , Lamiaceae/crescimento & desenvolvimento , Nanopartículas/química , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
7.
Plant Mol Biol ; 101(1-2): 129-148, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267256

RESUMO

Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for fruit tree cultivation such as apple (Malus × domestica) leading very often to a decrease of fruit productivity and quality worsening. Aim of this study was to characterize common and specific features of plant response to Fe and P deficiencies by ionomic, transcriptomic and exudation profiling of apple roots. Under P deficiency, the root release of oxalate and flavonoids increased. Genes encoding for transcription factors and transporters involved in the synthesis and release of root exudates were upregulated by P-deficient roots, as well as those directly related to P acquisition. In Fe-deficiency, plants showed an over-accumulation of P, Zn, Cu and Mn and induced the transcription of those genes involved in the mechanisms for the release of Fe-chelating compounds and Fe mobilization inside the plants. The intriguing modulation in roots of some transcription factors, might indicate that, in this condition, Fe homeostasis is regulated by a FIT-independent pathway. In the present work common and specific features of apple response to Fe and P deficiency has been reported. In particular, data indicate similar modulation of a. 230 genes, suggesting the occurrence of a crosstalk between the two nutritional responses involving the transcriptional regulation, shikimate pathway, and the root release of exudates.


Assuntos
Ferro/deficiência , Malus/fisiologia , Fósforo/deficiência , Transcriptoma , Transporte Biológico , Perfilação da Expressão Gênica , Homeostase , Ferro/metabolismo , Malus/genética , Fósforo/metabolismo , Exsudatos de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Análise de Sequência de RNA
8.
Plant Mol Biol ; 101(1-2): 81-93, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31201686

RESUMO

KEY MESSAGE: Here we show that accumulation of galactose-containing lipids in plastid membranes in shoots and the other membranes in roots maintains Arabidopsis growth under acidic stress and acidic phosphate deficiency. Soil acidification and phosphate deficiency are closely related to each other in natural environments. In addition to the toxicity of high proton concentrations, acid soil can lead to imbalances of ion availability and nutritional deficiencies, including inorganic phosphate (Pi). Among plants, activation of non-phosphorus-containing galactolipid, digalactosyldiacylglycerol (DGDG), synthesis concomitant with phospholipid degradation, namely membrane lipid remodeling, is crucial for coping with Pi starvation. However, regulation mechanisms of membrane lipid composition during acidic stress have not been clarified. Here, we investigated lipid metabolism in Arabidopsis thaliana grown under acidic stress with or without Pi. Under Pi-sufficient acidic conditions, DGDG was increased in shoot membranes, and some Pi starvation-responsive genes that are involved in lipid remodeling were upregulated without reducing Pi content in leaves. In contrast, under acidic Pi deficiency, membrane lipid remodeling in roots was partially repressed at a lower external pH. Nevertheless, phenotypic comparison between wild type and the double mutant of MGD2/3, which are responsible for DGDG accumulation during Pi starvation, indicated that the complete absence of lipid remodeling in roots resulted in a loss of tolerance to Pi deficiency rather specifically under acidic conditions. This result suggested important physiological roles of galactolipid-enriched membranes under acidic Pi deficiency.


Assuntos
Arabidopsis/fisiologia , Galactolipídeos/metabolismo , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Fosfatos/deficiência , Fosfolipídeos/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plastídeos/metabolismo , Estresse Fisiológico
9.
Int J Mol Sci ; 20(11)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181633

RESUMO

The growth and development of maize roots are closely related to drought tolerance. In order to clarify the molecular mechanisms of drought tolerance between different maize (Zea mays L.) varieties at the protein level, the isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics were used for the comparative analysis of protein expression in the seedling roots of the drought-tolerant Chang 7-2 and drought-sensitive TS141 maize varieties under 20% polyethylene glycol 6000 (PEG 6000)-simulated drought stress. We identified a total of 7723 differentially expressed proteins (DEPs), 1243 were significantly differentially expressed in Chang 7-2 following drought stress, 572 of which were up-regulated and 671 were down-regulated; 419 DEPs were identified in TS141, 172 of which were up-regulated and 247 were down-regulated. In Chang 7-2, the DEPs were associated with ribosome pathway, glycolysis/gluconeogenesis pathway, and amino sugar and nucleotide sugar metabolism. In TS141, the DEPs were associated with metabolic pathway, phenylpropanoid biosynthesis pathway, and starch and sucrose metabolism. Compared with TS141, the higher drought tolerance of Chang 7-2 root system was attributed to a stronger water retention capacity; the synergistic effect of antioxidant enzymes; the strengthen cell wall; the osmotic stabilization of plasma membrane proteins; the effectiveness of recycling amino acid; and an improvement in the degree of lignification. The common mechanisms of the drought stress response between the two varieties included: The promotion of enzymes in the glycolysis/gluconeogenesis pathway; cross-protection against the toxicity of aldehydes and ammonia; maintenance of the cell membrane stability. Based on the proteome sequencing information, the coding region sequences of eight DEP-related genes were analyzed at the mRNA level by quantitative real-time PCR (qRT-PCR). The findings of this study can inform the future breeding of drought-tolerant maize varieties.


Assuntos
Secas , Pressão Osmótica , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteoma/genética , Zea mays/metabolismo
10.
Plant Physiol Biochem ; 141: 332-342, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207494

RESUMO

Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.


Assuntos
Interações Hospedeiro-Parasita , Nematoides/patogenicidade , Raízes de Plantas/parasitologia , Plantas/parasitologia , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Feminino , Genoma de Planta , Masculino , Doenças das Plantas/parasitologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/genética , Plantas/genética , Plantas Geneticamente Modificadas/parasitologia , Locos de Características Quantitativas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transcriptoma , Virulência/genética
11.
BMC Genomics ; 20(1): 519, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234790

RESUMO

BACKGROUND: Banana wilt disease, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), is one of the most devastating diseases in banana (Musa spp.). Foc is a soil borne pathogen that causes rot of the roots or wilt of leaves by colonizing the xylem vessels. The dual RNA sequencing is used to simultaneously assess the transcriptomes of pathogen and host. This method greatly helps to understand the responses of pathogen and host to each other and discover the potential pathogenic mechanism. RESULTS: Plantlets of two economically important banana cultivars, Foc TR4 less susceptible cultivar NK and susceptible cultivar BX, were used to research the Foc-banana interaction mechanism. Notably, the infected NK had more significantly up-regulated genes on the respiration machinery including TCA cycle, glyoxylate, glycerol, and glycolysis compared to BX at 27 h post inoculation (hpi). In addition, genes involved in plant-pathogen interaction, starch, sucrose, linolenic acid and sphingolipid metabolisms were uniquely more greatly induced in BX than those in NK during the whole infection. Genes related to the biosynthesis and metabolism of SA and JA were greatly induced in the infected NK; while auxin and abscisic acid metabolisms related genes were strongly stimulated in the infected BX at 27 hpi. Furthermore, most of fungal genes were more highly expressed in the roots of BX than in those of NK. The fungal genes related to pathogenicity, pectin and chitin metabolism, reactive oxygen scavenging played the important roles during the infection of Foc. CCP1 (cytochrome c peroxidase 1) was verified to involve in cellulose utilization, oxidative stress response and pathogenicity of fungus. CONCLUSION: The transcriptome indicated that NK had much faster defense response against Foc TR4 than BX and the expression levels of fungal genes were higher in BX than those in NK. The metabolisms of carbon, nitrogen, and signal transduction molecular were differentially involved in pathogen infection in BX and NK. Additionally, the putative virulence associated fungal genes involved in colonization, nutrition acquirement and transport provided more insights into the infection process of Foc TR4 in banana roots.


Assuntos
Fusarium/genética , Musa/genética , Doenças das Plantas/microbiologia , Citocromo-c Peroxidase/metabolismo , Metabolismo Energético , Fusarium/patogenicidade , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Musa/microbiologia , Doenças das Plantas/genética , Reguladores de Crescimento de Planta/genética , Reguladores de Crescimento de Planta/metabolismo , Raízes de Plantas/genética , Transdução de Sinais , Transcriptoma
12.
J Agric Food Chem ; 67(24): 6736-6747, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31184154

RESUMO

Nitrogen is essential for plant growth and crop productivity; however, nitrogen use efficiency (NUE) decreases with increasing N supply, resulting in a waste of resources. Molecular mechanisms underlying low-nitrogen (LN)-mediated enhancement of NUE are not clear. We used high-NUE Brassica napus genotype H (Xiangyou 15), low-NUE B. napus genotype L (814), and Arabidopsis mutant aux1 to elucidate the mechanism underlying the changes in NUE under different rates of N fertilizer application. NUE of B. napus increased under LN, which enhanced N uptake ability by regulating root system architecture and plasma membrane H+-ATPase activity; AUX1 was involved in this process. Additionally, BnNRT1.5 was upregulated and BnNRT1.8 was downregulated under LN, whereby more N was transferred to the shoot through enhanced N transport. Observed changes in photosynthesis under LN were associated with N assimilation efficiency. Our study provides new insights into the mechanisms of plant adaptation to the environment.


Assuntos
Arabidopsis/metabolismo , Brassica napus/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Arabidopsis/genética , Transporte Biológico , Brassica napus/genética , Fertilizantes/análise , Regulação da Expressão Gênica de Plantas , Nitrogênio/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
13.
BMC Plant Biol ; 19(1): 242, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174465

RESUMO

BACKGROUND: Recurrent drought associated with climate change is a major constraint to wheat (Triticum aestivum L.) productivity. This study aimed to (i) quantify the effects of addition/substitution/translocation of chromosome segments from wild relatives of wheat on the root, physiological and yield traits of hexaploid wheat under drought, and (ii) understand the mechanism(s) associated with drought tolerance or susceptibility in wheat-alien chromosome lines. METHODS: A set of 48 wheat-alien chromosome lines (addition/substitution/translocation lines) with Chinese Spring background were used. Seedling root traits were studied on solid agar medium. To understand the influence of drought on the root system of adult plants, these 48 lines were grown in 150-cm columns for 65 d under full irrigation or withholding water for 58 d. To quantify the effect of drought on physiological and yield traits, the 48 lines were grown in pots under full irrigation until anthesis; after that, half of the plants were drought stressed by withholding water for 16 d before recording physiological and yield-associated traits. RESULTS: The alien chromosome lines exhibited altered root architecture and decreased photochemical efficiency and seed yield and its components under drought. The wheat-alien chromosome lines T5DS·5S#3L (TA5088) with a chromosome segment from Aegilops speltoides (5S) and T5DL.5 V#3S (TA5638) with a chromosome segment from Dasypyrum villosum (5 V) were identified as drought tolerant, and the drought tolerance mechanism was associated with a deep, thin and profuse root system. CONCLUSIONS: The two germplasm lines (TA5088 and TA5638) could be used in wheat breeding programs to improve drought tolerance in wheat and understand the underlying molecular genetic mechanisms of root architecture and drought tolerance.


Assuntos
Cromossomos de Plantas/genética , Secas , Genes de Plantas/genética , Melhoramento Vegetal , Triticum/genética , Aegilops/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/genética , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento
14.
BMC Plant Biol ; 19(1): 232, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159725

RESUMO

BACKGROUND: Compared with white-fleshed sweetpotato (WFSP), purple-fleshed sweetpotato (PFSP) is a desirable resource for functional food development because of the abundant anthocyanin accumulation in its tuberous roots. Some studies have shown that the expression regulation mediated by miRNA plays an important role in anthocyanin biosynthesis in plants. However, few miRNAs and their corresponding functions related to anthocyanin biosynthesis in tuberous roots of sweetpotato have been known. RESULTS: In this study, small RNA (sRNA) and degradome libraries from the tuberous roots of WFSP (Xushu-18) and PFSP (Xuzishu-3) were constructed, respectively. Totally, 191 known and 33 novel miRNAs were identified by sRNA sequencing, and 180 target genes cleaved by 115 known ib-miRNAs and 5 novel ib-miRNAs were identified by degradome sequencing. Of these, 121 miRNAs were differently expressed between Xushu-18 and Xuzishu-3. Integrated analysis of sRNA, degradome sequencing, GO, KEGG and qRT-PCR revealed that 26 differentially expressed miRNAs and 36 corresponding targets were potentially involved in the anthocyanin biosynthesis. Of which, an inverse correlation between the expression of ib-miR156 and its target ibSPL in WFSP and PFSP was revealed by both qRT-PCR and sRNA sequencing. Subsequently, ib-miR156 was over-expressed in Arabidopsis. Interestingly, the ib-miR156 over-expressing plants showed suppressed abundance of SPL and a purplish phenotype. Concomitantly, upregulated expression of four anthocyanin pathway genes was detected in transgenic Arabidopsis plants. Finally, a putative ib-miRNA-target model involved in anthocyanin biosynthesis in sweetpotato was proposed. CONCLUSIONS: The results represented a comprehensive expression profiling of miRNAs related to anthocyanin accumulation in sweetpotato and provided important clues for understanding the regulatory network of anthocyanin biosynthesis mediated by miRNA in tuberous crops.


Assuntos
Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas , Ipomoea batatas/genética , MicroRNAs/genética , RNA de Plantas/genética , Antocianinas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Ipomoea batatas/metabolismo , MicroRNAs/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/metabolismo , Análise de Sequência de RNA
15.
BMC Res Notes ; 12(1): 243, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036050

RESUMO

OBJECTIVE: Conifer genomes show high genetic diversity in intergenic regions that contain diverse sets of transposable elements with dominating long terminal repeat (LTR) retrotransposons (RE). Transcription of RE in response to environmental stimuli could produce various types of regulatory non-coding RNAs, but global genomic methylation changes could result in a coincidental expression of normally silent genomic regions. Expression of several RE families was evaluated in Scots pine seedlings after controlled inoculations with two fungal species that exhibit different modes of pathogenicity (necrotrophic and likely biotrophic); data compared to the overall RE distribution in genome. Recognition of regulatory non-coding RNA involved in host-pathogen interplay could be valuable in understanding defence mechanisms of perennial plants. RESULTS: In the case of necrotrophic fungi Heterobasidion annosum (HA), short activation followed by restriction of RE expression was revealed after inoculation and during the spread of the pathogen. After inoculation with Lophodermium seditiosum (LS), an early increase in RE expression was revealed with the spread of the pathogen and subsequent transcription rise in all seedlings. Our observations indicate that in the complex plant genome multiple RE families constitutively express in response to pathogen invasion and these sequences could undergo regulation related to host response or pathogen influence.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , Genoma de Planta , Pinus sylvestris/genética , Doenças das Plantas/genética , Retroelementos/imunologia , Plântula/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/patogenicidade , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Pinus sylvestris/imunologia , Pinus sylvestris/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Brotos de Planta/genética , Brotos de Planta/imunologia , Brotos de Planta/microbiologia , Plântula/imunologia , Plântula/microbiologia , Sequências Repetidas Terminais , Transcrição Genética
16.
Plant Cell Physiol ; 60(8): 1761-1777, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31099397

RESUMO

Brassinosteroid (BR) plays an important role in plant development and biotic and abiotic stress tolerance, but its specific function remains largely unknown in wheat (Triticum aestivum L.), preventing its utilization in this important crop. In this study, the function of BR and its underlying cytological role in wheat root development were comprehensively investigated. Our findings demonstrated that BR has a conserved function in regulating root length in wheat, and novel roles in regulating lateral root emergence and root diameter were uncovered. Analyses of BR homologous gene composition and evolutionary divergence demonstrated that the genetic framework of the wheat BR pathway was close to that of rice, but contained highly redundant homologous copies of genes from the subgenome A, B and D. These homologous copies showed active expression and shared a conserved BR response. The expression of wheat DWF4 and glycogen synthase kinase (GSK) genes in Arabidopsis confirmed that multiple homologous copies maintained their conserved function in regulating root development, highlighting their redundant status and indicating that a special challenge exists in wheat gene modification to deal with this high redundancy. However, our results suggested that the hypermorphic effect of T. aestivum GSK (TaGSK) genes with point mutations may be an effective approach to overcome this redundancy in the manipulation of BR signaling in wheat. Our study provides fundamental data uncovering the function of BR in wheat root development, the underlying genetic basis and a possible strategy to manipulate BR signaling in hexaploid wheat.


Assuntos
Brassinosteroides/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Triticum/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Quinases da Glicogênio Sintase/genética , Quinases da Glicogênio Sintase/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética
17.
Plant Cell Physiol ; 60(8): 1790-1803, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111914

RESUMO

The elucidation of epigenetic responses of salt-responsive genes facilitates understanding of the underlying mechanisms that confer salt tolerance in rice. However, it is still largely unknown how epigenetic mechanisms are associated with the expression of salt-responsive genes in rice and other crops. In this study, we reported tissue-specific gene expression and tissue-specific changes in chromatin modifications or signatures between seedlings and roots in response to salt treatment. Our study indicated that among six of individual mark examined (H3K4me3, H3K27me3, H4K12ac, H3K9ac, H3K27ac and H3K36me3), a positive association between salt-related changes in histone marks and the expression of differentially expressed genes (DEGs) was observed only for H3K9ac and H4K12ac in seedlings and H3K36me3 in roots. In contrast, chromatin states (CSs) with combinations of six histone modification marks played crucial roles in the differential expression of salt-responsive genes between seedlings and roots. Most importantly, CS7 containing the bivalent marks H3K4me3 and H3K27me3, with a mutual exclusion of functions with each other, displayed distinct functions in the expression of DEGs in both tissues. Specifically, H3K27me3 in CS7 mainly suppressed the expression of DEGs in roots, while H3K4me3 affected the expression of down- and up-regulated genes, possibly by antagonizing the repressive role of H3K27me3 in seedlings. Our findings indicate distinct impacts of the CSs on the differential expression of salt-responsive genes between seedlings and roots in rice, which provides an important background for understanding chromatin-based epigenetic mechanisms that might confer salt tolerance in plants.


Assuntos
Cromatina/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Regulação da Expressão Gênica de Plantas , Oryza/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plântula/genética
18.
Molecules ; 24(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086079

RESUMO

As calcium signal sensors, calcium-dependent protein kinases (CPKs) play vital roles in stimulating the production of secondary metabolites to participate in plant development and response to environmental stress. However, investigations of the Glycyrrhiza uralensis CPK family genes and their multiple functions are rarely reported. In this study, a total of 23 GuCPK genes in G. uralensis were identified, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, and promoter cis-acting elements were analyzed. Ten GuCPKs showed root-specific preferential expressions, and GuCPKs indicated different expression patterns under treatments of CaCl2 and NaCl. In addition, under 2.5 mM of CaCl2 and 30 mM of NaCl treatments, the diverse, induced expression of GuCPKs and significant accumulations of glycyrrhizic acid and flavonoids suggested the possible important function of GuCPKs in regulating the production of glycyrrhizic acid and flavonoids. Our results provide a genome-wide characterization of CPK family genes in G. uralensis, and serve as a foundation for understanding the potential function and regulatory mechanism of GuCPKs in promoting the biosynthesis of glycyrrhizic acid and flavonoids under salt stress.


Assuntos
Flavonoides/metabolismo , Glycyrrhiza uralensis/efeitos dos fármacos , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrízico/metabolismo , Proteínas Quinases/metabolismo , Cloreto de Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycyrrhiza uralensis/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , Estresse Salino , Cloreto de Sódio/farmacologia
19.
Environ Sci Pollut Res Int ; 26(20): 21013-21021, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119539

RESUMO

In this study the phytotoxic, cytotoxic, genotoxic and mutagenic effects of two commercial fungicide-active compounds, procymidone (PR) and iprodione (IP), were determined. The parameters evaluated were germination and root growth, mitotic index, chromosomal and nuclear aberrations, and molecular analyses were also performed in the model plant Allium cepa L. The results demonstrated that the active compounds PR and IP were phytotoxic, delaying germination and slowing the development of A. cepa seedlings. Moreover, PR and IP showed cytogenotoxicity towards A. cepa meristematic cells, inducing chromosomal changes and cell death. The mutagenic activity of the active compounds was demonstrated by the detection of DNA changes in simple sequence repeat (SSR) and inter-simple sequence repeat (ISSR) markers in the treated cells compared to the negative control. Together, these results contribute to a better understanding of the damage caused by these substances in living organisms and reveal a promising strategy for prospective studies of the toxic effects of environmental pollutants.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Compostos Bicíclicos com Pontes/toxicidade , Fungicidas Industriais/toxicidade , Hidantoínas/toxicidade , Mutagênicos/toxicidade , Cebolas/efeitos dos fármacos , Aminoimidazol Carboxamida/toxicidade , Dano ao DNA/efeitos dos fármacos , Germinação/efeitos dos fármacos , Meristema/efeitos dos fármacos , Meristema/genética , Meristema/crescimento & desenvolvimento , Cebolas/genética , Cebolas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento
20.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075903

RESUMO

Boron (B) is a micronutrient for plant development, and its deficiency alters many physiological processes. However, the current knowledge on how plants are able to sense the B-starvation signal is still very limited. Recently, it has been reported that B deprivation induces an increase in cytosolic calcium concentration ([Ca2+]cyt) in Arabidopsis thaliana roots. The aim of this work was to research in Arabidopsis whether [Ca2+]cyt is restored to initial levels when B is resupplied and elucidate whether apoplastic Ca2+ is the major source for B-deficiency-induced rise in [Ca2+]cyt. The use of chemical compounds affecting Ca2+ homeostasis showed that the rise in root [Ca2+]cyt induced by B deficiency was predominantly owed to Ca2+ influx from the apoplast through plasma membrane Ca2+ channels in an IP3-independent manner. Furthermore, B resupply restored the root [Ca2+]cyt. Interestingly, expression levels of genes encoding Ca2+ transporters (ACA10, plasma membrane PIIB-type Ca2+-ATPase; and CAX3, vacuolar cation/proton exchanger) were upregulated by ethylene glycol tetraacetic acid (EGTA) and abscisic acid (ABA). The results pointed out that ACA10, and especially CAX3, would play a major role in the restoration of Ca2+ homeostasis after 24 h of B deficiency.


Assuntos
Arabidopsis/metabolismo , Boro/deficiência , Sinalização do Cálcio , Cálcio/metabolismo , Citosol/metabolismo , Arabidopsis/genética , Boro/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Citosol/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA