Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.091
Filtrar
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(9): 1061-1067, 2020.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-33051419

RESUMO

OBJECTIVES: To evaluate the expression of myeloid ecotropic viral integration site 1 (Meis1) and vascular endothelial growth factor receptor 2 (VEGFR-2) in early-stage kidney cancers and the clinical significance. METHODS: The cancer tissues and the matched adjacent normal tissues in patients with kidney cancer, who received surgical treatment from April 2005 to September 2018 in the Haikou Hospital Affiliated to Xiangya School of Medicine, Central South University, were collected. The samples included 80 pairs of paraffin specimen, 15 pairs of fresh cancer and the matched adjacent normal tissues from these patients. Real-time PCR and immunohistochemical method were used to detect the expression levels of Meis1 and VEGFR-2 mRNA and protein in kidney tissues and adjacent normal tissues, and the correlation of clinical pathology parameters and the prognosis were analyzed in the patients. RESULTS: The expression levels of Meis1 and VEGFR-2 mRNA and protein in the renal carcinoma tissues were lower than those in the matched adjacent normal tissues (both P<0.01), and the expression levels of Meis1 were positively correlated with that of VEGFR-2 (r=0.681, P<0.01). The analysis of relevant clinical-pathological parameters in the patients showed that: the expression positive rate of Meis1 was significantly related with the pathological type of renal cancer (P<0.01), while the positive rate of Meis1 and VEGFR-2 expression was not related with the gender, age, T stage of patients (all P>0.05), but it was significantly related with the prognosis in the patients (P<0.05). Cox regression analysis showed that: Meis1 was an independent factor for the prognosis of patients (P<0.05). CONCLUSIONS: The mRNA and protein expression levels of Meis1 and VEGFR-2 in the early-stage kidney cancer tissues are significantly decreased compared with those in the adjacent normal tissues. Meis1 may be served as a tumor suppressor to affect the occurrence and development of kidney cancer. Therefore, Meis1 may be used as a biomarker to predict the prognosis of patients with kidney cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteína Meis1 , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Neoplasias Renais/genética , Proteína Meis1/metabolismo , Prognóstico , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
Nat Commun ; 11(1): 3866, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737287

RESUMO

Upon severe head injury (HI), blood vessels of the meninges and brain parenchyma are inevitably damaged. While limited vascular regeneration of the injured brain has been studied extensively, our understanding of meningeal vascular regeneration following head injury is quite limited. Here, we identify key pathways governing meningeal vascular regeneration following HI. Rapid and complete vascular regeneration in the meninges is predominantly driven by VEGFR2 signaling. Substantial increase of VEGFR2 is observed in both human patients and mouse models of HI, and endothelial cell-specific deletion of Vegfr2 in the latter inhibits meningeal vascular regeneration. We further identify the facilitating, stabilizing and arresting roles of Tie2, PDGFRß and Dll4 signaling, respectively, in meningeal vascular regeneration. Prolonged inhibition of this angiogenic process following HI compromises immunological and stromal integrity of the injured meninges. These findings establish a molecular framework for meningeal vascular regeneration after HI, and may guide development of wound healing therapeutics.


Assuntos
Traumatismos Craniocerebrais/genética , Células Endoteliais/metabolismo , Neovascularização Fisiológica/genética , Regeneração/genética , Transdução de Sinais/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Circulação Cerebrovascular , Traumatismos Craniocerebrais/metabolismo , Traumatismos Craniocerebrais/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Regulação da Expressão Gênica/genética , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Meninges/lesões , Meninges/metabolismo , Camundongos , Camundongos Knockout , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética
3.
Nat Commun ; 11(1): 3571, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678094

RESUMO

Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in Bartonella henselae to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen, Bartonella quintana, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation.


Assuntos
Bartonella/patogenicidade , Neovascularização Patológica/metabolismo , Transdução de Sinais , Sistemas de Secreção Tipo V/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Virulência/metabolismo , Animais , Bartonella/classificação , Bartonella/genética , Proliferação de Células , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/microbiologia , Domínios Proteicos , Sistemas de Secreção Tipo V/química , Sistemas de Secreção Tipo V/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética
4.
Toxicon ; 185: 76-90, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32649934

RESUMO

This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, ß-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, ß-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.


Assuntos
Picaduras de Aranhas , Venenos de Aranha/toxicidade , Animais , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Aranhas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Recent Results Cancer Res ; 216: 509-531, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32594397

RESUMO

Contrast-enhanced ultrasound (CEUS) imaging is a valuable tool for preclinical and clinical diagnostics. The most frequently used ultrasound contrast agents are microbubbles. Besides them, novel nano-sized materials are under investigation, which are briefly discussed in this chapter. For molecular CEUS, the ultrasound contrast agents are modified to actively target disease-associated molecular markers with a site-specific ligand. The most common markers for tumor imaging are related to neoangiogenesis, like the vascular endothelial growth factor receptor-2 (VEGFR2) and αvß3 integrin. In this chapter, applications of molecular ultrasound to longitudinally monitor receptor expression during tumor growth, to detect neovascularization, and to evaluate therapy responses are described. Furthermore, we report on first clinical trials of molecular CEUS with VEGFR2-targeted phospholipid microbubbles showing promising results regarding patient safety and its ability to detect tumors of prostate, breast, and ovary. The chapter closes with an outlook on ultrasound theranostics, where (targeted) ultrasound contrast agents are used to increase the permeability of tumor tissues and to support drug delivery.


Assuntos
Imagem Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Ultrassonografia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Meios de Contraste/uso terapêutico , Humanos , Microbolhas/efeitos adversos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Gene ; 754: 144856, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512160

RESUMO

Growing evidence indicates the antitumor and antiangiogenesis activities of testis-specific gene antigen 10 (TSGA10). However, the underlying mechanisms and precise role of TSGA10 in angiogenesis are still elusive. In this study, we isolated human umbilical cord vein endothelial cells (HUVECs) and stably transfected with pcDNA3.1 carrying TSGA10 coding sequence. We demonstrated that TSGA10 over-expression significantly decreases HUVEC tubulogenesis and interconnected capillary network formation. HUVECs over-expressing TSGA10 exhibited a significant decrease in migration and proliferation rates. TSGA10 over-expression markedly decreased expression of angiogenesis-related genes, including VEGF-A, VEGFR-2, Ang-1, Ang-2, and Tie-2. Our ELISA results showed the decrease in VEGF-A mRNA expression level is associated with a significant decrease in its protein secretion. Additionally, over-expressing TSGA10 decreased expression levels of marker genes of cell migration (MMP-2, MMP-9, and SDF-1a) and proliferation (PCNA and Ki-67. Furthermore, ERK-1 and AKT phosphorylation significantly reduced in HUVECs over-expressing TSGA10. Our findings suggest a potent anti-angiogenesis activity of TSGA10 in HUVECs through down-regulation of ERK and AKT signalling pathways, and may provide therapeutic benefits for the management of different pathological angiogenesis.


Assuntos
Inibidores da Angiogênese/metabolismo , Movimento Celular , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Inibidores da Angiogênese/genética , Proteínas do Citoesqueleto/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Vascul Pharmacol ; 131: 106762, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32585188

RESUMO

4-hydroxynonenal (4HNE) is a reactive aldehyde, which is involved in oxidative stress associated pathogenesis. The cellular toxicity of 4HNE is mitigated by aldehyde dehydrogenase (ALDH) 2. Thus, we hypothesize that ALDH2 inhibition exacerbates 4HNE-induced decrease in coronary endothelial cell (EC) migration in vitro. To test our hypothesis, we pharmacologically inhibited ALDH2 in cultured mouse coronary ECs (MCECs) by disulfiram (DSF) (2.5 µM) before challenging the cells with different doses of 4HNE (25, 50 and 75 µM) for 4, 12, 16 and 24 h. We evaluated MCEC migration by scratch wound migration assay. 4HNE attenuated MCEC migration significantly relative to control (P < .05), which was exacerbated with DSF pretreatment (P < .05). DSF pretreatment exacerbated 4HNE-induced decrease in ALDH2 activity in MCECs. Next, we showed that 75 µM 4HNE significantly decreased the intracellular mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), focal adhesion kinase (FAK) and other promigratory genes compared to control, which were further decreased by DSF pretreatment. 75 µM 4HNE also decreased the protein levels of VEGFR2, FAK, phospho-FAK, Src and paxillin in MCECs. Thus, we conclude that ALDH2 inhibition potentiates 4HNE-induced decrease in MCECs migration in vitro.


Assuntos
Aldeído-Desidrogenase Mitocondrial/antagonistas & inibidores , Aldeídos/farmacologia , Movimento Celular/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Linhagem Celular , Vasos Coronários/enzimologia , Células Endoteliais/enzimologia , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Camundongos , Paxilina/metabolismo , Fosforilação , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
8.
Anticancer Res ; 40(5): 2725-2737, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366418

RESUMO

BACKGROUND/AIM: Glioblastoma (GB) is the most aggressive type of tumor in the central nervous system and is characterized by resistance to therapy and abundant vasculature. Tumor vessels contribute to the growth of GB, and the tumor microenvironment is thought to influence tumor vessels. We evaluated the molecular communication between human GB cells and human brain microvascular endothelial cells (HBMEC) in vitro. MATERIALS AND METHODS: We investigated whether GB-conditioned media (GB-CM) influenced HBMEC proliferation and migration, as well as the levels of MMP-9, CXCL12, CXCR4, CXCR7, VEGFs, VEGFR-2, and WNT5a in HBMEC. RESULTS: Although HBMEC proliferation was not modified, increased HBMEC migration was detected after GB-CM treatment. Furthermore, treatment of HBMEC with GB-CM resulted in increased levels of MMP-9 and CXCR4. The levels of WNT5a, VEGFs and VEGFR-2 were not affected. CONCLUSION: GB-secreted factors lead to increased endothelial cell migration and to increased levels of MMP-9 and CXCR4.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Movimento Celular , Células Endoteliais/patologia , Glioblastoma/patologia , Metaloproteinase 9 da Matriz/metabolismo , Receptores CXCR4/metabolismo , Neoplasias Encefálicas/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
9.
PLoS One ; 15(5): e0233089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32459810

RESUMO

Many drugs are promiscuous and bind to multiple targets. On the one hand, these targets may be linked to unwanted side effects, but on the other, they may achieve a combined desired effect (polypharmacology) or represent multiple diseases (drug repositioning). With the growth of 3D structures of drug-target complexes, it is today possible to study drug promiscuity at the structural level and to screen vast amounts of drug-target interactions to predict side effects, polypharmacological potential, and repositioning opportunities. Here, we pursue such an approach to identify drugs inactivating B-cells, whose dysregulation can function as a driver of autoimmune diseases. Screening over 500 kinases, we identified 22 candidate targets, whose knock out impeded the activation of B-cells. Among these 22 is the gene KDR, whose gene product VEGFR2 is a prominent cancer target with anti-VEGFR2 drugs on the market for over a decade. The main result of this paper is that structure-based drug repositioning for the identified kinase targets identified the cancer drug ibrutinib as micromolar VEGFR2 inhibitor with a very high therapeutic index in B-cell inactivation. These findings prove that ibrutinib is not only acting on the Bruton's tyrosine kinase BTK, against which it was designed. Instead, it may be a polypharmacological drug, which additionally targets angiogenesis via inhibition of VEGFR2. Therefore ibrutinib carries potential to treat other VEGFR2 associated disease. Structure-based drug repositioning explains ibrutinib's anti VEGFR2 action through the conservation of a specific pattern of interactions of the drug with BTK and VEGFR2. Overall, structure-based drug repositioning was able to predict these findings at a fraction of the time and cost of a conventional screen.


Assuntos
Reposicionamento de Medicamentos/métodos , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Linfócitos B/metabolismo , Humanos , Células Jurkat , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Suramina/química , Suramina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
PLoS One ; 15(5): e0233116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407363

RESUMO

Kaposi Sarcoma (KS) is among the most angiogenic cancers in humans and an AIDS-defining condition. KS-associated herpesvirus (KSHV) is necessary for KS development, as is vascular endothelial growth factor (VEGF-A). DLX1008 is a novel anti-VEGF-A antibody single-chain variable fragment (scFv) with low picomolar affinity for VEGF-A. In vivo imaging techniques were used to establish the efficacy of DLX1008 and to establish the mechanism of action; this included non-invasive imaging by ultrasound and optical fluorescence, verified by post-mortem histochemistry. The results showed that DLX1008 was efficacious in a KS mouse model. The NSG mouse xenografts suffered massive internal necrosis or involution, consistent with a lack of blood supply. We found that imaging by ultrasound was superior to external caliper measurements in the validation of the angiogenesis inhibitor DLX1008. Further development of DLX1008 against VEGF-dependent sarcomas is warranted.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/patologia , Anticorpos de Cadeia Única/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Meia-Vida , Integrinas/metabolismo , Masculino , Camundongos , Reprodutibilidade dos Testes , Sarcoma de Kaposi/diagnóstico por imagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Life Sci ; 252: 117654, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32277979

RESUMO

BACKGROUND: Septic encephalopathy, the most frequent complication of sepsis, is orchestrated by a complex interplay of signals that leads to high mortality rates among intensive care unit patients. However, the role of the vascular endothelial growth factor receptor-2 (VEGFR2) in endoplasmic reticulum stress response (ERSR), during septic encephalopathy, is still elusive. AIM: This study was aimed to examine the effect of an in-house designed/synthesized VEGFR2 antagonist, named WAG4S, on septic encephalopathy using cecal ligation and perforation (CLP). MAIN METHODS: Rats were intraperitoneally injected with WAG-4S (1 mg/kg/d) for 7 days post-CLP. KEY FINDINGS: In septic animals, VEGFR2 antagonism declined the expression of cortical p-VEGFR2 and p-mammalian target of rapamycin complex-1 (p-mTORC1). It also worsened the behavioral and histopathological alterations beyond CLP. However, and contrary to CLP, WAG-4S decreased the p-protein kinase R-like ER kinase (p-PERK) and eukaryotic initiation factor-2α (p-eIF2α) expression. Moreover, VEGFR2 blockade upregulated the mRNA expression of activating transcription factor-4 (ATF4), binding immunoglobulin protein/glucose-regulated protein-78 (Bip/GRP78), growth arrest and DNA damage-34 (GADD34) and spliced X-box binding protein-1 (XBP1s) above CLP. Similarly, it boosted inositol requiring enzyme-1α (IRE1α) activation and redox imbalance. In the same context, WAG-4S augmented the protein levels of CLP-induced ERSR apoptotic markers, namely C/EBP homologous protein (CHOP/GADD153), c-jun N-terminal kinase (JNK) and caspase-3. SIGNIFICANCE: In conclusion, the PERK/eIF2α axis inhibition, during septic encephalopathy, is VEGFR2-independent, whereas the activated IRE1α/XBP1s/CHOP/JNK/caspase-3 cue promotes the ERSR execution module through VEGFR2 inhibition. This has turned VEGFR2 into a potential therapeutic target for ameliorating such an ailment.


Assuntos
Encefalopatias/fisiopatologia , Estresse do Retículo Endoplasmático/fisiologia , Sepse/complicações , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Animais , Encefalopatias/etiologia , Encefalopatias/prevenção & controle , Modelos Animais de Doenças , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sepse/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , eIF-2 Quinase/metabolismo
12.
Diabetes ; 69(6): 1232-1247, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234721

RESUMO

Hypovascularized diabetic nonhealing wounds are due to reduced number and impaired physiology of endogenous endothelial progenitor cell (EPC) population that limits their recruitment and mobilization at the wound site. For enrichment of the EPC repertoire from nonendothelial precursors, abundantly available mesenchymal stromal cells (MSC) were reprogrammed into induced endothelial cells (iEC). We identified cell signaling molecular targets by meta-analysis of microarray data sets. BMP-2 induction leads to the expression of inhibitory Smad 6/7-dependent negative transcriptional regulation of ID1, rendering the latter's reduced binding to TWIST1 during transdifferentiation of Wharton jelly-derived MSC (WJ-MSC) into iEC. TWIST1, in turn, regulates endothelial gene transcription, positively of proangiogenic KDR and negatively, in part, of antiangiogenic SFRP4 Twist1 reprogramming enhanced the endothelial lineage commitment of WJ-MSC and increased the vasculogenic potential of reprogrammed endothelial cells (rEC). Transplantation of stable TWIST1 rEC into a type 1 and 2 diabetic full-thickness splinted wound healing murine model enhanced the microcirculatory blood flow and accelerated the wound tissue regeneration. An increased or decreased colocalization of GFP with KDR/SFRP4 and CD31 in the regenerated diabetic wound bed with TWIST1 overexpression or silencing (piLenti-TWIST1-shRNA-GFP), respectively, further confirmed improved neovascularization. This study depicted the reprogramming of WJ-MSC into rEC using unique transcription factor TWIST1 for an efficacious cell transplantation therapy to induce neovascularization-mediated diabetic wound tissue regeneration.


Assuntos
Complicações do Diabetes/terapia , Células-Tronco Embrionárias/transplante , Células Endoteliais/fisiologia , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Cicatrização/fisiologia , Animais , Diferenciação Celular , Transdiferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neovascularização Fisiológica , Proteínas Nucleares/genética , Análise Serial de Proteínas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Regeneração , Pele , Contenções/efeitos adversos , Transplante de Células-Tronco , Proteína 1 Relacionada a Twist/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Respir Med ; 166: 105944, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250877

RESUMO

OBJECTIVES: Chronic lung allograft dysfunction including Bronchiolitis obliterans syndrome (BOS) is common after lung transplantation. Histologically, BOS is recognized as fibrotic lesions with accumulated extracellular matrix (ECM) in small airways. Lung fibroblasts are major producers of ECM and vascular endothelial growth factor (VEGF). In this study we hypothesize that VEGF is involved in BOS development after lung transplantation. METHODS: We investigated the effect of profibrotic transforming growth factor (TGF-ß) on VEGF synthesis in lung fibroblasts isolated from distal lung tissue biopsies taken from patients at 3, 6 and 12 months after lung transplantation (n = 14). Co-expression of VEGF receptor (VEGFR) 2 and collagen marker prolyl4-hydroxylase (p4OH) were analyzed in lung tissue from patients with BOS (n = 11). RESULTS: VEGF synthesis from distal derived lung fibroblasts were significantly lower 3 months after lung transplantation (168.6 ± 133.7; n = 7) compared to non-transplanted subjects (451.8 ± 185.9; n = 9; p = 0.0033) and increased over time at 6 months (584.1 ± 264.9; n = 9; p = 0.0033) and 12 months (451.1 ± 207.5; n = 8; p = 0.0065) post transplantation. TGF-ß significantly induced VEGF synthesis at all time points. At 12 months post transplantation there was significantly less VEGF synthesis after TGF-ß stimulation in fibroblasts obtained from BOS patients (1170 ± 450.2; n = 4) compared to patients without any chronic rejection process (1980 ± 417.9; n = 4; p < 0.039). The numbers of cells expressing VEGFR2/p4OH were increased in patients with BOS (33.2 ± 10.9; n = 11) compared to control subjects (10.1 ± 9.9; n = 11; p < 0.001). CONCLUSIONS: Our results support that changes in VEGF/VEGFR2 axis could be involved in BOS development and marker of poor outcome.


Assuntos
Bronquiolite Obliterante/genética , Bronquiolite Obliterante/cirurgia , Expressão Gênica , Transplante de Pulmão , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Bronquiolite Obliterante/diagnóstico , Feminino , Fibroblastos/metabolismo , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Humanos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Adulto Jovem
14.
Environ Sci Technol ; 54(11): 6822-6831, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348130

RESUMO

Bisphenol S (BPS), used as a bisphenol A substitute, has been detected in various environments. However, the safety of BPS is still unclear. Here, zebrafish embryos were exposed to BPS (0, 1, 10, and 100 µg/L) for 24, 48, 72, 96 h, and 15 days. BPS induced ectopic sprouting of budding blood vessels in embryos, but the blood flow velocity within these lesions was unchanged at 48 h. At 72 h postfertilization (hpf), by observing the subintestinal venous plexus responsible for yolk absorption, we found that VEGFR2 transduced an angiogenic signal and that the subsequent reduction in blood flow velocity inhibited yolk absorption. At 96 hpf, yolk consumption was still delayed because of the disturbed transportation route, resulting in transient extensive lipid retention in the blood vessels. After feeding, obvious atherogenic lipids were discovered in the blood vessels, especially in bends, bifurcations, and stenoses. This dynamic visualization of the pathogenesis demonstrates a plausible mechanistic link between BPS exposure-induced embryonic vessel overgrowth and an increased atherosclerosis risk.


Assuntos
Sulfonas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Larva , Lipídeos , Fenóis , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
J Pathol ; 251(2): 123-134, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32166747

RESUMO

Spontaneously regressing infantile haemangiomas and aggressive angiosarcomas are vascular tumours with excessive angiogenesis. When analysing haemangiomas and angiosarcomas immunohistochemically with respect to their chaperone profiles we found that angiosarcomas have significantly elevated protein levels of binding immunoglobulin protein (BIP) and PERK with concomitant attenuated IRE1α levels, whereas haemangioma tissue exhibits the same pattern as embryonal skin tissue. We show that BiP is essential for the maintenance of VEGFR2 protein, which is expressed in the endothelium of both tumour types. When studying the effects of BiP, the IRE1α/Xbp1 -, and PERK/ATF4-signalling pathways on the migration and tube-forming potential of endothelial cells, we show that downregulation of BiP, as well as inhibition of the kinase activity of IRE1α, inhibit in vitro angiogenesis. Downregulation of PERK (PKR-like kinase; PKR = protein kinase R) levels promotes Xbp1 splicing in endoplasmic reticulum (ER)-stressed cells, indicating that in angiosarcoma the elevated PERK levels might result in high levels of unspliced Xbp1, which have been reported to promote cell proliferation and increase tumour malignancy. The data presented in this study revealed that in addition to BiP or PERK, the kinase domains of IRE1α and Xbp1 could be potential targets for the development of novel therapeutic approaches for treating angiosarcomas and to control tumour angiogenesis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Endorribonucleases/metabolismo , Células Endoteliais/enzimologia , Proteínas de Choque Térmico/metabolismo , Hemangioma/enzimologia , Hemangiossarcoma/enzimologia , Neovascularização Patológica , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Endorribonucleases/genética , Células Endoteliais/patologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/genética , Hemangioma/genética , Hemangioma/patologia , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , eIF-2 Quinase/genética
16.
Adv Exp Med Biol ; 1227: 81-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32072500

RESUMO

Gremlin is a member of the TGF-ß superfamily that can act as a BMP antagonist, and recently, has been described as a ligand of the vascular endothelial growth factor receptor 2 (VEGFR2). Gremlin shares properties with the Notch signaling pathway. Both participate in embryonic development and are reactivated in pathological conditions. Gremlin is emerging as a potential therapeutic target and biomarker of renal diseases. Here we review the role of the Gremlin-VEGFR2 axis in renal damage and downstream signaling mechanisms, such as Notch pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Humanos , Rim/metabolismo , Rim/patologia , Fator de Crescimento Transformador beta/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Mol Biol Rep ; 47(3): 2061-2071, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072404

RESUMO

Tumor angiogenesis allows tumor cells to grow and migrate toward the bloodstream and initiate metastasis. The interactions of vascular endothelial growth factors (VEGF) A and B, as the important regulating factors for blood vessel growth, with VEGFR1 and VEGFR2 trigger angiogenesis process. Thus, preventing these interactions led to the effective blockade of VEGF/VEGFRs signaling pathways. In this study, the inhibitory effect of a 23-mer linear peptide (VGB4), which binds to both VEGFR1 and VEGFR2, on VEGF-stimulated Human Umbilical Vein Endothelial Cells (HUVECs) and highly metastatic human breast cancer cell MDA-MB-231 proliferation was examined using MTT assay. To assess the anti-migratory potential of VGB4, HUVECs and also MDA-MB-231 cells wound healing assay was carried out at 48 and 72 h. In addition, downstream signaling pathways of VEGF associated with cell migration and invasion were investigated by quantification of mRNA and protein expression using real-time quantitative PCR and western blot in 4T1 tumor tissues and MDA-MB-231 cells. The results revealed that VGB4 significantly impeded proliferation of HUVECs and MDA-MB-231 cells, in a dose- and time-dependent manner, and migration of HUVECs and MDA-MB-231 cells for a prolonged time. We also observed statistically significant reduction of the transcripts and protein levels of focal adhesion kinase (FAK), Paxillin, matrix metalloproteinase-2 (MMP-2), RAS-related C3 botulinum substrate 1 (Rac1), P21-activated kinase-2 (PAK-2) and Cofilin-1 in VGB4-treated 4T1 tumor tissues compared to controls. The protein levels of phospho-VEGFR1, phospho-VEGFR2, Vimentin, ß-catenin and Snail were markedly decreased in both VGB4-treated MDA-MB-231 cells and VGB4-treated 4T1 tumor tissues compared to controls as evidenced by western blotting. These results, in addition to our previous studies, confirm that dual blockage of VEGFR1 and VEGFR2, due to the inactivation of diverse signaling mediators, effectively suppresses tumor growth and metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Camundongos , Terapia de Alvo Molecular , Peptídeos , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
18.
Nature ; 578(7794): 290-295, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025034

RESUMO

Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis1. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses2. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures3-5. However, a role for plexin proteins in mechanotransduction has not been examined. Here we show that plexin D1 (PLXND1) has a role in mechanosensation and mechanically induced disease pathogenesis. PLXND1 is required for the response of endothelial cells to shear stress in vitro and in vivo and regulates the site-specific distribution of atherosclerotic lesions. In endothelial cells, PLXND1 is a direct force sensor and forms a mechanocomplex with neuropilin-1 and VEGFR2 that is necessary and sufficient for conferring mechanosensitivity upstream of the junctional complex and integrins. PLXND1 achieves its binary functions as either a ligand or a force receptor by adopting two distinct molecular conformations. Our results establish a previously undescribed mechanosensor in endothelial cells that regulates cardiovascular pathophysiology, and provide a mechanism by which a single receptor can exhibit a binary biochemical nature.


Assuntos
Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mecanotransdução Celular , Glicoproteínas de Membrana/metabolismo , Estresse Mecânico , Animais , Aterosclerose/metabolismo , Feminino , Integrinas/metabolismo , Camundongos , Neuropilina-1/metabolismo , Maleabilidade , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
J Photochem Photobiol B ; 203: 111738, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31954290

RESUMO

This study aimed to compare the synthesis and secretion of VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, and FGF-2 between pulp fibroblasts from human primary teeth (HPF) and stem cell from human deciduous teeth (SHED) before and after photobiomodulation. HPF were obtained from explant technique and characterized by immunohistochemistry, while SHED were obtained from digestion technique and characterized by flow cytometry. HPF (control group) and SHED were plated, let to adhere, and put on serum starvation to synchronize the cell cycles prior to photobiomodulation. Then, both cell lineages were irradiated with 660-nm laser according to the following groups: 2.5 and 3.7 J/cm2. MTT and crystal violet assays respectively verified viability and proliferation. ELISA Multiplex Assay assessed the following proteins: VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, FGF-2, at 6, 12, and 24 h after photobiomodulation, in supernatant and lysate. Two-way ANOVA/Tukey test evaluated cell viability and proliferation, while angiogenic production and secretion values were analyzed by one-way ANOVA (P < .05). Statistically similar HPF and SHED viability and proliferation patterns occurred before and after photobiomodulation (P > .05). HPF exhibited statistically greater values of all angiogenic proteins than did SHED, at all study periods, except for FGF-2 (supernatant; 12 h); VEGFR1 (lysate; non-irradiated; 12 h); and VEGFR1 (lysate; non-irradiated; 24 h). Photobiomodulation changed the synthesis and secretion of angiogenic proteins by HPF. HPF produced and secreted greater values of all tested angiogenic proteins than did SHED before and after irradiation with both energy densities of 2.5 and 3.7 J/cm2.


Assuntos
Fibroblastos/efeitos da radiação , Lasers , Células-Tronco/efeitos da radiação , Linhagem da Célula/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco/citologia , Células-Tronco/metabolismo , Dente Decíduo/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Oncol Rep ; 43(2): 625-634, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894333

RESUMO

While exploring new angiogenesis inhibitors from microbial metabolites, we recently isolated ahpatinins C, E, and G from a soil­derived Streptomyces sp. 15JA150. Ahpatinins C, E and G are known to have pepsin and renin inhibitory activities; however, their antiangiogenic activities and underlying molecular mechanisms have not been fully elucidated. In the present study, the antiangiogenic properties of ahpatinins C, E and G were investigated. The results revealed that the natural compounds significantly inhibited the vascular endothelial growth factor (VEGF)­induced proliferation, invasion, adhesion, and tube formation of human umbilical vein endothelial cells (HUVECs) without exhibiting any cytotoxicity. It was also revealed that ahpatinin E effectively suppressed the neovascularization of the chorioallantoic membranes in growing chick embryos. Notably, ahpatinins C, E, and G led to the downregulation of VEGF­induced activation of VEGF receptor 2 (VEGFR2) and its downstream signaling mediators, including AKT, ERK1/2, JNK, p38, and NF­κB, in HUVECs. Moreover, they reduced the expression of matrix metalloproteinase (MMP)­2 and MMP­9 in the HUVECs following stimulation with VEGF. Furthermore, ahpatinins C, E, and G reduced the tumor cell­induced invasion and tube forming abilities of HUVECs, as well as the expression of VEGF, by suppressing hypoxia­inducible factor­1α (HIF­1α) activity in U87MG glioblastoma cells. Collectively, the present findings indicated that ahpatinins C, E, and G may be used in anticancer therapy by targeting tumor angiogenesis through the inhibition of both VEGFR2 and HIF­1α pathways.


Assuntos
Inibidores da Angiogênese/farmacologia , Fatores Biológicos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Streptomyces/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Adesão Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pepstatinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA