Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.544.894
Filtrar
1.
Pestic Biochem Physiol ; 176: 104883, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119212

RESUMO

These days, poisoning with aluminium phosphide (AlP), is one of the main health threats in human societies. Previous studies have been reported that cardiotoxicity induced by AlP, via mitochondrial dysfunction and oxidative stress is the main cause of death in victims. On the other, collectively, multiple lines of evidence strongly suggest that calcitriol has mitochondrial protective and antioxidant effects. Therefore, we assumed that calcitriol could presumably ameliorate AlP-induced oxidative stress and mitochondrial dysfunction in cardiomyocytes. Mitochondria and cardiomyocytes were isolated by differential centrifugation and collagenase perfusion respectively from rat heart. The isolated cardiomyocytes and mitochondria were cotreated with different concentrations of calcitriol (0.2, 0.4 and 1 µg/ml) and AlP (20 µg/ml) for 3 h. The parameters of cellular toxicity including; cytotoxicity, reactive oxygen species (ROS) formation, malondialdehyde (MDA) level, mitochondria membrane potential (ΔΨm) collapse, lysosomal membrane integrity, the level of oxidized and reduced glutathione (GSH and GSSG), and mitochondrial toxicity parameters including; succinate dehydrogenase (SDH) activity and mitochondrial swelling were analyzed using biochemical and flow cytometric evaluations. Administration of AlP significantly increased cytotoxicity, GSH depletion, cellular ROS formation, MDA level, mitochondrial and lysosomal dysfunction in isolated cardiomyocytes. In isolated mitochondria, AlP decreased SDH activity and mitochondrial swelling. The cotreatment of isolated cardiomyocytes and mitochondria with calcitriol (0.4 and 1 µg/ml) and AlP (20 µg/ml) showed the ability to reduce the toxic effects of AlP. These findings suggest a potential therapeutic role of calcitriol in protecting cardiomyocytes and cardiac mitochondria from oxidative damage induced by AlP. According to the results, calcitriol exerted ameliorative effects against AlP-induced cytotoxicity and mitochondrial toxicity, and the effect was attributed to the antioxidant properties.


Assuntos
Calcitriol , Miócitos Cardíacos , Compostos de Alumínio , Animais , Calcitriol/toxicidade , Potencial da Membrana Mitocondrial , Mitocôndrias , Estresse Oxidativo , Fosfinas , Ratos , Espécies Reativas de Oxigênio
2.
Pestic Biochem Physiol ; 176: 104861, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119225

RESUMO

The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver microsomes was investigated in vitro. The result showed remarkable enantioselectivity for fipronil and ethiprole with the EF values of 0.11-0.58. The metabolite fipronil-sulfone was formed with the degradation of fipronil. R-Ethiprole to S-ethiprole transformation was observed, but not S-ethiprole to R-ethiprole. No enantioselective metabolism was observed for flufiprole with the EF values of 0.49-0.51. The enzymatic assays showed that the inhibition ratio of R-fipronil and S-ethiprole was 1.5-2.1times that of the corresponding enantiomers on CYP2E1 and CYP2D2 activity, leading to the enantioselective metabolism. The result of the homology modeling and molecular docking further revealed that S-fipronil (-7.56 kcal mol-1) and R-ethiprole (-6.45 kcal mol-1) performed better binding with CYP2E1 and CYP2D2, respectively. The results provided useful data for the risk evaluation of chiral phenylpyrazole insecticides on ecological safety and human health.


Assuntos
Inseticidas , Animais , Citocromo P-450 CYP2E1 , Inseticidas/toxicidade , Fígado , Simulação de Acoplamento Molecular , Ratos , Estereoisomerismo
3.
Biomed Environ Sci ; 34(5): 356-363, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34059172

RESUMO

Objective: This study aimed to investigate the effects of N,N-dimethylglycine (DMG) on the concentration and metabolism of plasma homocysteine (pHcy) in folate-sufficient and folate-deficient rats. Methods: In this study, 0.1% DMG was supplemented in 20% casein diets that were either folate-sufficient (20C) or folate-deficient (20CFD). Blood and liver of rats were subjected to assays of Hcy and its metabolites. Hcy and its related metabolite concentrations were determined using a liquid chromatographic system. Results: Folate deprivation significantly increased pHcy concentration in rats fed 20C diet (from 14.19 ± 0.39 µmol/L to 28.49 ± 0.50 µmol/L; P < 0.05). When supplemented with DMG, pHcy concentration was significantly decreased (12.23 ± 0.18 µmol/L) in rats fed 20C diet but significantly increased (31.56 ± 0.59 µmol/L) in rats fed 20CFD. The hepatic methionine synthase activity in the 20CFD group was significantly lower than that in the 20C group; enzyme activity was unaffected by DMG supplementation regardless of folate sufficiency. The activity of hepatic cystathionine ß-synthase (CBS) in the 20CFD group was decreased but not in the 20C group; DMG supplementation enhanced hepatic CBS activity in both groups, in which the effect was significant in the 20C group but not in the other group. Conclusion: DMG supplementation exhibited hypohomocysteinemic effects under folate-sufficient conditions. By contrast, the combination of folate deficiency and DMG supplementation has deleterious effect on pHcy concentration.


Assuntos
Dieta , Suplementos Nutricionais , Deficiência de Ácido Fólico/metabolismo , Homocisteína/metabolismo , Sarcosina/análogos & derivados , Animais , Biomarcadores/metabolismo , Cromatografia Líquida , Fígado/metabolismo , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Sarcosina/administração & dosagem , Sarcosina/metabolismo
4.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064311

RESUMO

Dephosphorylation of target proteins at serine/threonine residues is one of the most crucial mechanisms regulating their activity and, consequently, the cellular functions. The role of phosphatases in synaptic plasticity, especially in long-term depression or depotentiation, has been reported. We studied serine/threonine phosphatase activity during the protein synthesis blocker (PSB)-induced impairment of long-term potentiation (LTP). Established protein phosphatase 2B (PP2B, calcineurin) inhibitor cyclosporin A prevented the LTP early phase (E-LTP) decline produced by pretreatment of hippocampal slices with cycloheximide or anisomycin. For the first time, we directly measured serine/threonine phosphatase activity during E-LTP, and its significant increase in PSB-treated slices was demonstrated. Nitric oxide (NO) donor SNAP also heightened phosphatase activity in the same manner as PSB, and simultaneous application of anisomycin + SNAP had no synergistic effect. Direct measurement of the NO production in hippocampal slices by the NO-specific fluorescent probe DAF-FM revealed that PSBs strongly stimulate the NO concentration in all studied brain areas: CA1, CA3, and dentate gyrus (DG). Cyclosporin A fully abolished the PSB-induced NO production in the hippocampus, suggesting a close relationship between nNOS and PP2B activity. Surprisingly, cyclosporin A alone impaired short-term plasticity in CA1 by decreasing paired-pulse facilitation, which suggests bi-directionality of the influences of PP2B in the hippocampus. In conclusion, we proposed a minimal model of signaling events that occur during LTP induction in normal conditions and the PSB-treated slices.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Calcineurina/genética , Potenciação de Longa Duração/genética , Potenciais Sinápticos/genética , Animais , Anisomicina/farmacologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Calcineurina/metabolismo , Inibidores de Calcineurina/farmacologia , Cicloeximida/farmacologia , Ciclosporina/farmacologia , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Regulação da Expressão Gênica , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Microtomia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Óxido Nítrico/química , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Wistar , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia , Potenciais Sinápticos/efeitos dos fármacos , Técnicas de Cultura de Tecidos
5.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064454

RESUMO

The γ-aminobutyric acid type A receptor (GABAAR) plays a major role in fast inhibitory synaptic transmission and is highly regulated by the neuromodulator dopamine. In this aspect, most of the attention has been focused on the classical intracellular signaling cascades following dopamine G-protein-coupled receptor activation. Interestingly, the GABAAR and dopamine D5 receptor (D5R) have been shown to physically interact in the hippocampus, but whether a functional cross-talk occurs is still debated. In the present study, we use a combination of imaging and single nanoparticle tracking in live hippocampal neurons to provide evidence that GABAARs and D5Rs form dynamic surface clusters. Disrupting the GABAAR-D5R interaction with a competing peptide leads to an increase in the diffusion coefficient and the explored area of both receptors, and a drop in immobile synaptic GABAARs. By means of patch-clamp recordings, we show that this fast lateral redistribution of surface GABAARs correlates with a robust depression in the evoked GABAergic currents. Strikingly, it also shifts in time the expression of long-term potentiation at glutamatergic synapses. Together, our data both set the plasma membrane as the primary stage of a functional interplay between GABAAR and D5R, and uncover a non-canonical role in regulating synaptic transmission.


Assuntos
Potenciação de Longa Duração/genética , Neurônios/metabolismo , Receptor Cross-Talk , Receptores de Dopamina D5/genética , Receptores de GABA-A/genética , Transmissão Sináptica/genética , Animais , Ligação Competitiva , Membrana Celular/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/citologia , Técnicas de Patch-Clamp , Peptídeos/síntese química , Peptídeos/metabolismo , Cultura Primária de Células , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D5/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/genética , Sinapses/metabolismo
6.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068707

RESUMO

BDNF plays a pivotal role in neuroplasticity events, vulnerability and resilience to stress-related disorders, being decreased in depressive patients and increased after antidepressant treatment. BDNF was found to be reduced in patients carrying the human polymorphism in the serotonin transporter promoter region (5-HTTLPR). The serotonin knockout rat (SERT-/-) is one of the animal models used to investigate the underlying molecular mechanisms of depression in humans. They present decreased BDNF levels, and anxiety- and depression-like behavior. To investigate whether upregulating BDNF would ameliorate the phenotype of SERT-/- rats, we overexpressed BDNF locally into the ventral hippocampus and submitted the animals to behavioral testing. The results showed that BDNF overexpression in the vHIP of SERT-/- rats promoted higher sucrose preference and sucrose intake; on the first day of the sucrose consumption test it decreased immobility time in the forced swim test and increased the time spent in the center of a novel environment. Furthermore, BDNF overexpression altered social behavior in SERT-/- rats, which presented increased passive contact with test partner and decreased solitary behavior. Finally, it promoted decrease in plasma corticosterone levels 60 min after restraint stress. In conclusion, modulation of BDNF IV levels in the vHIP of SERT-/- rats led to a positive behavioral outcome placing BDNF upregulation in the vHIP as a potential target to new therapeutic approaches to improve depressive symptoms.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Estresse Psicológico/tratamento farmacológico , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/patologia , Corticosterona/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Plasticidade Neuronal/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ratos , Serotonina/genética , Estresse Psicológico/genética , Estresse Psicológico/patologia
7.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073710

RESUMO

Cortical circuit dysfunction is thought to be an underlying mechanism of schizophrenia (SZ) pathophysiology with normalization of aberrant circuit activity proposed as a biomarker for antipsychotic efficacy. Cannabidiol (CBD) shows potential as an adjunctive antipsychotic therapy; however, potential sex effects in these drug interactions remain unknown. In the present study, we sought to elucidate sex effects of CBD coadministration with the atypical antipsychotic iloperidone (ILO) on the activity of primary cortical neuron cultures derived from the rat methylazoxymethanol acetate (MAM) model used for the study of SZ. Spontaneous network activity measurements were obtained using a multielectrode array at baseline and following administration of CBD or ILO alone, or combined. At baseline, MAM male neurons displayed increased bursting activity whereas MAM female neurons exhibited no difference in bursting activity compared to sex-matched controls. CBD administered alone showed a rapid but transient increase in neuronal activity in the MAM networks, an effect more pronounced in females. Furthermore, ILO had an additive effect on CBD-induced elevations in activity in the MAM male neurons. In the MAM female neurons, CBD or ILO administration resulted in time-dependent elevations in neuronal activity, but the short-term CBD-induced increases in activity were lost when CBD and ILO were combined. Our findings indicate that CBD induces rapid increases in cortical neuronal activity, with sex-specific drug interactions upon ILO coadministration. This suggests that sex should be a consideration when implementing adjunct therapy for treatment of SZ.


Assuntos
Canabidiol/farmacologia , Isoxazóis/farmacologia , Neurônios/efeitos dos fármacos , Piperidinas/farmacologia , Esquizofrenia/tratamento farmacológico , Animais , Animais Recém-Nascidos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Canabidiol/uso terapêutico , Técnicas de Cultura de Células , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Feminino , Isoxazóis/uso terapêutico , Masculino , Neurônios/fisiologia , Piperidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Esquizofrenia/fisiopatologia , Caracteres Sexuais
8.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073816

RESUMO

Alzheimer's disease (AD) is attracting considerable interest due to its increasing number of cases as a consequence of the aging of the global population. The mainstream concept of AD neuropathology based on pathological changes of amyloid ß metabolism and the formation of neurofibrillary tangles is under criticism due to the failure of Aß-targeting drug trials. Recent findings have shown that AD is a highly complex disease involving a broad range of clinical manifestations as well as cellular and biochemical disturbances. The past decade has seen a renewed importance of metabolic disturbances in disease-relevant early pathology with challenging areas in establishing the role of local micro-fluctuations in glucose concentrations and the impact of insulin on neuronal function. The role of the S100 protein family in this interplay remains unclear and is the aim of this research. Intracellularly the S100B protein has a protective effect on neurons against the toxic effects of glutamate and stimulates neurites outgrowth and neuronal survival. At high concentrations, it can induce apoptosis. The aim of our study was to extend current knowledge of the possible impact of hyper-glycemia and -insulinemia directly on neuronal S100B secretion and comparison to oxidative stress markers such as ROS, NO and DBSs levels. In this paper, we have shown that S100B secretion decreases in neurons cultured in a high-glucose or high-insulin medium, while levels in cell lysates are increased with statistical significance. Our findings demonstrate the strong toxic impact of energetic disturbances on neuronal metabolism and the potential neuroprotective role of S100B protein.


Assuntos
Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Neurônios/metabolismo , Estresse Nitrosativo , Estresse Oxidativo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Doença de Alzheimer , Animais , Dano ao DNA , Humanos , Hiperglicemia/genética , Hiperinsulinismo/genética , Neuroproteção , Células PC12 , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/fisiologia
9.
Arch Oral Biol ; 128: 105170, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082374

RESUMO

OBJECTIVE: The aim of this study was to quantify the temporal changes in inflammation and TRPA1, TRPV1 and CGRP expression in the trigeminal ganglion during force-induced orthodontic pain. DESIGN: Orthodontic force was applied to both maxillary first molars in 8-week-old Wistar rats for 12 h, 24 h, 3 d or 7 d. The rat grimace scale (RGS) score and duration of face grooming were used to measure orthodontic pain. Western blotting was performed to assess TRPA1, TRPV1 and CGRP expression in trigeminal ganglia. NF-кB levels and colocalization of TRPA1, TRPV1 and CGRP were evaluated by immunofluorescent staining. RESULTS: Application of continuous force significantly increased pain behaviours at 1 and 3 d. NF-кB significantly increased in periodontal ligament at 12 h until 3 d. TRPV1 was significantly elevated within 1 d; TRPA1 significantly increased from 1-3 d; CGRP expression significantly increased from 12 h to 3 d. The TRPV1/TRPA1 expression ratio was highest at 12 h; the TRPA1/TRPV1 ratio peaked at 3 d. The percentages of trigeminal neurons co-expressing TRPA1/TRPV1, TRPA1/CGRP, and TRPV1/CGRP significantly increased by 12 h and peaked at 24 h. CGRP expression had a stronger positive correlation with TRPV1 than TRPA1. CONCLUSIONS: Inflammation induced by application of orthodontic force sensitizes trigeminal TRPV1 and TRPA1; TRPV1 is primarily activated as an early response, whereas TRPA1 is activated as a late response. Activation of both nociceptors results in CGRP release. Thus, blocking both TRPV1 and TRPA1 may represent a primary therapeutic target for relief of orthodontic pain.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Canais de Cátion TRPV , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dor , Ratos , Ratos Wistar , Canal de Cátion TRPA1 , Gânglio Trigeminal/metabolismo
10.
Nat Commun ; 12(1): 3407, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099685

RESUMO

Single-Molecule Localization Microscopy (SMLM) provides the ability to determine molecular organizations in cells at nanoscale resolution, but in complex biological tissues, where sample-induced aberrations hamper detection and localization, its application remains a challenge. Various adaptive optics approaches have been proposed to overcome these issues, but the exact performance of these methods has not been consistently established. Here we systematically compare the performance of existing methods using both simulations and experiments with standardized samples and find that they often provide limited correction or even introduce additional errors. Careful analysis of the reasons that underlie this limited success enabled us to develop an improved method, termed REALM (Robust and Effective Adaptive Optics in Localization Microscopy), which corrects aberrations of up to 1 rad RMS using 297 frames of blinking molecules to improve single-molecule localization. After its quantitative validation, we demonstrate that REALM enables to resolve the periodic organization of cytoskeletal spectrin of the axon initial segment even at 50 µm depth in brain tissue.


Assuntos
Encéfalo/patologia , Óptica e Fotônica/métodos , Imagem Individual de Molécula/métodos , Algoritmos , Animais , Células COS , Chlorocebus aethiops , Microscopia de Fluorescência/instrumentação , Ratos , Imagem Individual de Molécula/instrumentação , Software
11.
Nat Commun ; 12(1): 3413, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099701

RESUMO

Bottom-up approaches using building blocks of modules to fabricate scaffolds for tissue engineering applications have enabled the fabrication of structurally complex and multifunctional materials allowing for physical and chemical flexibility to better mimic the native extracellular matrix. Here we report a vapor-phased fabrication process for constructing three-dimensional modulated scaffold materials via simple steps based on controlling mass transport of vapor sublimation and deposition. We demonstrate the fabrication of scaffolds comprised of multiple biomolecules and living cells with built-in boundaries separating the distinct compartments containing defined biological configurations and functions. We show that the fabricated scaffolds have mass production potential. We demonstrate overall >80% cell viability of encapsulated cells and that modulated scaffolds exhibit enhanced cell proliferation, osteogenesis, and neurogenesis, which can be assembled into various geometric configurations. We perform cell co-culture experiments to show independent osteogenesis and angiogenesis activities from separate compartments in one scaffold construct.


Assuntos
Materiais Biomiméticos/química , Vapor , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Matriz Extracelular , Humanos , Hidrogéis/química , Camundongos , Neovascularização Fisiológica , Neurogênese , Osteogênese , Ratos
12.
Nat Commun ; 12(1): 3377, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099716

RESUMO

Animal models of human diseases are classically fed purified diets that contain casein as the unique protein source. We show that provision of a mixed protein source mirroring that found in the western diet exacerbates diet-induced obesity and insulin resistance by potentiating hepatic mTORC1/S6K1 signaling as compared to casein alone. These effects involve alterations in gut microbiota as shown by fecal microbiota transplantation studies. The detrimental impact of the mixed protein source is also linked with early changes in microbial production of branched-chain fatty acids (BCFA) and elevated plasma and hepatic acylcarnitines, indicative of aberrant mitochondrial fatty acid oxidation. We further show that the BCFA, isobutyric and isovaleric acid, increase glucose production and activate mTORC1/S6K1 in hepatocytes. Our findings demonstrate that alteration of dietary protein source exerts a rapid and robust impact on gut microbiota and BCFA with significant consequences for the development of obesity and insulin resistance.


Assuntos
Proteínas na Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Obesidade/etiologia , Ração Animal/efeitos adversos , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Sacarose na Dieta/efeitos adversos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Vida Livre de Germes , Gluconeogênese , Hepatócitos , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais
13.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(5): 529-534, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34112287

RESUMO

OBJECTIVE: To evaluate the effects of noise, bright light and mechanical stimulation on sleep, blood-brain barrier and cognitive function in septic rats. METHODS: Forty male Sprague-Dawley (SD) rats were selected and intraperitoneal injection of 10 mg/kg lipopolysaccharide (LPS) was used to establish sepsis model. 0, 30, 45, 60, 75 dB noise stimulation or 0, 50, 100, 200, 400 Lux light stimulation were given to rats (all n = 4). The serum levels of cortisol and melatonin, and the cerebral content of Evans blue (EB) were measured 96 hours after the stimulation to determine the optimal intensity of intervention. The other 40 SD rats were randomly divided into control group (Con group), LPS group, noise intervention group (LPS+60 dB group), 200 Lux light intervention group (LPS+200 Lux group) and mechanical stimulation group (LPS+MS group), with 8 rats in each group. The open fields test and fear conditioning test were used to evaluate the exploratory behavior and cognitive function 96 hours after corresponding stimulation. The enzyme linked immunosorbent assay (ELISA) was used to detect cerebral level of interleukin-6 (IL-6) and serum levels of cortisol and melatonin. The blood-brain barrier integrity was assessed by EB staining. The protein levels of ZO-1, Claudin-5 and caspase-3 in the hippocampus were detected by Western blotting to assess the blood-brain barrier integrity and neuronal apoptosis. RESULTS: Compared with 0 dB group or 0 Lux group, the serum melatonin concentration in 60 dB group and 200 Lux group were significantly reduced, while the serum cortisol concentration and cerebral EB content were significantly increased. Therefore, 60 dB noise and 200 Lux light were selected in the subsequent experiments. Compared with Con group, the horizontal score and vertical score in the open field test in LPS group were significantly decreased. There were no significant differences in the proportion of freezing time, the cerebral contents of EB and IL-6, the serum levels of melatonin and cortisol, and the hippocampal expressions of ZO-1, Claudin-5 and caspase-3. Compared with LPS group, the horizontal score, vertical score and the percentage of freezing time in LPS+60 dB group, LPS+200 Lux group and LPS+MS group were significantly reduced [horizontal score: 73.8±9.7, 80.3±9.4, 64.5±8.3 vs. 103.6±15.5; vertical score: 9.4±1.7, 11.2±1.9, 6.8±0.9 vs. 15.9±2.8; the percentage of freezing time: (45.3±4.7)%, (53.3±5.8)%, (42.1±5.1)% vs. (66.1±6.3)%], the serum level of melatonin was significantly decreased (ng/L: 53.62±6.20, 44.25±6.41, 45.33±5.84 vs. 74.39±7.54), the serum level of cortisol was significantly increased (nmol/L: 818.34±95.53, 710.04±65.41, 989.73±91.63 vs. 398.82±72.59), the levels of EB, IL-6 in the brain tissue were significantly increased [EB (µg/g): 2.80±0.35, 2.38±0.31, 3.24±0.42 vs. 1.59±0.26; IL-6 (ng/g): 31.56±4.11, 26.69±3.75, 37.47±4.56 vs. 16.28±2.69], the expressions of ZO-1 and Claudin-5 were significantly decreased (ZO-1/ß-actin: 0.37±0.04, 0.32±0.05, 0.24±0.04 vs. 0.80±0.09; Claudin-5/ß-actin: 0.62±0.08, 0.47±0.06, 0.35±0.05 vs. 0.97±0.20), and the expression of cleaved caspase-3 was significantly increased (caspase-3/ß-actin: 0.56±0.06, 0.39±0.04, 0.72±0.12 vs. 0.20±0.03), with statistically significant differences (all P < 0.05). CONCLUSIONS: 60 dB noise, 200 Lux light or mechanical stimulation for 96 hours could inhibit the secretion of serum melatonin, promote the secretion of cortisol, and activate neuroinflammation in septic rats, and lead to neuronal apoptosis in hippocampus and hyper-permeability of blood-brain barrier, which in turn could cause sleep disturbance and cognitive impairment.


Assuntos
Barreira Hematoencefálica , Sepse , Animais , Cognição , Masculino , Ratos , Ratos Sprague-Dawley , Sepse/terapia , Sono , Fator de Necrose Tumoral alfa
14.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(5): 541-545, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34112289

RESUMO

OBJECTIVE: To investigate the protective effect and mechanism of celastrol in acute lung injury (ALI) of septic rats. METHODS: According to random number table, 24 male Sprague-Dawley (SD) rats were divided into control group (Con group), Sham operation group (Sham group), sepsis-induced ALI group by cecal ligation and perforation (CLP group) and celastrol intervention group (CLP+celastrol group, 2 mg/kg intraperitoneal administration 1 hour before surgery), 6 rats in each group. The abdominal aortic blood of the rats was collected for blood gas analysis 24 hours after the surgery, and then the rats were sacrificed and the lung tissues were taken to calculate the lung wet to dry weight ratio (W/D). The pathological characteristics of lung tissues were observed under light microscope and calculated the lung injury score. The protein levels of Toll-like receptor 4 (TLR4), interleukins (IL-6, IL-10), and nuclear factor-κB (NF-κB) of cytoplasm and nucleus in lung tissues were detected by enzyme linked immunosorbent assay (ELISA). RESULTS: The partial arterial oxygen pressure (PaO2), lung W/D ratio, lung injury score and the protein levels of inflammatory factor in lung tissues had no differences between Con group and Sham group. Compared with the Con group, PaO2 in the CLP group was significantly decreased [mmHg (1 mmHg = 0.133 kPa): 60.33±2.01 vs. 109.20±2.99], the lung W/D ratio and lung injury score were significantly increased (lung W/D ratio: 4.44±0.05 vs. 3.27±0.04, lung injury score: 10.67±0.42 vs. 0.50±0.22), and the protein levels of TLR4, IL-6, IL-10 and the nucleus NF-κB in the lung tissues were significantly increased [TLR4 (pg/L): 21.87±0.66 vs. 3.27±0.09, IL-6 (ng/L): 861.10±8.28 vs. 120.30±3.91, IL-10 (ng/L): 212.40±2.57 vs. 41.73±1.02, nuclear NF-κB (ng/L): 707.70±16.82 vs. 403.30±7.46], but the protein level of cytoplasm NF-κB was significantly decreased (ng/L: 213.70±8.67 vs. 408.30±8.71), with statistically significant differences (all P < 0.05). Compared with the CLP group, PaO2 in CLP+celastrol group was significantly increased (mmHg: 76.83±3.21 vs. 60.33±2.01), the lung W/D ratio and lung injury score were significantly decreased (lung W/D ratio: 3.82±0.03 vs. 4.44±0.05, lung injury score: 5.00±0.37 vs. 10.67±0.42), and the protein levels of TLR4, IL-6, IL-10 and nucleus NF-κB in the lung tissue were significantly decreased [TLR4 (pg/L): 7.57±0.21 vs. 21.87±0.66, IL-6 (ng/L): 380.90±6.55 vs. 861.10±8.28, nuclear NF-κB (ng/L): 533.80±9.42 vs. 707.70±16.82], and the protein level of cytoplasm NF-κB was significantly increased (ng/L: 342.70±14.96 vs. 213.70±8.67), with statistically significant differences (all P < 0.05), while the protein level of IL-10 in lung tissues had no significant difference (ng/L: 210.50±3.16 vs. 212.40±2.57, P > 0.05). CONCLUSIONS: Celastrol may regulate the expression and release of inflammatory factors by inhibiting the TLR4/NF-κB pathway, thereby alleviating the ALI induced by sepsis in rats.


Assuntos
Lesão Pulmonar Aguda , Sepse , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Animais , Pulmão , Masculino , NF-kappa B , Triterpenos Pentacíclicos , Ratos , Ratos Sprague-Dawley , Sepse/complicações , Sepse/tratamento farmacológico , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa
15.
Zhonghua Nei Ke Za Zhi ; 60(6): 552-555, 2021 Jun 01.
Artigo em Chinês | MEDLINE | ID: mdl-34058812

RESUMO

To investigate the effects of different fluid resuscitation on renal function and glycocalyx in septic shock rats. The septic shock SD rats (induced by lipopolysaccharide) were randomly divided into control group, normal saline resuscitation group, Lactate Ringer's solution resuscitation group and succinyl gelatin resuscitation group (n=6 each). The mean arterial pressure, heart rate, serum creatinine (Scr), urea nitrogen (BUN), renal blood flow, renal tissue pathology, serum interleukin-6, tumor necrosis factor α and glycocalyx were measured at baseline, the development of septic shock, 0 hour and 8 hours after resuscitation. When shock was established, the renal blood flow significantly decreased (P<0.05) and recovered to normal at 0 hour and 8 hours after resuscitation. Compared with normal saline group and succinyl gelatin group, the levels of Scr, BUN and glycocalyx components (heparan sulfate, syndecan-1) were significant lower in Lactate Ringer's solution group (P<0.05). The pathology of kidney tissue suggested that the microscopic ischemic damage with Lactate Ringer's solution were minor than the other two groups. Compared with normal saline and succinyl gelatin, Lactate Ringer's solution can reduce the damage of renal function and glycocalyx in septic shock rats.


Assuntos
Choque Hemorrágico , Choque Séptico , Animais , Hidratação , Glicocálix , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/tratamento farmacológico , Choque Séptico/terapia
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 37(6): 551-556, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34060450

RESUMO

Objective To prepare the fusion protein MVF-ErbB3II composed of measles virus fusion (MVF) protein 288 to 302 amino acid peptide and human epidermal growth factor receptor 3 (ErbB3) 236 to 308 amino acid (ErbB3II) peptide, then prepare and characterize the anti-MVF-ErbB3II polyclonal antibody (pcAb). Methods The MVF-ErbB3II gene was synthesized artificially and subcloned into pET-21b plasmid using DNA ligase. After transformation, the recombinant MVF-ErbB3II protein was expressed in E. coli BL21 (DE3) and purified using nickel ion affinity chromatography. Subsequently, the purified MVF-ErbB3II protein was used as antigen to immunize rats subcutaneously for induction of anti-MVF-ErbB3IIpcAb. The titer of anti-MVF-ErbB3II pcAb was analyzed by ELISA. The ErbB3 specificity and targeting ability of pcAb were evaluated by Western blotting, immunoprecipitation (IP) and flow cytometry (FCM). Results SDS-PAGE confirmed that MVF-ErbB3II protein was successfully expressed and purified. ELISA showed that the titer of pcAb was 1 024 000. Western blotting, IP and FCM assays showed that the anti-MVF-ErbB3II pcAb not only had good antigen specificity against purified MVF-ErbB3II and native ErbB3 but targeted the ErbB3 dimerization interface. Conclusion The prokaryotic expression and purification of MVF-ErbB3II is successfully achieved, rat anti-MVF-ErbB3II pcAb is prepared and characterized successfully.


Assuntos
Escherichia coli , Receptor ErbB-3 , Animais , Especificidade de Anticorpos , Western Blotting , Dimerização , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Ratos , Receptor ErbB-3/genética
17.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065933

RESUMO

Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3ß4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3ß4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 µM, but it was stronger at 500 µM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3ß4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.


Assuntos
Epinefrina/metabolismo , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nicotina/toxicidade , Receptores Nicotínicos/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Agonismo Parcial de Drogas , Gânglios/efeitos dos fármacos , Gânglios/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/toxicidade , Masculino , Ratos , Tiazóis/toxicidade , Testes de Toxicidade Subaguda
18.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065959

RESUMO

Brain tissue may be especially sensitive to electromagnetic phenomena provoking signs of neural stress in cerebral activity. Fifty-four adult female Sprague-Dawley rats underwent ELISA and immunohistochemistry testing of four relevant anatomical areas of the cerebrum to measure biomarkers indicating induction of heat shock protein 70 (HSP-70), glucocorticoid receptors (GCR) or glial fibrillary acidic protein (GFAP) after single or repeated exposure to 2.45 GHz radiation in the experimental set-up. Neither radiation regime caused tissue heating, so thermal effects can be ruled out. A progressive decrease in GCR and HSP-70 was observed after acute or repeated irradiation in the somatosensory cortex, hypothalamus and hippocampus. In the limbic cortex; however, values for both biomarkers were significantly higher after repeated exposure to irradiation when compared to control animals. GFAP values in brain tissue after irradiation were not significantly different or were even lower than those of nonirradiated animals in all brain regions studied. Our results suggest that repeated exposure to 2.45 GHz elicited GCR/HSP-70 dysregulation in the brain, triggering a state of stress that could decrease tissue anti-inflammatory action without favoring glial proliferation and make the nervous system more vulnerable.


Assuntos
Cérebro/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Biomarcadores/metabolismo , Cérebro/efeitos da radiação , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Hipotálamo/metabolismo , Hipotálamo/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/efeitos da radiação
19.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066051

RESUMO

Sudden cardiac arrest leads to a significantly increased risk of severe neurological impairment and higher mortality rates in survivors due to global brain tissue injury caused by prolonged whole-body ischemia and reperfusion. The brain undergoes various deleterious cascading events. Among these damaging mechanisms, neuroinflammation plays an especially crucial role in the exacerbation of brain damage. Clinical guidelines indicate that 33 °C and 36 °C are both beneficial for targeted temperature management (TTM) after cardiac arrest. To clarify the mechanistic relationship between TTM and inflammation in transient global ischemia (TGI) and determine whether 36 °C produces a neuroprotective effect comparable to 33 °C, we performed an experiment using a rat model. We found that TTM at 36 °C and at 33 °C attenuated neuronal cell death and apoptosis, with significant improvements in behavioral function that lasted for up to 72 h. TTM at 33 °C and 36 °C suppressed the propagation of inflammation including the release of high mobility group box 1 from damaged cells, the activation and polarization of the microglia, and the excessive release of activated microglia-induced inflammatory cytokines. There were equal neuroprotective effects for TTM at 36 °C and 33 °C. In addition, hypothermic complications and should be considered safe and effective after cardiac arrest.


Assuntos
Temperatura Corporal , Encefalopatias/terapia , Isquemia Encefálica/complicações , Hipotermia Induzida/métodos , Inflamação/terapia , Animais , Encefalopatias/etiologia , Encefalopatias/patologia , Inflamação/etiologia , Inflamação/patologia , Masculino , Ratos , Ratos Sprague-Dawley
20.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066280

RESUMO

We previously designed a Carbopol gel formulation (N-IND/MEN) based on a combination of indomethacin solid nanoparticles (IND-NPs) and l-menthol, and we reported that the N-IND/MEN showed high transdermal penetration. However, the detailed mechanism for transdermal penetration of IND-NPs was not clearly defined. In this study, we investigated whether endocytosis in the skin tissue of rat and Göttingen minipig is related to the transdermal penetration of IND-NPs using pharmacological inhibitors of endocytosis. The pharmacological inhibitors used in this study are as follows: 54 µM nystatin, a caveolae-mediated endocytosis (CavME) inhibitor; 40 µM dynasore, a clathrin-mediated endocytosis (CME) inhibitor; and 2 µM rottlerin, a micropinocytosis (MP) inhibitor. The N-IND/MEN was prepared by a bead mill method, and the particle size of solid indomethacin was 79-216 nm. In both rat and Göttingen minipig skin, skin penetration of approximately 80% IND-NPs was limited by the stratum corneum (SC), although the penetration of SC was improved by the combination of l-menthol. On the other hand, the treatment of nystatin and dynasore decreased the transdermal penetration of indomethacin in rats and Göttingen minipigs treated with N-IND/MEN. Moreover, in addition to nystatin and dynasore, rottlerin attenuated the transdermal penetration of IND-NPs in the Göttingen minipigs' skin. In conclusion, we found that l-menthol enhanced the SC penetration of IND-NPs. In addition, this study suggests that the SC-passed IND-NPs are absorbed into the skin tissue by energy-dependent endocytosis (CavME, CME, and/or MP pathways) on the epidermis under the SC, resulting in an enhancement in transdermal penetration of IND-NPs. These findings provide significant information for the design of nanomedicines in transdermal formulations.


Assuntos
Endocitose , Indometacina/administração & dosagem , Mentol/administração & dosagem , Nanopartículas/administração & dosagem , Absorção Cutânea , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Antipruriginosos/administração & dosagem , Composição de Medicamentos , Metabolismo Energético , Masculino , Nanopartículas/química , Ratos , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...