Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.962
Filtrar
1.
West Afr J Med ; 38(8): 770-774, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34503698

RESUMO

BACKGROUND: Plasmodium falciparum infection, like any other clinical condition, is prone to generating free radicals. This can worsen patients' clinical presentations. Antioxidants do help in ameliorating these free radical effects. These antioxidants, especially vitamins, are sometimes given routinely to patients with Plasmodium falciparum infection of which it can be given according to the severity of this free radical injury. METHODOLOGY: A total number of qualified 245 patients that came for malaria parasite test between March and October, 2020 were recruited into the study. Patients on arrival at the laboratory had their samples collected for malaria parasite test and for the proposed biochemical parameters (MDA, GPx, SOD and TAS). Malaria parasite test was used to categorize the severity of Plasmodium falciparum infection. RESULTS: There were statistically significant differences (p<0.0001) in MDA, GPx, SOD and TAS among patients with negative MP, 1+ and >2+ on blood film for malaria parasite. Patients with >2+ MP had highest levels (2.21±0.40) while patients with negative blood film had lowest levels(0.8194±0.33) of MDA. Patients with >2+ had lowest levels of GPx (2406.41±1272.10), SOD (104.54±30.62) and TAS (1.18±.35) as against patients with negative MP that had highest levels (5229.85±.2957.95)( 206.41±36.70)( 2.40±.53), respectively. CONCLUSION: There was evidence of free radical generation as evidenced with raised plasma malondialdehyde in patients with Plasmodium falciparum infection. This was associated with severity of this infection. There was also corresponding decrease in measured antioxidants (GPx, SOD and TAS).


Assuntos
Antioxidantes , Malária Falciparum , Radicais Livres , Humanos , Malondialdeído , Plasmodium falciparum
2.
J Environ Sci (China) ; 108: 201-216, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34465433

RESUMO

Biochar as an emerging carbonaceous material has exhibited a great potential in environmental application for its perfect adsorption ability. However, there are abundant persistent free radicals (PFRs) in biochar, so the direct and indirect PFRs-mediated removal of organic and inorganic contaminants by biochar was widely reported. In order to comprehend deeply the formation of PFRs in biochar and their interactions with contaminants, this paper reviews the formation mechanisms of PFRs in biochar and the PFRs-mediated environmental applications of biochar in recent years. Finally, future challenges in this field are also proposed. This review provides a more comprehensive understanding on the emerging applications of biochar from the viewpoint of the catalytic role of PFRs.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Adsorção , Radicais Livres
3.
Curr Protoc ; 1(9): e262, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34570435

RESUMO

The dynamic and unstable nature of protein nitrosothiols (PSNOs) derived from complex biological matrices (like cell lysates) make them unsuitable for proteomic/biochemical analysis in vitro. In an attempt to increase the stability of cell-derived PSNOs, scientists have devised methods to derivatize thiols undergoing nitrosylation, with a suitable molecule, to yield a stable adduct that could easily be detected using appropriate antibodies. The Biotin Switch Assay (BTSA) is currently the most widely used method for tagging PSNOs; however, the error-prone and cumbersome nature of the BTSA protocol prompted the development of alternative mechanisms of tagging cell-derived PSNOs. One such method is the immuno-spin trapping method using 5,5-dimethyl-1-pyrroline N-oxide (DMPO), which effectively overcomes the shortcomings of the BTSA and proves to be a promising alternative. Here we describe the protocol for DMPO-based PSNO labeling and subsequent proteomic analysis by western blotting with an anti-DMPO antibody. © 2021 Wiley Periodicals LLC. Basic Protocol: Labeling of cell-derived PSNOs by DMPO-based immuno-spin trapping and their subsequent analysis by immunostaining.


Assuntos
Proteínas , Proteômica , Radicais Livres , Detecção de Spin , Compostos de Sulfidrila
4.
Phys Chem Chem Phys ; 23(34): 18525-18534, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581329

RESUMO

The ultrafast dynamics triggered by the photodetachment of the tyrosinate dianion in aqueous environment shed light on the elementary processes that accompany the interaction of ionizing radiation with biological matter. Photodetachment of the tryosinate dianion yields the tyrosyl radical anion, an important intermediate in biological redox reactions, although the study of its ultrafast dynamics is limited. Here, we utilize femtosecond optical pump-probe spectroscopy to investigate the ultrafast structural reorganization dynamics that follow the photodetachment of the tyrosinate dianion in aqueous solution. Photodetachment of the tyrosinate dianion leads to vibrational wave packet motion along seven vibrational modes that are coupled to the photodetachment process. The vibrational modes are assigned with the aid of density functional theory (DFT) calculations. Our results offer a glimpse of the elementary dynamics of ionized biomolecules and suggest the possibility of extending this approach to investigate the ionization-induced structural rearrangement of other aromatic amino acids and larger biomolecules.


Assuntos
Radicais Livres/química , Tirosina/química , Ânions/química , Teoria da Densidade Funcional , Hidróxido de Sódio/química , Espectrofotometria , Água/química
5.
J Phys Chem Lett ; 12(37): 9020-9025, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34516127

RESUMO

Ribonucleotide reductase (RNR), which supplies the building blocks for DNA biosynthesis and its repair, has been linked to human diseases and is emerging as a therapeutic target. Here, we present a mechanistic investigation of triapine (3AP), a clinically relevant small molecule that inhibits the tyrosyl radical within the RNR ß2 subunit. Solvent kinetic isotope effects reveal that proton transfer is not rate-limiting for inhibition of Y122· of E. coli RNR ß2 by the pertinent 3AP-Fe(II) adduct. Vibrational spectroscopy further demonstrates that unlike inhibition of the ß2 tyrosyl radical by hydroxyurea, a carboxylate containing proton wire is not at play. Binding measurements reveal a low nanomolar affinity (Kd ∼ 6 nM) of 3AP-Fe(II) for ß2. Taken together, these data should prompt further development of RNR inactivators based on the triapine scaffold for therapeutic applications.


Assuntos
Inibidores Enzimáticos/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Compostos Ferrosos/química , Piridinas/química , Ribonucleotídeo Redutases/metabolismo , Tiossemicarbazonas/química , Inibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Radicais Livres/química , Radicais Livres/metabolismo , Hidroxiureia/química , Ligação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
6.
An Acad Bras Cienc ; 93(suppl 3): e20201925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34586182

RESUMO

Free radicals are highly reactive unstable molecules, which can be synthesized in different ways, considered harmful and threatening to humans; these chemical species have free traffic throughout the human body, interacting with biological molecules and human body organ tissues. The interaction between free radicals and biological molecules is the main factor for disease development or pre-existing disease symptoms aggravation. Antioxidants are chemical compounds able to donate electric charge to stabilize molecules such as free radicals. Recent studies have proved the benefits of antioxidants intake in health improvement. In this way, the search for natural sources of antioxidants has become an ascending trend. In this field, the microbial sources are considered poorly explored compared to the numerous amount of other compounds obtained from them, especially from Actinobacteria. The searched literature about Actinobacteria highlights an important capacity of producing natural antioxidants; however, there is a lack of in vivo studies of these isolated compounds. In this review, we gathered information that supports our point of view that Actinobacteria is a truly renewable and superficially explored source of natural antioxidants. Furthermore, our purpose is also to point this limitation and stimulate more researches in this area.


Assuntos
Actinobacteria , Antioxidantes , Bactérias , Radicais Livres , Humanos
7.
Nanomedicine (Lond) ; 16(23): 2039-2059, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34533372

RESUMO

Aim: This work aimed to develop Tinospora cordifolia stem-derived carbon dots (TCSCD) for cancer cell imaging, free radical scavenging and metal sensing applications. Method: The TCSCDs were synthesized by a simple, one-step, and ecofriendly hydrothermal carbonization method and characterized for their optical properties, morphology, hydrodynamic size, surface functionality, crystallinity, stability, bacterial biocompatibility, in vitro cellular imaging, free radical scavenging and metal sensing ability. Results: The TCSCDs exhibited excellent biocompatibility with dose-dependent bioimaging results in melanoma (B16F10) and cervical cancer (SiHa) cell lines. They exerted good free radical scavenging, Fe3+ sensing, bacterial biocompatibility, photostability, colloidal dispersion stability and thermal stability. Conclusion: The results reflect the potential of TCSCDs for biomedical and pharmaceutical applications.


Assuntos
Neoplasias , Pontos Quânticos , Carbono , Linhagem Celular , Radicais Livres , Metais , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
8.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445173

RESUMO

Gamma rays and electrons with kinetic energy up to 10 MeV are routinely used to sterilize biomaterials. To date, the effects of irradiation upon human acellular dermal matrices (hADMs) remain to be fully elucidated. The optimal irradiation dosage remains a critical parameter affecting the final product structure and, by extension, its therapeutic potential. ADM slides were prepared by various digestion methods. The influence of various doses of radiation sterilization using a high-energy electron beam on the structure of collagen, the formation of free radicals and immune responses to non-irradiated (native) and irradiated hADM was investigated. The study of the structure changes was carried out using the following methods: immunohistology, immunoblotting, and electron paramagnetic resonance (EPR) spectroscopy. It was shown that radiation sterilization did not change the architecture and three-dimensional structure of hADM; however, it significantly influenced the degradation of collagen fibers and induced the production of free radicals in a dose-dependent manner. More importantly, the observed effects did not disrupt the therapeutic potential of the new transplants. Therefore, radiation sterilization at a dose of 35kGy can ensure high sterility of the dressing while maintaining its therapeutic potential.


Assuntos
Derme Acelular , Bandagens , Esterilização/métodos , Colágeno/análise , Radicais Livres/análise , Raios gama , Humanos
9.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443474

RESUMO

Numerous plant compounds and their metal-ion complexes exert antioxidative, anti-inflammatory, anticancer, and other beneficial effects. This review highlights the different bioactivities of flavonoids, chromones, and coumarins and their metal-ions complexes due to different structural characteristics. In addition to insight into the most studied antioxidative properties of these compounds, the first part of the review provides a comprehensive overview of exogenous and endogenous sources of reactive oxygen and nitrogen species, oxidative stress-mediated damages of lipids and proteins, and on protective roles of antioxidant defense systems, including plant-derived antioxidants. Additionally, the review covers the anti-inflammatory and antimicrobial activities of flavonoids, chromones, coumarins and their metal-ion complexes which support its application in medicine, pharmacy, and cosmetology.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/química , Íons/química , Metais/química , Compostos Fitoquímicos/farmacologia , Anti-Inflamatórios/química , Antioxidantes/química , Radicais Livres/metabolismo , Humanos , Compostos Fitoquímicos/química , Plantas/química
10.
J Agric Food Chem ; 69(33): 9642-9653, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34382782

RESUMO

Radical formation in isohumulones was investigated under different types of stress, including temperature, transition metal ions, and hydrogen peroxide. Including dihydroisohumulones and tetrahydroisohumulones, as relevant analogues, allowed us to evaluate critical functionalities in radical formation. Using spin-trapping methodology with 5,5-dimethyl-1-pyrroline N-oxide and N-tert-butyl-α-phenylnitrone as relevant traps, followed by simulation of corresponding spin adducts, identification of incipient radicals was attempted. The isohexenoyl side chain in isohumulones, but not present in dihydro- and tetrahydroisohumulones, was most sensitive to radical formation. Kinetic profiles further demonstrated that radical formation in this moiety was accelerated in the presence of ferrous ions. Reactivity of parent six-membered-ring humulones in radical formation was different, as scavenging of free radical species was more important. Lupulones, despite similarity with humulones, showed a different behavior with an obvious radical decay pathway during ageing, mainly ascribed to radical formation on the ring structure. Quantification of final spin adducts allowed us to determine absolute importance of the different degradation pathways. Eventually, mechanisms are presented explaining why isohumulones are more prone to radical processes in (aut)oxidation and thermal decay than close relatives such as dihydroisohumulones.


Assuntos
Ácidos , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Oxirredução , Marcadores de Spin , Detecção de Spin
11.
Chem Pharm Bull (Tokyo) ; 69(8): 796-801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334524

RESUMO

The irradiation of halogen-bonded complexes with light leads to the homolysis of carbon-halogen bonds and the formation of the corresponding carbon radical species. However, the only methodology reported for these halogen-bonding complexes is using CBr4 as the halogen-bond donor and its applicability is of great interest. In this study, the atom transfer radical addition (ATRA) reaction of olefins using bromomalonates as halogen-bonding donors was developed. Using 4-phenylpyridine as the halogen-bonding acceptor, the desired reaction proceeded well under external irradiation of 380 nm light to furnish the corresponding ATRA reaction product. The ATRA reaction was effective in generating the corresponding products for a variety of olefins. Furthermore, the ATRA reaction was applicable to bulky ketones, substrates, and malonate esters. The intermediates of the reaction were identified and a plausible reaction mechanism was proposed.


Assuntos
Alcenos/química , Hidrocarbonetos Bromados/química , Radicais Livres/síntese química , Radicais Livres/química , Estrutura Molecular , Processos Fotoquímicos
12.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361708

RESUMO

A convenient strategy for molecular editing of available ent-kauranic natural scaffolds has been developed based on radical mediated C-C bond formation. Iodine atom transfer radical addition (ATRA) followed by rapid ionic elimination and radical azidoalkylation were investigated. Both reactions involve radical addition to the exo-methylenic double bond of the parent substrate. Easy transformations of the obtained adducts lead to extended diterpenes of broad structural diversity and artificial diterpene-alkaloid hybrids possessing lactam and pyrrolidine pharmacophores. The cytotoxicity of selected diterpenic derivatives was examined by in vitro testing on several tumor cell lines. The terpene-alkaloid hybrids containing N-heterocycles with unprecedented spiro-junction have shown relevant cytotoxicity and promising selectivity indexes. These results represent a solid basis for following research on the synthesis of such derivatives based on available natural product templates.


Assuntos
Alcaloides/síntese química , Antineoplásicos/síntese química , Produtos Biológicos/química , Diterpenos do Tipo Caurano/síntese química , Compostos Heterocíclicos/síntese química , Alcaloides/farmacologia , Alquilação , Antineoplásicos/farmacologia , Azidas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Radicais Livres/química , Compostos Heterocíclicos/farmacologia , Humanos , Concentração Inibidora 50 , Iodo/química , Lactamas/química , Pirrolidinas/química , Relação Estrutura-Atividade
13.
Adv Exp Med Biol ; 1301: 25-40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370286

RESUMO

Iron is an ancient, essential and versatile transition metal found in almost all living organisms on Earth. This fundamental trace element is used in the synthesis of heme and iron-sulfur (Fe-S) containing proteins and other vital cofactors that are involved in respiration, redox reactions, catalysis, DNA synthesis and transcription. At the same time, the ability of iron to cycle between its oxidized, ferric (Fe3+) and its reduced, ferrous (Fe2+) state contributes to the production of free radicals that can damage biomolecules, including proteins, lipids and DNA. In particular, the regulated non-apoptotic cell death ferroptosis is driven by Fe2+-dependent lipid peroxidation that can be prevented by iron chelation or genetic inhibition of cellular iron uptake. Therefore, iron homeostasis must be tightly regulated to avoid iron toxicity. This review provides an overview of the origin and chemistry of iron that makes it suitable for a variety of biological functions and addresses how organisms evolved various strategies, including their scavenging and antioxidant machinery, to manage redox-associated drawbacks. Finally, key mechanisms of iron metabolism are highlighted in human diseases and model organisms, underlining the perils of dysfunctional iron handlings.


Assuntos
Ferro , Radicais Livres , Homeostase , Humanos , Peroxidação de Lipídeos , Oxirredução
14.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361818

RESUMO

The cellular utilization of oxygen leads to the generation of free radicals in organisms. The accumulation of these free radicals contributes significantly to aging and several age-related diseases. Angiotensin II can contribute to DNA damage through oxidative stress by activating the NAD(P)H oxidase pathway, which in turn results in the production of reactive oxygen species. This radical oxygen-containing molecule has been linked to aging and several age-related disorders, including renal damage. Considering the role of angiotensin in aging, melatonin might relieve angiotensin-II-induced stress by enhancing the mitochondrial calcium uptake 1 pathway, which is crucial in preventing the mitochondrial calcium overload that may trigger increased production of reactive oxygen species and oxidative stress. This review highlights the role and importance of melatonin together with angiotensin in aging and age-related diseases.


Assuntos
Envelhecimento/genética , Angiotensina II/genética , Melatonina/genética , Estresse Oxidativo/genética , Envelhecimento/metabolismo , Antioxidantes/metabolismo , Dano ao DNA/efeitos dos fármacos , Radicais Livres/química , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Chem Commun (Camb) ; 57(64): 7863-7868, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34287441

RESUMO

Drawing on independent work carried out by academic and industrial researchers using the immobilized TEMPO catalyst SiliaCat TEMPO, in this study we show how shifting the carboxylation process mediated by TEMPO in solution to a process mediated by the above-mentioned hybrid sol-gel catalyst allows the synthesis of insoluble polysaccharide nanofibers of superior quality, eliminating waste. This will dramatically reduce the polysaccharide nanofiber production costs opening the route to large-scale production and uptake of these versatile nanofibers in a variety of functional products where their use has been limited by high cost. The results of this study will be useful for catalysis and biotechnology researchers as well as for chemistry educators teaching green chemistry, nanochemistry, and catalysis using the outcomes of recent research.


Assuntos
Óxidos N-Cíclicos/química , Nanofibras/química , Polissacarídeos/química , Configuração de Carboidratos , Radicais Livres/química , Humanos , Oxirredução , Tamanho da Partícula
16.
Food Chem ; 365: 130524, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252626

RESUMO

Increasing studies focus on the degradation of polysaccharides by free radicals. The review mainly provides an overview of degradation of polysaccharides by free radicals generated from hydrogen peroxide (H2O2). Evidence suggests that free radicals generated from H2O2 can be generated by various mechanisms. It broke glycosidic bonds mainly through hydrogen abstraction, causing the degradation of polysaccharides. Its degradation efficiency is affected by many factors, such as the concentration of polysaccharides and H2O2, temperature and pH. In addition, free radical degradation could change the physicochemical and structural properties of polysaccharides, such as water solubility, thermal stability, molecular weight, monosaccharide composition, apparent morphology, and chain conformation, but it had little effects on the primary structure of polysaccharides. Besides, free radical degradation could also improve the bioactivities of polysaccharides, including antioxidant, antitumor and anticoagulant activities.


Assuntos
Peróxido de Hidrogênio , Polissacarídeos , Antioxidantes , Radicais Livres , Monossacarídeos
17.
Free Radic Biol Med ; 173: 52-63, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224816

RESUMO

Neurodegeneration describes a group of more than 300 neurological diseases, characterised by neuronal loss and intra- or extracellular protein depositions, as key neuropathological features. Multiple factors play role in the pathogenesis of these group of disorders: mitochondrial dysfunction, membrane damage, calcium dyshomeostasis, metallostasis, defect clearance and renewal mechanisms, to name a few. All these factors, without exceptions, have in common the involvement of immensely increased generation of free radicals and occurrence of oxidative stress, and as a result - exhaustion of the scavenging potency of the cellular redox defence mechanisms. Besides genetic predisposition and environmental exposure to toxins, the main risk factor for developing neurodegeneration is age. And although the "Free radical theory of ageing" was declared dead, it is undisputable that accumulation of damage occurs with age, especially in systems that are regulated by free radical messengers and those that oppose oxidative stress, protein oxidation and the accuracy in protein synthesis and degradation machinery has difficulties to be maintained. This brief review provides a comprehensive summary on the main sources of free radical damage, occurring in the setting of neurodegeneration.


Assuntos
Estresse Oxidativo , Radicais Livres , Oxirredução , Espécies Reativas de Oxigênio
18.
Sci Total Environ ; 796: 148963, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34265616

RESUMO

The occurrence of environmental persistent free radicals (EPFRs) in the environment has attracted a great deal of research attention. Although the major sources of EPFRs in the environment is diesel engine exhaust, the study on the emission characteristics of EPFRs at different working conditions is still very limited. An integrated engine system was adopted to simulate different working conditions of various altitudes and engine speeds, and to examine the emission process of a diesel engine. The results suggested that low engine speed and high altitude are generally associated with high PM10 emission with more stable and ordered structures. Based on the analysis of PAHs on solid and gas phases, PM10 generated from diesel engine at altitude higher than 2000 m may contain substantial amounts of PAHs embedded inside particles, but not adsorbed on the surface. EPFRs signal up to 1.66 × 1020 spins/g were detected in PM10 of the diesel exhaust. Higher engine speed and lower altitude were associated with stronger EPR signals on PM10. However, the accumulated EPR signal intensities after consuming 1 L of diesel were higher at lower engine speed and higher altitude, suggesting higher overall risks. A positive correlation between R value (signal strength ratio of D and G peaks on the Raman spectra) and EPFRs intensity indicated that the EPR signals were associated with the defects of carbon structure. EPFRs intensity in particles showed no significant change in dark, and over 70% of the EPR signals survived under UV light in a one-month aging simulation. The strong persistence of these EPFRs suggested their potential long lasting and widespread risks, which should be investigated extensively.


Assuntos
Material Particulado , Emissões de Veículos , Altitude , Carbono , Radicais Livres , Gasolina/análise , Material Particulado/análise , Emissões de Veículos/análise
19.
Molecules ; 26(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299623

RESUMO

Oxyresveratrol, a polyphenol extracted from the plant Artocarpus lakoocha Roxb, has been reported to be an antioxidant and an oxygen-free radical scavenger. We investigated whether oxyresveratrol affects the generation of superoxide anion (O2-) by human monocytes, which are powerful reactive oxygen species (ROS) producers. We found that oxyresveratrol inhibited the O2- production induced upon stimulation of monocytes with ß-glucan, a well known fungal immune cell activator. We then investigated whether the inclusion of oxyresveratrol into nanoparticles could modulate its effects on O2- release. We synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on monocytes. We found that empty PLGA nanoparticles induced O2- production by resting monocytes and enhanced the formation of this radical in ß-glucan-stimulated monocytes. Interestingly, the insertion of oxyresveratrol into PLGA nanoparticles significantly inhibited the O2- production elicited by unloaded nanoparticles in resting monocytes as well as the synergistic effect of nanoparticles and ß-glucan. Our results indicate that oxyresveratrol is able to inhibit ROS production by activated monocytes, and its inclusion into PLGA nanoparticles mitigates the oxidative effects due to the interaction between these nanoparticles and resting monocytes. Moreover, oxyresveratrol can contrast the synergistic effects of nanoparticles with fungal agents that could be present in the patient tissues. Therefore, oxyresveratrol is a natural compound able to make PLGA nanoparticles more biocompatible.


Assuntos
Materiais Biocompatíveis/química , Radicais Livres/metabolismo , Monócitos/efeitos dos fármacos , Nanopartículas/química , Oxigênio/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Estilbenos/química , Estilbenos/farmacologia , Antioxidantes/farmacologia , Artocarpus/química , Células Cultivadas , Humanos , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Nutrients ; 13(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206952

RESUMO

Age-related neurodegenerative disorders are an increasing public health problem. Oxidative stress is one of the major causes. Medicinal plant-based functional foods can be effective for these diseases. The aim of this work is to investigate the neuroprotective role of methanol extracts of Moringa oleifera leaf powder on antioxidant/oxidant imbalance and mitochondrial regulation in a H2O2-induced oxidative stress model in human neuroblastoma cells. On nutritional analysis, results showed that moringa contained 28.50% carbohydrates, 25.02% proteins, 10.42% fat, 11.83% dietary fiber, 1.108 mg ß-carotene, 326.4 µg/100 g vitamin B1 and 15.2 mg/100 g vitamin C. In-vitro assays revealed that moringa methanol extracts had more phenolic content and higher antioxidant activity than acetone extracts. Moreover, pretreatments with methanol extracts showed a protective effect against H2O2-induced oxidative damage through increasing cell viability and reducing free radicals. Furthermore, the extract decreased lipid peroxidation and enhanced glutathione levels and antioxidant enzyme activity. Finally, moringa also prevented mitochondrial dysfunction by regulating calcium levels and increasing mitochondrial membrane potential. The most active concentration was 25 µg/mL. In summary, the nutritional and functional properties of Moringa oleifera as a neuroprotective agent could be beneficial to protect against oxidative stress and provide necessary nutrients for a healthy diet.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/metabolismo , Moringa oleifera/química , Fármacos Neuroprotetores/farmacologia , Valor Nutritivo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Ácido Ascórbico/farmacologia , Radicais Livres , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos , Metanol , Mitocôndrias/efeitos dos fármacos , Moringa , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Pós , beta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...