Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.166
Filtrar
1.
Water Sci Technol ; 82(7): 1272-1284, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33079708

RESUMO

The anaerobic ammonium oxidation (anammox) process holds great promise for treating nitrogen-contaminated water; stable nitrite-nitrogen (NO2--N) production is significant to anammox performance. In this study, partial hydrogenotrophic denitrification (PHD) was used to stably and efficiently produce NO2--N from nitrate-nitrogen (NO3--N). An investigation of the effects of initial pH on the PHD process revealed that a high NO2--N production efficiency (77.9%) could be ensured by setting an initial pH of 10.5. A combined PHD-anammox process was run for more than three months with maximal ammonium-nitrogen (NH4+-N), NO3--N, and total dissolved inorganic nitrogen removal efficiencies of 93.4, 98.0, and 86.9%, respectively. The NO2--N to NH4+-N and NO3--N to NH4+-N ratios indicated that various bioprocesses were involved in nitrogen removal during the anammox stage, and a 16S rRNA gene amplicon sequencing was performed to further clarify the composition of microbial communities and mechanisms involved in the nitrogen removal process.


Assuntos
Desnitrificação , Nitrogênio , Reatores Biológicos , Oxirredução , RNA Ribossômico 16S/genética
2.
Water Sci Technol ; 82(7): 1380-1392, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33079717

RESUMO

A scientific basis is given to the traditional method of inferring effluent quality based on visualization of samples in transparent flasks. A scale of 1-6, with different printed grey intensities, is placed behind transparent PET bottles containing the sample, and gives an indication of the range of turbidity in the sample (1 is the most transparent and can only be visualized if the effluent is well clarified; in the other spectrum, 6 is the darkest and indicates highly turbid effluents). Turbidity has been correlated with total suspended solids (TSS), particulate biochemical oxygen demand (BOD) and particulate chemical oxygen demand (COD) based on thousands of monitored data collected in the effluent from seven different treatment processes in Brazil: upflow anaerobic sludge blanket (UASB) reactor, trickling filters, activated sludge, horizontal wetland, vertical wetland, polishing ponds and coarse filter after pond. The method is simple and instantaneous, can be used in virtually all places and in every visit of the operator to the remote treatment plant, allows recording of the image in smartphones, does not use any equipment, chemicals or energy, and has been showed to represent well the effluent quality of existing treatment plants. This essay is complementary and does not substitute specific traditional sampling and analysis, but allows easy inference of deterioration of effluent quality.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Brasil
3.
Water Res ; 185: 116156, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086460

RESUMO

Sulfamethoxazole (SMX) is a common antibiotic prescribed for treating infections, which is frequently detected in the effluent of conventional wastewater treatment plants (WWTPs). Its degradation and conversion in a laboratory-scale sulfur-based autotrophic denitrification reactor were for the first time investigated through long-term reactor operation and short-term batch experiments. Co-metabolism of SMX and nitrate by autotrophic denitrifiers was observed in this study. The specific SMX removal rate was 3.7 ± 1.4 µg/g SS-d, which was higher than those reported in conventional wastewater treatment processes. The removal of SMX by the enriched denitrifying sludge was mainly attributed to biodegradation. Four transformation products (three known with structures and one with unknown structure) were identified, of which the structures of the two transformation products (TPs) were altered in the isoxazole ring. Additionally, the presence of SMX significantly shaped the microbial community structures, leading to the dominant denitrifier shifting from Sulfuritalea to Sulfurimonas to maintain the stability of system. Collectively, the sulfur-based autotrophic denitrification process could effectively remove SMX in addition to efficient nitrate removal, and further polish the effluent from conventional WWTPs.


Assuntos
Desnitrificação , Sulfametoxazol , Processos Autotróficos , Reatores Biológicos , Esgotos
4.
Water Res ; 185: 116104, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086463

RESUMO

Wastewater treatment plants are major point sources of (micro)pollutant emissions and advanced wastewater treatment technologies can improve their removal capacity. While abundant data on individual advanced treatment technologies is available, there is limited knowledge regarding the removal performance of ozonation combined with multiple post-treatments and stand-alone membrane bioreactors. This is especially true for the removal of in vitro and in vivo toxicity. Therefore, we investigated the removal of 40 micropollutants and toxicity by a pilot-scale ozonation with four post-treatments: non-aerated and aerated granular activated carbon and biological filtration. In addition, two stand-alone membrane bioreactors fed with untreated wastewater and one MBR operating with ozonated partial flow recirculation were analysed. Aqueous and extracted samples were analysed in vitro for (anti)estrogenic, (anti)androgenic and mutagenic effects. To assess in vivo effects, the mudsnail Potamopyrgus antipodarum was exposed in an on-site flow-through system. Multiple in vitro effects were detected in conventionally treated wastewater including estrogenic and anti-androgenic activity. Ozonation largely removed these effects, while anti-estrogenic and mutagenic effects increased suggesting the formation of toxic transformation products. These effects were significantly reduced by granular activated carbon being more effective than biological filtration. The membrane bioreactor performed similarly to the conventional treatment while the membrane bioreactor with ozonation had a comparable removal performance like ozonation. Conventionally treated wastewater increased the growth of P. antipodarum. Ozonation reduced the reproduction indicating a potential formation of toxic transformation products. In the post-treatments, these effects were compensated or remained unaffected. The effluents of the membrane bioreactors induced reproductive toxicity. Our results show that ozonation is effective in further reducing toxicity and micropollutant concentrations. However, the formation of toxicity requires a post-treatment. Here, ozonation coupled to granular activated carbon filtration seemed the most promising treatment process.


Assuntos
Carvão Vegetal , Águas Residuárias , Reatores Biológicos , Filtração , Membranas
5.
Science ; 370(6513): 170, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33033205
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2257-2261, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018457

RESUMO

In an aging society, diseases associated with irreversible damage of organs are frequent. An increasing percentage of patients requires bioartificial tissue or organ substitutes. Tissue engineering products depend on a well-defined process to ensure successful cultivation while meeting high regulatory demands. The goal of the presented work is the development of a bioreactor system for the cultivation of tissue-engineered vascular grafts (TEVGs) for autologous implantation and transition from a lab scale setup to standardized production. Key characteristics include (i) the automated reliable monitoring and control of a wide-range of parameters regarding implant conditioning, (ii) easy and sterile setup and operation, (iii) reasonable costs of disposables, and (iv) parallelization of automated cultivation processes. The presented prototype bioreactor system provides comprehensive physiologically conditioning, sensing, and imaging functionality to meet all requirements for the successful cultivation of vascular grafts on a productional scale.


Assuntos
Bioprótese , Prótese Vascular , Envelhecimento , Reatores Biológicos , Humanos , Engenharia Tecidual
7.
Am J Dent ; 33(5): 277-284, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33017532

RESUMO

PURPOSE: To investigate whether the addition of sodium-DNA (Na-DNA) to chlorhexidine (CHX)-containing mouthwash influenced morphology and viability of a reconstituted human oral epithelium (ROE), and protects ROE against oxidative stress. METHODS: Multi-layered 0.5 cm² ROE specimens were positioned inside a continuous flow bioreactor and grown air-lifted for 24 hours. They were treated with phosphate-buffered saline (PBS) (n= 16) or 1 vol% H2O2 for 1 minute (n= 16). Then, they were treated for 5 (n= 8) or 30 minutes (n= 8) with the experimental mouthwash solutions containing: 0.2 wt% CHX, 0.2 wt% CHX + 0.2 wt% Na-DNA, 0.2 wt% Na-DNA, PBS. After 60 minutes washout specimens were subjected to tetrazolium-based viability assay (MTT) confocal laser-scanning microscopy (CLSM), and histological evaluation using optical microscopy and transmission electron microscopy (TEM). RESULTS: ROE treated with Na-DNA for 30 minutes revealed significantly higher viability than PBS, and CHX + Na-DNA showed higher viability after 30-minute treatment than after 5 minutes, suggesting a significant protective activity of Na-DNA. Moreover, the protective effect of Na-DNA on cell viability was higher after the induction of oxidative stress. After treatment with CHX, CLSM revealed cell stress, leading to cell death in the outer layer. On the contrary, specimens treated with Na-DNA showed a much lower number of dead cells compared to PBS, both in the absence or presence of oxidative stress. Histological examination showed that the protective action of Na-DNA formulations reached more in-depth into the epithelium exposed to oxidative stress, due to intercellular spaces opening in the outer epithelium layers, giving way to Na-DNA to the inner parts of the epithelium. It can be concluded that Na-DNA had a topical protective activity when applied for 30 minutes unless the epithelium barrier is damaged, allowing it to act more in-depth. CLINICAL SIGNIFICANCE: Na-DNA showed a clear and protective action against cellular degeneration due to oxidative stress and, partly, to the exposure to CHX. Its addition to chlorhexidine mouthwash or gels could be clinically helpful in contrasting the detrimental activity of CHX on oral tissues, and in the preservation of cell viability, control of inflammation and wound healing.


Assuntos
Peróxido de Hidrogênio , Antissépticos Bucais/farmacologia , Antissépticos Bucais/toxicidade , Reatores Biológicos , DNA , Humanos , Sódio
8.
J Environ Qual ; 49(3): 545-556, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33016384

RESUMO

Water reuse is believed to be a sustainable solution to overcome the scarcity of freshwater. Aerobic and anaerobic membrane bioreactors are becoming an effective technology for wastewater treatment and reuse. Aerobic membrane bioreactors show good nutrient removal, whereas those that are anaerobic have nutrient-rich effluent, enabling the direct agricultural use of the effluent. As a result, the end use will dictate the potential environmental impacts of the bioreactor's application. Therefore, with the consideration of the end use (i.e., discharge or reuse) of the effluent, this study aimed to compare the environmental and economic impacts associated with full-scale aerobic and anaerobic membrane bioreactors for municipal wastewater treatment under different end use scenarios using life cycle assessment and cost analysis. The results of these analyses show that anaerobic bioreactors have greater environmental impacts and life cycle cost than aerobic bioreactors in the discharge scenario due to the incorporation of a biological nutrient removal system. In the reuse scenario, anaerobic membrane bioreactors have lower impacts that are attributable to the offset of the nutrients required for crops, and the potential benefits vary depending on the types of crops receiving the reclaimed water. Integrating anaerobic membrane bioreactors with agricultural fertigation resulted in effluent water nitrate concentrations (after crop uptake and soil treatment) of <2 mg L-1 in most U.S. states. This indicated that the use of the anaerobic membrane bioreactors effluent for fertigation could be a win-win solution to both irrigation water shortage and high environmental impact associated with nutrient removal.


Assuntos
Purificação da Água , Anaerobiose , Reatores Biológicos , Água Doce , Águas Residuárias
9.
Bioresour Technol ; 317: 124037, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32866838

RESUMO

A two-stage anoxic/oxic combined membrane bioreactor (A/O-A/O-MBR) was operated for 81 d to treat landfill leachate under different reflux ratios (R). The best performance was found under R = 150%, where the chemical oxygen demand (COD), ammonium (NH4+-N) and total nitrogen (TN) removal was 85.6%, 99.3%, and 80.7%, respectively. Particularly, the highest pollutant removal was achieved in the second-stage A/O, where the COD and TN removal capacity was 78.88 and 11.74 g/d, respectively. Meantime, DOM removal was 83.9%, where the removal of aromatic protein substances I and II, fulvic acids-like compounds, soluble microbial products and humic acids-like compounds was 93.4%, 86.4%, 72.0%, 86.6% and 59.4%, respectively. The gene functions of microbial community in the process showed that amoA, hao, nirK and nosZ, etc. were the core genes for nitrification and denitrification. The carbon source for denitrification might come from the conversion of refractory organic matters in landfill leachate.


Assuntos
Nitrogênio , Poluentes Químicos da Água , Bactérias/genética , Reatores Biológicos , Desnitrificação , Nitrificação
10.
Water Sci Technol ; 82(3): 524-536, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32960797

RESUMO

The membrane bioreactor (MBR) at the Traverse City Regional Wastewater Treatment Plant has experienced sudden and unpredictable periods of substantial permeability decline since 2011. Early observations detected irregularly-shaped Gram-positive bacteria that correlated with plant upsets. Use of biomolecular techniques, such as DNA sequencing of laboratory isolates and the mixed liquor microbial community, and fluorescent in situ hybridization, identified the dispersed organisms as members of the genus Staphylococcus. However, Staphylococcus species were consistently present during normal operation and therefore were more likely to be an indicator of the upset, not the cause. The results suggest that these microorganisms are responding to specific influent wastewater constituents. We chemically analysed seven mixed liquor samples from periods of permeability decline in 2017 and 2018, and four samples from a period of normal operation. During upset conditions, the total carbohydrate content exceeded that of normal operation by 40%. Additionally, mixed liquor calcium concentrations were 65% above normal during the upset in 2017. It is hypothesized and supported through multivariate statistical analysis and estimation of specific resistance to filtration values that a calcium-intermediated polymer bridging mechanism with extracellular polymeric substance constituents is a major contributor to fouling and permeability disruptions in the Traverse City MBR.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Reatores Biológicos , Cidades , Hibridização in Situ Fluorescente , Membranas Artificiais , Águas Residuárias
11.
Water Sci Technol ; 82(3): 549-564, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32960799

RESUMO

Sludge from textile effluent treatment plants (ETP) remains a challenge for many industries due to inefficient and limited waste management strategies. This study explores the potential of using anaerobic digestion (AD) to improve the environmental quality of textile ETP sludge. The AD of ETP sludge is affected by the low C/N ratio (3.7), heavy metal content, and toxicity. To improve the process, co-digestion of ETP sludge with different substrates (sewage sludge, cow dung, and sawdust) under mesophilic conditions (37 °C), followed by a thermochemical pretreatment was assessed. The results showed that anaerobic co-digestion of the textile sludge with the co-substrates is effective in reducing pollution load. It was found that organic matters degraded during the 30-day AD process. The chemical oxygen demand and biological oxygen demand reduction was in the range of 33.1-88.5% and 48.1-67.1%, respectively. Also, heavy metal (cadmium, lead, iron, and, mercury) concentration was slightly reduced after digestion. Maximal biogas yield was achieved from co-digestion of textile sludge and sewage sludge at a mixing ratio of 3:1, 1:1, and 1:3, and methane content was respectively 87.9%, 68.9%, and 69.5% of the gas composition. The results from this study show that co-digestion will not only reduce the environmental pollution and health risks from the textile industry but also recover useful energy.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Bovinos , Feminino , Metano , Têxteis
12.
Water Sci Technol ; 82(3): 587-602, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32960802

RESUMO

This study focused on using pH as a single indicator to evaluate/control the performance of the nitritation system under the influence of three major operational parameters, and a total of fifteen batch tests were conducted. Results indicated that there were important interactions among different operational parameters and pH in the nitritation system; it was possible to propose the optimal nitritation operation scheme to compensate for negative changes in operational parameters. The optimal carbon to nitrogen (C/N) ratio was kept at 2.0 to ensure efficient removal of ammonium. The reaction time was the lowest (150 min) with the temperature = 20 °C, C/N = 0, and sludge/water ratio = 1:1. However, the C/N ratio could be adjusted to close to zero by reducing the temperature to about 10 °C, weakening the heterotrophic bacteria, and supplying sufficient biomass. The C/N ratio and sludge/water ratio could also be set at 4.0 and 1:3 respectively to deal with the impact of low temperature and organic matter. Results of this study might be useful to explain the optimal conditions and process control schemes with pH as a single indicator.


Assuntos
Compostos de Amônio , Reatores Biológicos , Concentração de Íons de Hidrogênio , Nitritos , Nitrogênio , Esgotos
13.
Water Sci Technol ; 82(2): 273-280, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941169

RESUMO

The objective of this study is to explore the optimal pre-treatment procedures and statistics methods for live/dead bacterial staining using nitrite oxidizing organism (NOO) as the research aim. This staining method was developed and widely utilized to evaluate activated bacterial survival situation, because it is direct and convenience to count live and dead bacteria amount by colour distinguishes (green/red) from pictures taken by microscope. The living cell (green colour) percentage and initial bacterial chemical oxygen demand (COD) could be used for accurate reaction rate calculation at the beginning of tests. While according to the physiological principles, the detection target was limited as the organism has a complete cell shape, that was applicable for the initial phase for decay stage (live cell → particulate dead cell), but it is impossible to evaluate the decayed soluble COD from particulate dead cell during whole reaction. To model the decay stage scientifically, a two-step decay model was developed to cater to the live/dead bacterial staining analysis of biological nitrite oxidizer under inhibition condition of high nitrite concentrations at 35 °C. As results of optimal pre-treatment, a three level ultrasonic wave with 45 seconds was explored, as a reasonable observed picture number, 30 sets with 95% confident interval for datasets statistics was summarized. A set of nitrite oxidizer inhibition test (total COD and oxygen uptake rates) under high nitrite concentrations was simulated using the above model and obtained experimental schemes. Additionally, the disintegration enhancement from particulate dead cell to soluble COD by nitrite was inspected and modelled on the basis of experimental datasets.


Assuntos
Nitritos , Esgotos , Bactérias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Oxirredução
14.
Water Sci Technol ; 82(2): 281-291, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941170

RESUMO

Biofilters based on earthworms-microorganisms represent, particularly in developing countries, an interesting alternative for domestic wastewater treatment due to their easy operation and low cost. However, there are several operational aspects that should be better understood in order to improve their performance. This paper studies the effect of using intermittent hydraulic loading rates to improve organic matter and nutrient removal from domestic wastewater using these biofilters. Three laboratory-scale columns, operating at a 2.5 m3 m-2day-1 hydraulic loading rate, were used. The B1-24 h, B2-8 h, B3-4 h column loading rates indicate that the columns were operated continuously for 24, 8 and 4 h, respectively. Each column (biomass biofilm/earthworms, redox potential, and head loss) and its corresponding operational performance parameters (TCOD, NH4+, NO3-, NO2-, TP) were monitored. The results showed that the B2-8 h intermittent hydraulic loading rate results in the best global performance, with 74%, 57%, and 20% average removal efficiencies for TCOD, nitrogen, and phosphorus, respectively. Moreover, it showed the best biomass growth (biofilm and earthworms), activity (as redox potential changes) and the lowest clogging effects (up to -1.0 cm). The intermittent operation influences the behavior of the earthworm-microorganism biofilters and offers the possibility of optimizing its global performance and achieving a resilient technology.


Assuntos
Oligoquetos , Águas Residuárias , Animais , Reatores Biológicos , Filtração , Nitrogênio/análise , Nutrientes , Fósforo , Eliminação de Resíduos Líquidos
15.
Water Sci Technol ; 82(2): 303-314, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941172

RESUMO

The first full-scale semi-centralized wastewater treatment and resource recovery system based on source separation was implemented from 2014. To assess the operation performance, operating costs and resolve the problems faced in this system, the latest operation data from April 2017 to September 2018 was investigated. The results show that greywater and blackwater modules exhibited good removal performance for organics and nutrients, although misconnection between pipelines existed and influent loading rates fluctuated. The effluent could meet reuse standards. The biogas production rates of raw sludge could reach 7.27-10.9 m3 gas·per cubic raw sludge. The specific cost of treated water was higher than in a conventional treatment system. Power consumption made a major contribution to the total cost with a proportion of 55.3-94.2%. After optimizing and considering the comprehensive efficiencies, the costs would be affordable. The dewatered sludge of the anaerobic digestion module has been applied to agricultural and landscaping soil. It is suggested that organics in blackwater could be recovered as volatile fatty acids with high-efficiency anaerobic fermentation and used as an external carbon source for short-cut biological nitrogen removal. In conclusion, the semi-centralized system will be a feasible and sustainable alternative for conventional treatment systems in future.


Assuntos
Reatores Biológicos , Águas Residuárias , Ácidos Graxos Voláteis , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos
16.
Water Sci Technol ; 82(2): 330-338, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941174

RESUMO

Nitrogen removal in osmosis membrane bioreactor (OMBR) is important to its applications but remains a challenge. In this study, a bioelectrochemically-assisted (BEA) operation was integrated into the feed side of OMBRs to enhance nitrogen removal, and sodium acetate was served as a draw solute and supplementary carbon source for the growth of denitrifying bacteria due to reversed-solute. The effects of operation mode and influent ammonium (NH4+) concentration were systematically examined. Compared to a conventional OMBR, the integrated BEA-OMBR achieved higher total nitrogen removal efficiency of 98.13%, and chemical oxygen demand removal efficiency of 95.83% with the influent NH4+-N concentration of 39 mg L-1. The sequencing analyses revealed that ammonia-oxidizing bacteria (0-0.04%), nitrite-oxidizing bacteria (0-0.16%), and denitrifying bacteria (1.98-8.65%) were in abundance of the microbial community in the feed/anode side of integrated BEA-OMBR, and thus BEA operation increased the diversity of the microbial community in OMBR. Future research will focus on improving nitrogen removal from a high ammonium strength wastewater by looping anolyte effluent to the cathode. These findings have demonstrated that BEA operation can be an effective approach to improve nitrogen removal in OMBRs toward sustainable wastewater treatment.


Assuntos
Desnitrificação , Nitrogênio , Reatores Biológicos , Osmose , Águas Residuárias
17.
Water Sci Technol ; 82(2): 364-372, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941177

RESUMO

Aerobic granular sludge process as a promising biotechnology has been one of the research hotspots in the area of wastewater treatment during the last two decades. In our study, after around 60 days' operation, filamentous granular sludge (FGS) was formed under low aeration (SAV = 0.085 cm/s) and multi-feeding conditions. The characteristics of FGS and the performance of the FGS system for organic matter and nutrients removal were investigated. The results showed that chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies were relatively stable, while COD removal efficiency increased from 82% to 94% in the presence of sulfamethoxazole (SMZ) at low concentration (1 mg/L). At the same time, the TP removal efficiency could be improved and maintained at around 75%, while TN removal efficiency was flocculated at around 50%. The analysis of microbial diversity showed that Thiothrix and Trichococcus as typical filamentous species were detected and dominant in the FGS system. The abundance of Thiothrix increased from 15% to 34%, while Trichococcus decreased from 23% to 3% in the presence of SMZ.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Nitrogênio , Águas Residuárias
18.
Water Sci Technol ; 82(2): 373-385, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941178

RESUMO

To evaluate the enhancing of the biological nitrogen removal effectiveness by electromagnetic wave loading on returned sludge in the A/A/O reactor, some experiments were completed with the returned sludge loaded by 2,450 MHz electromagnetic wave. The excess sludge yield and pollutant removal effect of the system were evaluated. Results showed that stronger denitrification effect and less sludge yield were achieved. When 30% of the returned sludge was loaded by electromagnetic wave, the actual denitrification efficiency increased by 7% without dosage. The dissolution of carbon, nitrogen and phosphorus from loaded returned sludge was detected, thus providing the system with a supplemental carbon source of 4.6 g/d SCOD. The specific oxygen uptake rate of the oxic activated sludge increased by 14%, and the denitrification rate of the anoxic activated sludge increased by 29%. Illumina MiSeq analysis showed that the microbial richness increased obviously, and denitrifying bacteria (i.e. Dechloromonas, Zoogloea and Azospira, etc.) were accumulated.


Assuntos
Nitrogênio , Esgotos , Anaerobiose , Reatores Biológicos , Desnitrificação , Radiação Eletromagnética , Fósforo , Eliminação de Resíduos Líquidos
19.
Sci Total Environ ; 741: 140480, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886969

RESUMO

The co-treatment of two synthetic faecal sludges (FS-1 and FS-2) with municipal synthetic wastewater (WW) was evaluated in an aerobic granular sludge (AGS) reactor. After characterisation, FS-1 showed the following concentrations, representative for medium-strength FS: 12,180 mg TSS L-1, 24,300 mg total COD L-1, 93.8 mg PO3-P L-1, and 325 mg NH4-N L-1. The NO3-N concentration was relatively high (300 mg L-1). For FS-2, the main difference with FS-1 was a lower nitrate concentration (18 mg L-1). The recipes were added consecutively, together with the WW, to an AGS reactor. In the case of FS-1, the system was fed with 7.2 kg total COD m-3d-1 and 0.5 kg Nitrogen m-3d-1. Undesired denitrification occurred during feeding and settling resulting in floating sludge and wash-out. In the case of FS-2, the system was fed with 8.0 kg total COD m-3d-1 and 0.3 kg Nitrogen m-3d-1. The lower NO3-N concentration in FS-2 resulted in less floating sludge, a more stabilised granular bed and better effluent concentrations. To enhance the hydrolysis of the slowly biodegradable particulates from the synthetic FS, an anaerobic stand-by period was added and the aeration period was increased. Overall, when compared to a control AGS reactor, a lower COD consumption (from 87 to 35 mg g-1 VSS h-1), P-uptake rates (from 6.0 to 2.0 mg P g VSS-1 h-1) and NH4-N removal (from 2.5 to 1.4 mg NH4-N g VSS-1 h-1) were registered after introducing the synthetic FS. Approximately 40% of the granular bed became flocculent at the end of the study, and a reduction of the granular size accompanied by higher solids accumulation in the reactor was observed. A considerable protozoa Vorticella spp. bloom attached to the granules and the accumulated particles occurred; potentially contributing to the removal of the suspended solids which were part of the FS recipe.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Nitrogênio , Eliminação de Resíduos Líquidos
20.
Sci Total Environ ; 741: 140513, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887002

RESUMO

The dynamics of microbial necromass of municipal solid waste over long-term landfill remain unknown. This study presents the first investigation on the dynamics of bacterial and fungal necromass of municipal sludge in non-aeration versus alternating aeration landfill bioreactors by using amino sugar biomarkers. Results showed that under non-aeration treatment, the decomposition rate of muramic acid derived from bacteria is higher than that of fungal-derived glucosamine. The relative change in glucosamine and muramic acid in the early period of landfills under the alternating aeration treatment is consistent with that under non-aeration treatment. However, with the increase in alternating aeration cycles, bacterial necromass muramic acid exerts a lower decomposition rate than fungal necromass glucosamine. Throughout the entire landfill period, galactosamine is the amino sugar with the slowest decomposition rate under non-aeration mode but the amino sugar with the fastest decomposition rate under alternating aeration mode. The present work fills the knowledge gap of microbial necromass dynamics of municipal solid waste in landfills.


Assuntos
Eliminação de Resíduos , Esgotos , Amino Açúcares , Bactérias , Biomarcadores , Reatores Biológicos , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA