Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.784
Filtrar
1.
Molecules ; 26(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203624

RESUMO

Millettia pulchra is traditionally used for treating diseases, including joint pain, fever, anemia, and allergies. It is also a potential resource of natural flavonoid derivatives, which represents major constituents of this plant. This study aimed to isolate the major compounds from M. pulchra radix, develop and validate the HPLC-PDA method to determine their contents, and optimize its extraction. Four major flavonoid derivatives (karanjin, lanceolatin B, 2",2"-dimethylpyrano-[5″,6″:7,8]-flavone, and pongamol) were isolated using silica gel column chromatography, crystallization techniques in large amounts with high purities (>95%). A simple, accurate high-performance liquid chromatography-photodiode array (HPLC-PDA) detection method has been developed and validated with significantly statistical impacts according to International Conference on Harmonization (ICH) guidelines. The Response Surface Methodology (RSM), Artificial Neural Network (ANN) models were employed to predictive performance and optimization of the extraction process. The optimized conditions for the extraction of major flavonoids were: extraction time (twice), solvent/material ratio (9.5), and ethanol concentration (72.5%). Our research suggests an effective method, which will be helpful for quality control in the pharmaceutical development of this species.


Assuntos
Flavonoides/química , Flavonoides/isolamento & purificação , Millettia/química , Antioxidantes/química , China , Cromatografia Líquida de Alta Pressão/métodos , Etanol/química , Millettia/metabolismo , Extratos Vegetais/química , Raízes de Plantas/química , Solventes/química
2.
Molecules ; 26(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199058

RESUMO

We measured and studied the growth parameters and the qualitative and quantitative composition of the flavones of hairy roots of the Scutellaria genus: S. lateriflora, S. przewalskii and S. pycnoclada. Hairy roots were obtained using wild-type Agrobacterium rhizogenes A4 by co-cultivation of explants (cotyledons) in a suspension of Agrobacterium. The presence of the rol-genes was confirmed by PCR analysis. The hairy roots of the most studied plant from the Scutellaria genus, S. baicalensis, were obtained earlier and used as a reference sample. HPLC-MS showed the predominance of four main flavones (baicalin, baicalein, wogonin and wogonoside) in the methanol extracts of the studied hairy roots. In addition to the four main flavones, the other substances which are typical to the aerial part of plants were found in all the extracts: apigenin, apigetrin, scutellarin and chrysin-7-O-ß-d-glucuronide. According to the total content of flavones, the hairy roots of the studied skullcaps form the following series: S. przewalskii (33 mg/g dry weight) > S. baicalensis (17.04 mg/g dry weight) > S. pycnoclada (12.9 mg/g dry weight) > S. lateriflora (4.57 mg/g dry weight). Therefore, the most promising producer of anti-coronavirus flavones is S. przewalskii.


Assuntos
Antivirais/química , Flavonas/química , Scutellaria/química , Agrobacterium/crescimento & desenvolvimento , Agrobacterium/metabolismo , Antivirais/isolamento & purificação , Antivirais/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonas/isolamento & purificação , Flavonas/farmacologia , Células Vegetais/metabolismo , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Scutellaria/crescimento & desenvolvimento , Scutellaria/metabolismo , Espectrometria de Massas em Tandem
3.
Molecules ; 26(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1287269

RESUMO

We measured and studied the growth parameters and the qualitative and quantitative composition of the flavones of hairy roots of the Scutellaria genus: S. lateriflora, S. przewalskii and S. pycnoclada. Hairy roots were obtained using wild-type Agrobacterium rhizogenes A4 by co-cultivation of explants (cotyledons) in a suspension of Agrobacterium. The presence of the rol-genes was confirmed by PCR analysis. The hairy roots of the most studied plant from the Scutellaria genus, S. baicalensis, were obtained earlier and used as a reference sample. HPLC-MS showed the predominance of four main flavones (baicalin, baicalein, wogonin and wogonoside) in the methanol extracts of the studied hairy roots. In addition to the four main flavones, the other substances which are typical to the aerial part of plants were found in all the extracts: apigenin, apigetrin, scutellarin and chrysin-7-O-ß-d-glucuronide. According to the total content of flavones, the hairy roots of the studied skullcaps form the following series: S. przewalskii (33 mg/g dry weight) > S. baicalensis (17.04 mg/g dry weight) > S. pycnoclada (12.9 mg/g dry weight) > S. lateriflora (4.57 mg/g dry weight). Therefore, the most promising producer of anti-coronavirus flavones is S. przewalskii.


Assuntos
Antivirais/química , Flavonas/química , Scutellaria/química , Agrobacterium/crescimento & desenvolvimento , Agrobacterium/metabolismo , Antivirais/isolamento & purificação , Antivirais/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonas/isolamento & purificação , Flavonas/farmacologia , Células Vegetais/metabolismo , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Scutellaria/crescimento & desenvolvimento , Scutellaria/metabolismo , Espectrometria de Massas em Tandem
4.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209934

RESUMO

Polygoni Multiflori Radix Praeparata (PMRP), as the processed product of tuberous roots of Polygonum multiflorum Thunb., is one of the most famous traditional Chinese medicines, with a long history. However, in recent years, liver adverse reactions linked to PMRP have been frequently reported. Our work attempted to investigate the chemical constituents of PMRP for clinical research and safe medication. In this study, an effective and rapid method was established to separate and characterize the constituents in PMRP by combining ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). Based on the accurate mass measurements for molecular and characteristic fragment ions, a total of 103 compounds, including 24 anthraquinones, 21 stilbenes, 15 phenolic acids, 14 flavones, and 29 other compounds were identified or tentatively characterized. Forty-eight compounds were tentatively characterized from PMRP for the first time, and their fragmentation behaviors were summarized. There were 101 components in PMRP ethanol extract (PMRPE) and 91 components in PMRP water extract (PMRPW). Simultaneously, the peak areas of several potential xenobiotic components were compared in the detection, which showed that PMRPE has a higher content of anthraquinones and stilbenes. The obtained results can be used in pharmacological and toxicological research and provided useful information for further in vitro and in vivo studies.


Assuntos
Fallopia multiflora/química , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Raízes de Plantas/química , Cromatografia Líquida de Alta Pressão , Compostos Fitoquímicos/química
5.
Environ Sci Technol ; 55(13): 8654-8664, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34156836

RESUMO

This study compared the impact and uptake of root-administered CeO2 nanoparticles (NPs) in rice growing under flooded and aerobic soil conditions, which are two water regimes commonly used for rice cultivation. CeO2 NPs at 100 mg/kg improved photosynthesis and plant growth by reducing the oxidative damage and enhancing plant tolerance to stress, while a higher concentration (500 mg/kg) of CeO2 NPs negatively affected plant growth. More significant effects were observed under the flooded condition than under the aerobic condition. CeO2 NPs of 100 and 500 mg/kg resulted in 78% and 70% higher accumulation of Ce in shoots under the flooded condition compared to the aerobic condition. CeO2 NPs partially transformed to Ce(III) species in soils and plants under both conditions. A higher extent of transformation under the flooded condition, which was partly attributed to the lower soil pH and redox potential under the flooded condition, leads to higher plant uptake of Ce. A higher extent of transformation in rhizosphere soil was observed. A higher plant transpiration rate (TR) under flooded conditions resulted in a higher accumulation of CeO2 species in shoots. This study, for the first time, reported that water regimes influenced the biotransformation of CeO2 NPs and their uptake and impact in rice plants.


Assuntos
Cério , Nanopartículas , Oryza , Poluentes do Solo , Cério/toxicidade , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
6.
Ecotoxicol Environ Saf ; 221: 112415, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171691

RESUMO

In order to understand the mechanisms of arsenic (As) accumulation and detoxification in aquatic plants exposed to different As species, a hydroponic experiment was conducted and the three aquatic plants (Hydrilla verticillata, Pistia stratiotes and Eichhornia crassipes) were exposed to different concentrations of As(III), As(V) and dimethylarsinate (DMA) for 10 days. The biomass, the surface As adsorption and total As adsorption of three plants were determined. Furthermore, As speciation in the culture solution and plant body, as well as the arsenate reductase (AR) activities of roots and shoots, were also analyzed. The results showed that the surface As adsorption of plants was far less than total As absorption. Compared to As(V), the plants showed a lower DMA accumulation. P. stratiotes showed the highest accumulation of inorganic arsenic but E. crassipes showed the lowest at the same As treatment. E. crassipes showed a strong ability to accumulate DMA. Results from As speciation analysis in culture solution showed that As(III) was transformed to As(V) in all As(III) treatments, and the oxidation rates followed as the sequence of H. verticillata>P. stratiotes>E. crassipes>no plant. As(III) was the predominant species in both roots (39.4-88.3%) and shoots (39-86%) of As(III)-exposed plants. As(V) and As(III) were the predominant species in roots (37-94%) and shoots (31.1-85.6%) in As(V)-exposed plants, respectively. DMA was the predominant species in both roots (23.46-100%) and shoots (72.6-100%) in DMA-exposed plants. The As(III) contents and AR activities in the roots of P. stratiotes and in the shoots of H. verticillata were significantly increased when exposed to 1 mg·L-1 or 3 mg·L-1 As(V). Therefore, As accumulation mainly occurred via biological uptake rather than physicochemical adsorption, and AR played an important role in As detoxification in aquatic plants. In the case of As(V)-exposed plants, their As tolerance was attributed to the increase of AR activities.


Assuntos
Araceae , Arseniato Redutases/metabolismo , Arsênio , Ácido Cacodílico , Eichhornia , Hydrocharitaceae , Proteínas de Plantas/metabolismo , Poluentes Químicos da Água , Adsorção , Araceae/química , Araceae/metabolismo , Arsênio/química , Arsênio/metabolismo , Ácido Cacodílico/química , Ácido Cacodílico/metabolismo , Eichhornia/química , Eichhornia/metabolismo , Hydrocharitaceae/química , Hydrocharitaceae/metabolismo , Hidroponia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
7.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068421

RESUMO

Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) is a major obstacle in managing lung cancer. The root of Scutellaria baicalensis (SB) traditionally used for fever clearance and detoxification possesses various bioactivities including anticancer effects. The purpose of this study was to investigate whether SB exhibited anticancer activity in EGFR TKI-resistant lung cancer cells and to explore the underlying mechanism. We used four types of human lung cancer cell lines, including H1299 (EGFR wildtype; EGFR TKI-resistant), H1975 (acquired TKI-resistant), PC9/ER (acquired erlotinib-resistant), and PC9/GR (acquired gefitinib-resistant) cells. The ethanol extract of SB (ESB) decreased cell viability and suppressed colony formation in the four cell lines. ESB stimulated nuclear fragmentation and the cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-3. Consistently, the proportion of sub-G1 phase cells and annexin V+ cells were significantly elevated by ESB, indicating that ESB induced apoptotic cell death in EGFR TKI-resistant cells. ESB dephosphorylated signal transducer and activator of transcription 3 (STAT3) and downregulated the target gene expression. The overexpression of constitutively active STAT3 reversed ESB-induced apoptosis, suggesting that ESB triggered apoptosis in EGFR TKI-resistant cells by inactivating STAT3. Taken together, we propose the potential use of SB as a novel therapeutic for lung cancer patients with EGFR TKI resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Scutellaria baicalensis/química , Apoptose , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Raízes de Plantas/química , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células Tumorais Cultivadas
8.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068519

RESUMO

Malaria remains one of the leading causes of death in sub-Saharan Africa, ranked in the top three infectious diseases in the world. Plants of the Eriosema genus have been reported to be used for the treatment of this disease, but scientific evidence is still missing for some of them. In the present study, the in vitro antiplasmodial activity of the crude extract and compounds from Eriosema montanum Baker f. roots were tested against the 3D7 strain of Plasmodium falciparum and revealed using the SYBR Green, a DNA intercalating compound. The cytotoxicity effect of the compounds on a human cancer cell line (THP-1) was assessed to determine their selectivity index. It was found that the crude extract of the plant displayed a significant antiplasmodial activity with an IC50 (µg/mL) = 17.68 ± 4.030 and a cytotoxic activity with a CC50 (µg/mL) = 101.5 ± 12.6, corresponding to a selective antiplasmodial activity of 5.7. Bioactivity-guided isolation of the major compounds of the roots' crude extract afforded seven compounds, including genistein, genistin and eucomic acid. Under our experimental conditions, using Artemisinin as a positive control, eucomic acid showed the best inhibitory activity against the P. falciparum 3D7, a well-known chloroquine-sensitive strain. The present results provide a referential basis to support the traditional use of Eriosema species in the treatment of malaria.


Assuntos
Antimaláricos/farmacologia , Fabaceae/química , Raízes de Plantas/química , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/isolamento & purificação , Morte Celular/efeitos dos fármacos , Cloroquina/farmacologia , Misturas Complexas , Humanos , Células THP-1
9.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070099

RESUMO

Wild ginseng has better pharmacological effects than cultivated ginseng. However, its industrialization is limited by the inability to grow wild ginseng on a large scale. Herein, we demonstrate how to optimize ginseng production through cultivation, and how to enhance the concentrations of specific ginsenosides through fermentation. In the study, we also evaluated the ability of fermented cultured wild ginseng root extract (HLJG0701-ß) to inhibit acetylcholinesterase (AChE), as well as its neuroprotective effects and antioxidant activity. In invitro tests, HLJG0701-ß inhibited AChE activity and exerted neuroprotective and antioxidant effects (showing increased catalyst activity but decreased reactive oxygen species concentration). In invivo tests, after HLJG0701-ß was orally administered at doses of 0, 125, 250, and 500 mg/kg in an animal model of memory impairment, behavioral evaluation (Morris water maze test and Y-maze task test) was performed. The levels of AChE, acetylcholine (ACh), blood catalase (CAT), and malondialdehyde (MDA) in brain tissues were measured. The results showed that HLJG0701-ß produced the best results at a dose of 250 mg/kg or more. The neuroprotective mechanism of HLJG0701-ß was determined to involve the inhibition of AChE activity and a decrease in oxidative stress. In summary, both invitro and invivo tests confirmed that HJG0701-ß administration can lead to memory improvement.


Assuntos
Antioxidantes/farmacologia , Fermentação , Fármacos Neuroprotetores/farmacologia , Panax/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Encéfalo/metabolismo , Catalase/sangue , Catalase/metabolismo , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Feminino , Galactose , Ginsenosídeos/farmacologia , Masculino , Malondialdeído/sangue , Camundongos , Teste do Labirinto Aquático de Morris , Ovariectomia , Espécies Reativas de Oxigênio/metabolismo , Escopolamina
10.
Braz J Biol ; 82: e233567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34105657

RESUMO

This research was carried out aiming at evaluating the effects of nitrate and ammonium ions on nutrient accumulation, biochemical components and yield of Italian zucchini (cv. Caserta) grown in a hydroponic system under salt stress conditions. The experiment was carried out in a greenhouse utilizing an experimental design in randomized blocks, arranged in a 2 x 5 factorial scheme, with 4 replications. The treatments consisted of two forms of nitrogen (nitrate - NO3- and ammonium - NH4+) and 5 electrical conductivity levels of irrigation water (ECw) (0.5, 2.0, 3.5, 5.0 and 6.5 dS m-1). The analysis of the results indicated that supply of N exclusively in NH4+ form promotes greater damage to the leaf membrane and reduction in accumulation of macronutrients and higher Na+/K+, Na+/Ca++ and Na+/Mg++ ratios in the shoots of zucchini plants. Electrical conductivity of irrigation water above 2.0 dS m-1 reduces the accumulation of nutrients in shoot and yield of Italian zucchini plant. The toxicity of NH4+ under Italian zucchini plants overlap the toxicity of the salinity, since its fertilization exclusively with this form of nitrogen inhibits its production, being the NO3- form the most suitable for the cultivation of the species.


Assuntos
Compostos de Amônio , Nitrogênio , Homeostase , Itália , Nitratos , Raízes de Plantas/química , Estresse Salino
11.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070487

RESUMO

Since ancient times, plant roots have been widely used in traditional medicine for treating various ailments and diseases due to their beneficial effects. A large number of studies have demonstrated that-besides their aromatic properties-their biological activity can often be attributed to volatile constituents. This review provides a comprehensive overview of investigations into the chemical composition of essential oils and volatile components obtained from selected aromatic roots, including Angelica archangelica, Armoracia rusticana, Carlina sp., Chrysopogon zizanioides, Coleus forskohlii, Inula helenium, Sassafras albidum, Saussurea costus, and Valeriana officinalis. Additionally, their most important associated biological impacts are reported, such as anticarcinogenic, antimicrobial, antioxidant, pesticidal, and other miscellaneous properties. Various literature and electronic databases-including PubMed, ScienceDirect, Springer, Scopus, Google Scholar, and Wiley-were screened and data was obtained accordingly. The results indicate the promising properties of root-essential oils and their potential as a source for natural biologically active products for flavor, pharmaceutical, agricultural, and fragrance industries. However, more research is required to further establish the mechanism of action mediating these bioactivities as well as essential oil standardization because the chemical composition often strongly varies depending on external factors.


Assuntos
Óleos Voláteis/química , Óleos Voláteis/farmacologia , Raízes de Plantas/química , Animais , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Humanos , Inseticidas/farmacologia , Testes de Sensibilidade Microbiana , Especificidade da Espécie
12.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070676

RESUMO

This study assessed the pyrolysis liquids obtained by slow pyrolysis of industrial hemp leaves, hurds, and roots. The liquids recovered between a pyrolysis temperature of 275-350 °C, at two condensation temperatures 130 °C and 70 °C, were analyzed. Aqueous and bio-oil pyrolysis liquids were produced and analyzed by proton nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS). NMR revealed quantitative concentrations of the most abundant compounds in the aqueous fractions and compound groups in the oily fractions. In the aqueous fractions, the concentration range of acetic acid was 50-241 gL-1, methanol 2-30 gL-1, propanoic acid 5-20 gL-1, and 1-hydroxybutan-2-one 2 gL-1. GC-MS was used to compare the compositions of the volatile compounds and APPI FT-ICR MS was utilized to determine the most abundant higher molecular weight compounds. The different obtained pyrolysis liquids (aqueous and oily) had various volatile and nonvolatile compounds such as acetic acid, 2,6-dimethoxyphenol, 2-methoxyphenol, and cannabidiol. This study provides a detailed understanding of the chemical composition of pyrolysis liquids from different parts of the industrial hemp plant and assesses their possible economic potential.


Assuntos
Cannabis/química , Folhas de Planta/química , Raízes de Plantas/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Pirólise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
13.
Braz J Biol ; 83: e242676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161454

RESUMO

Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


Assuntos
Herbicidas , Micorrizas , Poluentes do Solo , Brasil , Micorrizas/química , Raízes de Plantas/química , Rizosfera , Plântula , Solo , Microbiologia do Solo , Árvores
14.
BMC Plant Biol ; 21(1): 277, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34144672

RESUMO

BACKGROUND: Perilla frutescens (L.) Britt is a medicinal and edible plant widely cultivated in Asia. Terpenoids, flavonoids and phenolic acids are the primary source of medicinal ingredients. Glandular trichomes with multicellular structures are known as biochemical cell factories which synthesized specialized metabolites. However, there is currently limited information regarding the site and mechanism of biosynthesis of these constituents in P. frutescens. Herein, we studied morphological features of glandular trichomes, metabolic profiling and transcriptomes through different tissues. RESULTS: Observation of light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types based on their morphological features: peltate, capitate, and digitiform glandular trichomes. The oil of peltate glandular trichomes, collected by custom-made micropipettes and analyzed by LC-MS and GC-MS, contained perillaketone, isoegomaketone, and egomaketone as the major constituents which are consistent with the components of leaves. Metabolomics and transcriptomics were applied to explore the bioactive constituent biosynthesis in the leaves, stem, and root of P. frutescens. Transcriptome sequencing profiles revealed differential regulation of genes related to terpenoids, flavonoids, and phenylpropanoid biosynthesis, respectively with most genes expressed highly in leaves. The genes affecting the development of trichomes were preliminarily predicted and discussed. CONCLUSIONS: The current study established the morphological and chemical characteristics of glandular trichome types of P. frutescens implying the bioactive constituents were mainly synthesized in peltate glandular trichomes. The genes related to bioactive constituents biosynthesis were explored via transcriptomes, which provided the basis for unraveling the biosynthesis of bioactive constituents in this popular medicinal plant.


Assuntos
Perilla frutescens/química , Tricomas/química , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Varredura , Perilla frutescens/genética , Perilla frutescens/ultraestrutura , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Plantas Medicinais/química , Plantas Medicinais/ultraestrutura , RNA de Plantas , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Tricomas/ultraestrutura
15.
Artigo em Inglês | MEDLINE | ID: mdl-34070880

RESUMO

In this study, the role of exogenous root exudates and microorganisms was investigated in the application of modified nanoscale zero-valent iron (nZVI) for the remediation of cadmium (Cd)-contaminated soil. In this experiment, citric acid (CA) was used to simulate root exudates, which were then added to water and soil to simulate the pore water and rhizosphere environment. In detail, the experiment in water demonstrated that low concentration of CA facilitated Cd removal by nZVI, while the high concentration achieved the opposite. Among them, CA can promote the adsorption of Cd not only by direct complexation with heavy metal ions, but also by indirect effect to promote the production of iron hydroxyl oxides which has excellent heavy metal adsorption properties. Additionally, the H+ dissociated from CA posed a great influence on Cd removal. The situation in soil was similar to that in water, where low concentrations of CA contributed to the immobilization of Cd by nZVI, while high concentrations promoted the desorption of Cd and the generation of CA-Cd complexes which facilitated the uptake of Cd by plants. As the reaction progressed, the soil pH and cation exchange capacity (CEC) increased, while organic matter (OM) decreased. Meanwhile, the soil microbial community structure and diversity were investigated by high-throughput sequencing after incubation with CA and nZVI. It was found that a high concentration of CA was not conducive to the growth of microorganisms, while CMC had the effect of alleviating the biological toxicity of nZVI.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Cádmio/análise , Exsudatos e Transudatos/química , Ferro , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
16.
Huan Jing Ke Xue ; 42(6): 3037-3045, 2021 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-34032104

RESUMO

Cd has toxic effects on rice seed germination and plant growth, which may eventually lead to decreased yield and excessive Cd content in rice grains. The potential mechanism of S-allyl-L-cysteine (SAC), a natural sulfur compound derived from garlic extract, in alleviating Cd2+ stress in young roots and buds of rice seedlings was studied by a seed germination experiment. "Zhong zao 35", one of the main rice varieties in Southern China, was selected as the test material. Firstly, the alleviating effect of SAC on Cd2+ stress in rice seedling roots and buds was studied. Following this, the physiological mechanism of Cd2+ stress alleviation by SAC was examined based on the expression of the Cd transporter coding gene using real-time fluorescent quantitative PCR. The results showed that when the Cd2+ stress concentration reached 50 µmol·L-1, the young roots and buds of rice seedlings were significantly inhibited, and when the SAC concentration reached 200 µmol·L-1, Cd2+ stress was significantly alleviated. Compared to a Cd2+ stress treatment group, the total root length, surface area, and volume of young roots was increased by 173.5%, 65.52%, and 37.04%, respectively; CAT and SOD activity in young roots and buds was increased by 212.42% and 110.76%, and 31.41% and 47.31%, respectively; MDA and GSH content was decreased by 43.09% and 34.12%, and 33.97% and 35.74%, respectively; and Cd content was decreased by 35.91% and 28.86%, respectively. The results of quantitative real-time PCR showed that the relative expression levels of OsNramp5 and OsHMA2 were significantly reduced by 33.38% and 34.99% compared with the Cd2+ stress group, respectively. However, the relative expression level of OsHMA3 was significantly increased by 33.96%. From the above experimental results, the main mechanism by which SAC reduces Cd2+ stress in the young roots and buds of rice is via the regulation of Cd transporter-encoding genes, reducing Cd2+ transport to young roots and buds, and increasing transport to vacuoles.


Assuntos
Oryza , Plântula , Cádmio/análise , Cádmio/toxicidade , China , Cisteína , Oryza/genética , Raízes de Plantas/química , Plântula/genética
17.
J Environ Radioact ; 235-236: 106655, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34034207

RESUMO

To estimate the uptake of radiocesium (137Cs) by tea plant roots, 1-year-old rooted tea cuttings (Camellia sinensis L. cv. Yabukita) at the time of bud opening were cultivated hydroponically for 27 days in pots containing nutrient solutions with or without 137CsCl (600 Bq mL-1). Total 137Cs radioactivity of whole tea plants were 6.1 kBq g-1 dry weight. The plant/solution 137Cs transfer factors of different tissues were in the range of 2.6 (in mature leaves) to 28.2 mL g-1 dry weight (in roots), which were lower than those reported in wheat and spinach. In total, 69% of 137Cs remained in roots and 31% was transported from roots to shoots. The results indicated that 137Cs was preferentially translocated to new shoots, which are used for manufacturing tea, over mature leaves.


Assuntos
Camellia sinensis , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Césio , Radioisótopos de Césio/análise , Folhas de Planta/química , Raízes de Plantas/química , Chá
18.
J Hazard Mater ; 412: 125340, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951882

RESUMO

Plants can cope with stressful conditions by indirectly regulating root-associated microbial structures. However, the recruitment strategies of the root-associated microbiome in combined organic and inorganic contaminated soils are not well known, especially for common agricultural crops. In this study, we performed greenhouse experiments to investigate the interactive effects of joint copper (Cu) and phenanthrene (PHE) pollution on wheat growth and microbial detoxication processes. Results show that heavy metals did not affect PHE dissipation in the rhizosphere but significantly enhanced the accumulation of PHE in the endosphere. In contrast, the addition of PHE did not influence the absorption of Cu by wheat roots. Cu was the primary factor affecting the variation of microbial communities in cocontaminated treatments among each rhizocompartment while the interactive effects of combined pollutants were only detected in unplanted bulk soil. Microbes are known to degrade polycyclic aromatic hydrocarbons and tolerant heavy metal stress e.g. Novosphingobium, Sphingomonas, Sphingobium and Pseudomonas enriched in the contaminated treatments. Our results provide an integrated understanding of the synthetic effects of combined pollutants on the root-microbial assemblage process in plant-soil systems and offer useful information on the selection of effective bioremediating root-associated microbes for the application of self-remediation by common crops.


Assuntos
Microbiota , Fenantrenos , Poluentes do Solo , Biodegradação Ambiental , Cobre/análise , Cobre/toxicidade , Fenantrenos/análise , Fenantrenos/toxicidade , Raízes de Plantas/química , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Triticum
19.
Sci Total Environ ; 788: 147786, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34023601

RESUMO

Chromium (Cr) contamination in rice poses a serious threat to human health. Therefore, we conducted pot experiments to investigate the influence of water management regimes on the formation of iron plaque on rice roots, and its effect on the accumulation and translocation of Cr in rice grown on contaminated soil. The results showed that water management regimes, including continuous and intermittent flooding, exerted notable effects on soil solution concentrations of Cr(VI) and Cr(III) through changes in redox potential, pH, and dissolved Fe(II) concentrations. In particular, 69.2%-71.8% of Cr(VI) was reduced to Cr(III) under continuous flooding, whereas only 33.3%-38.6% was reduced under intermittent flooding conditions. Additionally, continuous flooding created a rhizosphere environment favorable to the formation of iron plaque. The amount of iron plaque formed increased by 28.2%-47.2% under continuous flooding conditions as compared with that under intermittent flooding conditions. Moreover, compared with intermittent flooding, under continuous flooding, more Cr (18.0%-23.9%) was adsorbed in the iron plaque, thereby sequestering Cr and reducing its mobility. The Cr concentrations in rice root, straw, husk, and grain under continuous flooding conditions were, respectively, 32.0%-36.5%, 32.7%-36.3%, 34.2%-46.9%, and 25.4%-37.7% lower than those under intermittent flooding conditions. Therefore, continuous flooding caused a substantial decrease in the Cr concentrations in rice tissues, as well as an increased distribution of Cr in the iron plaque that acted as a barrier to reduce Cr transfer to the rice roots. These results indicate that continuous flooding irrigation was effective in minimizing the accumulation of Cr in rice plants, as it not only enhanced Cr(VI) reduction in the soil but also improved the blocking capacity of the iron plaque.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Cromo/análise , Humanos , Ferro , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
20.
Plant Physiol Biochem ; 164: 115-121, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33984623

RESUMO

Excessive cadmium (Cd) causes toxic effects on crops. The effects of chitosan (CTS) with different molecular weight (MW) (5 kDa, 3 kDa, and 1 kDa) on the growth and biochemical parameters, as well as Cd concentrations in Cd-treated wheat plants were examined in a pot experiment. The results demonstrated that foliar spraying with CTS significantly improve the wheat growth, reduce malondialdehyde content and reactive oxygen species accumulation in leaves and decrease Cd concentrations in roots and shoots of wheat seedling under Cd stress. The alleviation of Cd toxicity by CTS is probably related with the activity of antioxidant enzymes, osmotic adjustment matter and root morphology. The application of CTS enhanced the activities of superoxide dismutase, peroxidase, and catalase in Cd-stressed wheat seedling leaves by 6.6%-13.1%, 17.2%-33.0%, and 19.6%-25.5%, respectively. Besides, exogenously applied CTS also increased the soluble protein and soluble sugar contents by 17.6%-33.8% and 30.1%-36.1% in the leaves of wheat under Cd stress. Furthermore, CTS with a molecular weight of 1 kDa was the most effective in mitigating Cd toxicity in wheat seedlings, which indicates that the activity of CTS is dependent on its molecular weight. It can be concluded that the use of foliar spraying, especially with 1 kDa CTS, could have potential in reducing the damage of Cd stress.


Assuntos
Quitosana , Poluentes do Solo , Antioxidantes , Cádmio/análise , Cádmio/toxicidade , Catalase , Quitosana/farmacologia , Raízes de Plantas/química , Plântula/química , Superóxido Dismutase , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...