Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.432
Filtrar
1.
FASEB J ; 35(9): e21842, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34418159

RESUMO

Retinopathy of prematurity (ROP) remains one of the major causes of blindness in children worldwide. While current ROP treatments are mostly disruptive to reduce proliferative neovascularization by targeting the hypoxic phase, protection against early hyperoxia-induced retinal vascular loss represents an effective therapeutic window, but no such therapeutic strategy is available. Built upon our recent demonstration that the protection against oxygen-induced retinopathy by adenosine A2A receptor (A2A R) antagonists is most effective when administered at the hyperoxia (not hypoxic) phase, we here uncovered the cellular mechanism underlying the A2A R-mediated protection against early hyperoxia-induced retinal vascular loss by reversing the inhibition of cellular proliferation via possibly multiple signaling pathways. Specifically, we revealed two distinct stages of the hyperoxia phase with greater cellular proliferation and apoptosis activities and upregulation of adenosine signaling at postnatal 9 day (P9) but reduced cellular activities and adenosine-A2A R signaling at P12. Importantly, the A2A R-mediated protection at P9 was associated with the reversal of hyperoxia-induced inhibition of progenitor cells at the peripheral retina at P9 and of retinal endothelial proliferation at P9 and P12. The critical role of cellular proliferation in the hyperoxia-induced retinal vascular loss was validated by the increased avascular areas by siRNA knockdown of the multiple signaling molecules involved in modulation of cellular proliferation, including activin receptor-like kinase 1, DNA-binding protein inhibitor 1, and vascular endothelial growth factor-A.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Hiperóxia/metabolismo , Substâncias Protetoras/farmacologia , Receptor A2A de Adenosina/metabolismo , Neovascularização Retiniana , Vasos Retinianos/efeitos dos fármacos , Receptores de Activinas Tipo II/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína 1 Inibidora de Diferenciação/metabolismo , Camundongos , Neovascularização Patológica , Oxigênio/efeitos adversos , Retina/citologia , Retina/efeitos dos fármacos , Retina/patologia , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445564

RESUMO

Niemann-Pick type C (NPC) disease is a wide-spectrum clinical condition classified as a neurovisceral disorder affecting mainly the liver and the brain. It is caused by mutations in one of two genes, NPC1 and NPC2, coding for proteins located in the lysosomes. NPC proteins are deputed to transport cholesterol within lysosomes or between late endosome/lysosome systems and other cellular compartments, such as the endoplasmic reticulum and plasma membrane. The first trait of NPC is the accumulation of unesterified cholesterol and other lipids, like sphingosine and glycosphingolipids, in the late endosomal and lysosomal compartments, which causes the blockade of autophagic flux and the impairment of mitochondrial functions. In the brain, the main consequences of NPC are cerebellar neurodegeneration, neuroinflammation, and myelin defects. This review will focus on myelin defects and the pivotal importance of cholesterol for myelination and will offer an overview of the molecular targets and the pharmacological strategies so far proposed, or an object of clinical trials for NPC. Finally, it will summarize recent data on a new and promising pharmacological perspective involving A2A adenosine receptor stimulation in genetic and pharmacological NPC dysmyelination models.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Colesterol/metabolismo , Bainha de Mielina/patologia , Doença de Niemann-Pick Tipo C/patologia , Receptor A2A de Adenosina/metabolismo , Animais , Humanos , Bainha de Mielina/efeitos dos fármacos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo
3.
Nutrients ; 13(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34371919

RESUMO

Besides its well-known psychoactive effects, caffeine has a broad range of actions. It regulates several physiological mechanisms as well as modulates both native and adaptive immune responses by various ways. Although caffeine is assumed to be a negative regulator of inflammation, the effect on the secretion of pro- and anti-inflammatory cytokines is highly controversial. Macrophages are major mediators of inflammatory responses; however, the various subpopulations develop different effects ranging from the initiation to the resolution of inflammation. Here we report a comparative analysis of the effect of caffeine on two subpopulations of human monocyte-derived macrophages differentiated in the presence of macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), resulting in M-MΦs and GM-MΦs, respectively. We showed that although TNF-α secretion was downregulated in both LPS-activated MΦ subtypes by caffeine, the secretion of IL-8, IL-6, and IL-1ß as well as the expression of Nod-like receptors was enhanced in M-MΦs, while it did not change in GM-MΦs. We showed that caffeine (1) altered adenosine receptor expression, (2) changed Akt/AMPK/mTOR signaling pathways, and (3) inhibited STAT1/IL-10 signaling axis in M-MΦs. We hypothesized that these alterations play an important modulatory role in the upregulation of NLRP3 inflammasome-mediated IL-1ß secretion in LPS-activated M-MΦs following caffeine treatment.


Assuntos
Cafeína/farmacologia , Citocinas/metabolismo , Fatores Imunológicos/farmacologia , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Células Cultivadas , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Fenótipo , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361778

RESUMO

Protein-ligand interaction analysis is important for drug discovery and rational protein design. The existing online tools adopt only a single conformation of the complex structure for calculating and displaying the interactions, whereas both protein residues and ligand molecules are flexible to some extent. The interactions evolved with time in the trajectories are of greater interest. MolADI is a user-friendly online tool which analyzes the protein-ligand interactions in detail for either a single structure or a trajectory. Interactions can be viewed easily with both 2D graphs and 3D representations. MolADI is available as a web application.


Assuntos
Receptor A2A de Adenosina/química , Bibliotecas de Moléculas Pequenas/química , Software , Sítios de Ligação , Humanos , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas , Receptor A2A de Adenosina/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Especificidade por Substrato , Termodinâmica
5.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205261

RESUMO

The amyloid ß peptide (Aß) is a central player in the neuropathology of Alzheimer's disease (AD). The alteration of Aß homeostasis may impact the fine-tuning of cell signaling from the very beginning of the disease, when amyloid plaque is not deposited yet. For this reason, primary culture of rat cortical neurons was exposed to Aß25-35, a non-oligomerizable form of Aß. Cell viability, metabotropic glutamate receptors (mGluR) and adenosine receptors (AR) expression and signalling were assessed. Aß25-35 increased mGluR density and affinity, mainly due to a higher gene expression and protein presence of Group I mGluR (mGluR1 and mGluR5) in the membrane of cortical neurons. Intriguingly, the main effector of group I mGluR, the phospholipase C ß1 isoform, was less responsive. Also, the inhibitory action of group II and group III mGluR on adenylate cyclase (AC) activity was unaltered or increased, respectively. Interestingly, pre-treatment of cortical neurons with an antagonist of group I mGluR reduced the Aß25-35-induced cell death. Besides, Aß25-35 increased the density of A1R and A2AR, along with an increase in their gene expression. However, while A1R-mediated AC inhibition was increased, the A2AR-mediated stimulation of AC remained unchanged. Therefore, one of the early events that takes place after Aß25-35 exposure is the up-regulation of adenosine A1R, A2AR, and group I mGluR, and the different impacts on their corresponding signaling pathways. These results emphasize the importance of deciphering the early events and the possible involvement of metabotropic glutamate and adenosine receptors in AD physiopathology.


Assuntos
Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/toxicidade , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Receptores de Neurotransmissores/metabolismo , Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Animais , Córtex Cerebral , Feminino , Neurônios/metabolismo , Fosfolipase C beta/metabolismo , Gravidez , Ratos , Ratos Wistar , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Glutamato/metabolismo , Transdução de Sinais
6.
J Med Chem ; 64(12): 8246-8262, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34107215

RESUMO

Adenosine A1/A2A receptors (A1R/A2AR) represent targets in nondopaminergic treatment of motor disorders such as Parkinson's disease (PD). As an innovative strategy, multitargeting ligands (MTLs) were developed to achieve comprehensive PD therapies simultaneously addressing comorbid symptoms such as sleep disruption. Recognizing the wake-promoting capacity of histamine H3 receptor (H3R) antagonists in combination with the "caffeine-like effects" of A1R/A2AR antagonists, we designed A1R/A2AR/H3R MTLs, where a piperidino-/pyrrolidino(propyloxy)phenyl H3R pharmacophore was introduced with overlap into an adenosine antagonist arylindenopyrimidine core. These MTLs showed distinct receptor binding profiles with overall nanomolar H3R affinities (Ki < 55 nM). Compound 4 (ST-2001, Ki (A1R) = 11.5 nM, Ki (A2AR) = 7.25 nM) and 12 (ST-1992, Ki (A1R) = 11.2 nM, Ki (A2AR) = 4.01 nM) were evaluated in vivo. l-DOPA-induced dyskinesia was improved after administration of compound 4 (1 mg kg-1, i.p. rats). Compound 12 (2 mg kg-1, p.o. mice) increased wakefulness representing novel pharmacological tools for PD therapy.


Assuntos
Antagonistas do Receptor A1 de Adenosina/uso terapêutico , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Antagonistas do Receptor A1 de Adenosina/síntese química , Antagonistas do Receptor A1 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Animais , Discinesias/tratamento farmacológico , Antagonistas dos Receptores Histamínicos H3/síntese química , Antagonistas dos Receptores Histamínicos H3/metabolismo , Humanos , Levodopa/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Piperidinas/síntese química , Piperidinas/metabolismo , Piperidinas/uso terapêutico , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico , Pirrolidinas/síntese química , Pirrolidinas/metabolismo , Pirrolidinas/uso terapêutico , Ratos Sprague-Dawley , Receptor A2A de Adenosina/metabolismo , Receptores Histamínicos H3/metabolismo , Vigília/efeitos dos fármacos
7.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068999

RESUMO

Adenosine is a nucleoside involved in the pathogenesis of allergic diseases. Its effects are mediated through its binding to G protein-coupled receptors: A1, A2a, A2b and A3. The receptors differ in the type of G protein they recruit, in the effect on adenylyl cyclase (AC) activity and the downstream signaling pathway triggered. Adenosine can produce both an enhancement and an inhibition of mast cell degranulation, indicating that adenosine effects on these receptors is controversial and remains to be clarified. Depending on the study model, A1, A2b, and A3 receptors have shown anti- or pro-inflammatory activity. However, most studies reported an anti-inflammatory activity of A2a receptor. The precise knowledge of the adenosine mechanism of action may allow to develop more efficient therapies for allergic diseases by using selective agonist and antagonist against specific receptor subtypes.


Assuntos
Adenosina/metabolismo , Hipersensibilidade/etiologia , Mastócitos/imunologia , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Animais , Humanos , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Mastócitos/metabolismo , Transdução de Sinais
8.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070360

RESUMO

Adenosine is a cellular metabolite with diverse derivatives that possesses a wide range of physiological roles. We investigated the molecular mechanisms of adenosine and cordycepin for their promoting effects in wound-healing process. The mitochondrial energy metabolism and cell proliferation markers, cAMP responsive element binding protein 1 (CREB1) and Ki67, were enhanced by adenosine and cordycepin in cultured dermal fibroblasts. Adenosine and cordycepin stimulated adenosine receptor signaling via elevated cAMP. The phosphorylation of mitogen-activated protein kinase kinase (MEK) 1/2, mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3 beta (Gsk3b) and Wnt target genes such as bone morphogenetic protein (BMP) 2/4 and lymphoid enhancer binding factor (Lef) 1 were activated. The enhanced gene expression by adenosine and cordycepin was abrogated by adenosine A2A and A2B receptor inhibitors, ZM241385 and PSH603, and protein kinase A (PKA) inhibitor H89, indicating the involvement of adenosine receptor A2A, A2B and PKA. As a result of Wnt/ß-catenin pathway activation, the secretion of growth factors such as insulin-like growth factor (IGF)-1 and transforming growth factor beta (TGFß) 3 was increased, previously reported to facilitate the wound healing process. In addition, in vitro fibroblast migration was also increased, demonstrating their possible roles in facilitating the wound healing process. In conclusion, our data strongly demonstrate that adenosine and cordycepin stimulate the Wnt/ß-catenin signaling through the activation of adenosine receptor, possibly promoting the tissue remodeling process and suggest their therapeutic potential for treating skin wounds.


Assuntos
Adenosina/farmacologia , Desoxiadenosinas/farmacologia , Fibroblastos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Linhagem Celular , Fibroblastos/patologia , Humanos , Pele/lesões , Pele/metabolismo , Pele/patologia , Cicatrização/efeitos dos fármacos , beta Catenina/metabolismo
9.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073488

RESUMO

Kidney fibrosis is the final outcome of chronic kidney disease (CKD). Adenosine plays a significant role in protection against cellular damage by activating four subtypes of adenosine receptors (ARs), A1AR, A2AAR, A2BAR, and A3AR. A2AAR agonists protect against inflammation, and A3AR antagonists effectively inhibit the formation of fibrosis. Here, we showed for the first time that LJ-4459, a newly synthesized dual-acting ligand that is an A2AAR agonist and an A3AR antagonist, prevents the progression of tubulointerstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed on 6-week-old male C57BL/6 mice. LJ-4459 (1 and 10 mg/kg) was orally administered for 7 days, started at 1 day before UUO surgery. Pretreatment with LJ-4459 improved kidney morphology and prevented the progression of tubular injury as shown by decreases in urinary kidney injury molecular-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion. Obstruction-induced tubulointerstitial fibrosis was attenuated by LJ-4459, as shown by a decrease in fibrotic protein expression in the kidney. LJ-4459 also inhibited inflammation and oxidative stress in the obstructed kidney, with reduced macrophage infiltration, reduced levels of pro-inflammatory cytokines, as well as reduced levels of reactive oxygen species (ROS). These data demonstrate that LJ-4459 has potential as a therapeutic agent against the progression of tubulointerstitial fibrosis.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Nefropatias/tratamento farmacológico , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Obstrução Ureteral/tratamento farmacológico , Agonistas do Receptor A3 de Adenosina/síntese química , Agonistas do Receptor A3 de Adenosina/química , Animais , Fibrose , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Ligantes , Masculino , Camundongos , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
10.
ACS Chem Biol ; 16(6): 991-1002, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34048655

RESUMO

Allosteric ligands provide new opportunities to modulate G protein-coupled receptor (GPCR) function and present therapeutic benefits over orthosteric molecules. Negative allosteric modulators (NAMs) can inhibit the activation of a receptor and downstream signal transduction. Screening NAMs for a GPCR target is particularly challenging because of the difficulty in distinguishing NAMs from antagonists bound to the orthosteric site as they both show inhibitory effects in receptor signaling assays. Here we report an affinity mass spectrometry (MS)-based approach tailored to screening potential NAMs of a GPCR target especially from fragment libraries. Compared to regular surface plasmon resonance or NMR-based methods for fragment screening, our approach features a reduction of the protein and compound consumption by 2-4 orders of magnitude and an increase in the data acquisition speed by 2-3 orders of magnitude. Our affinity MS-based fragment screening led to the identification of a new NAM of the adenosine A2A receptor (A2AAR) bearing an unprecedented azetidine moiety predicted to occupy the allosteric sodium binding site. Molecular dynamics simulations, ligand structure-activity relationship (SAR) studies, and in-solution NMR analyses further revealed the unique binding mode and antagonistic property of this compound that differs considerably from HMA (5-(N,N-hexamethylene)amiloride), a well-characterized NAM of A2AAR. Taken together, our work would facilitate fragment-based screening of allosteric modulators, as well as guide the design of novel NAMs acting at the sodium ion pocket of class A GPCRs.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Sódio/metabolismo , Agonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/química , Sítio Alostérico/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor A2A de Adenosina/química
11.
Eur J Pharmacol ; 905: 174198, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34033815

RESUMO

CD39 is associated with diverse physiological and pathological processes, including cell proliferation and differentiation. Adenosine triphosphate (ATP) is hydrolysed to adenosine by different enzymes including ecto-nucleoside triphosphate diphosphohydrolase-1/ENTPD1 (CD39) and ecto-5'-nucleotidase (CD73), regulating many physiological and pathological processes in various diseases, but these changes and functions in alcoholic liver disease are generally unknown. In this study, an alcoholic liver disease model in vivo was induced by ethanol plus carbon tetrachloride(CCl4) administered to C57BL/6 mice, who were the intraperitoneally injected with the CD39 inhibitor sodium polyoxotungstate (POM1) or colchicine from the 5th week to the 8th week. Meanwhile, hepatic stellate cells were stimulated by acetaldehyde to replicate alcoholic liver fibrosis models in vitro. Exogenous ATP and POM1 were added in turn to the culture system. Pharmacological blockade of CD39 largely prevents liver damage and collagen deposition. We found that blockade or silencing of CD39 prevented acetaldehyde-induced proliferation of HSC-T6 cells and the expression of fibrogenic factors. Moreover, blockade or silencing of CD39 could block the activation of the adenosine A2A and adenosine A2B receptors and the TGF-ß/Smad3 pathway, which are essential events in HSC activation. Thus, blockade of CD39 to inhibit the transduction of ATP to adenosine may prevent HSC activation, alleviating alcoholic hepatic fibrosis. The findings from this study suggest ATP-adenosine signalling is a novel therapeutic and preventive target for alcoholic liver disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Acetaldeído/toxicidade , Animais , Antígenos CD/genética , Apirase/antagonistas & inibidores , Apirase/genética , Tetracloreto de Carbono/toxicidade , Colchicina/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Etanol/toxicidade , Técnicas de Silenciamento de Genes , Humanos , Hepatopatias Alcoólicas/patologia , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Ratos , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Compostos de Tungstênio/farmacologia
12.
Nat Commun ; 12(1): 3236, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050151

RESUMO

Adenosine is an immunosuppressive factor that limits anti-tumor immunity through the suppression of multiple immune subsets including T cells via activation of the adenosine A2A receptor (A2AR). Using both murine and human chimeric antigen receptor (CAR) T cells, here we show that targeting A2AR with a clinically relevant CRISPR/Cas9 strategy significantly enhances their in vivo efficacy, leading to improved survival of mice. Effects evoked by CRISPR/Cas9 mediated gene deletion of A2AR are superior to shRNA mediated knockdown or pharmacological blockade of A2AR. Mechanistically, human A2AR-edited CAR T cells are significantly resistant to adenosine-mediated transcriptional changes, resulting in enhanced production of cytokines including IFNγ and TNF, and increased expression of JAK-STAT signaling pathway associated genes. A2AR deficient CAR T cells are well tolerated and do not induce overt pathologies in mice, supporting the use of CRISPR/Cas9 to target A2AR for the improvement of CAR T cell function in the clinic.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptor A2A de Adenosina/genética , Linfócitos T/transplante , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Engenharia Celular/métodos , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Feminino , Edição de Genes , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , RNA Interferente Pequeno/metabolismo , RNA-Seq , Receptor A2A de Adenosina/metabolismo , Receptor ErbB-2/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/genética
13.
Nat Commun ; 12(1): 2113, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837202

RESUMO

The accumulation of adenosine is strongly correlated with the need for sleep and the detection of sleep pressure is antagonised by caffeine. Caffeine also affects the circadian timing system directly and independently of sleep physiology, but how caffeine mediates these effects upon the circadian clock is unclear. Here we identify an adenosine-based regulatory mechanism that allows sleep and circadian processes to interact for the optimisation of sleep/wake timing in mice. Adenosine encodes sleep history and this signal modulates circadian entrainment by light. Pharmacological and genetic approaches demonstrate that adenosine acts upon the circadian clockwork via adenosine A1/A2A receptor signalling through the activation of the Ca2+ -ERK-AP-1 and CREB/CRTC1-CRE pathways to regulate the clock genes Per1 and Per2. We show that these signalling pathways converge upon and inhibit the same pathways activated by light. Thus, circadian entrainment by light is systematically modulated on a daily basis by sleep history. These findings contribute to our understanding of how adenosine integrates signalling from both light and sleep to regulate circadian timing in mice.


Assuntos
Adenosina/metabolismo , Transtornos Cronobiológicos/fisiopatologia , Relógios Circadianos/efeitos dos fármacos , Sono/fisiologia , Animais , Encéfalo/patologia , Cafeína/farmacologia , Linhagem Celular Tumoral , Transtornos Cronobiológicos/tratamento farmacológico , Transtornos Cronobiológicos/etiologia , Transtornos Cronobiológicos/patologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Humanos , Luz , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fotoperíodo , Quinazolinas/administração & dosagem , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Sono/efeitos dos fármacos , Privação do Sono/complicações , Triazóis/administração & dosagem
14.
ACS Chem Neurosci ; 12(9): 1606-1620, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33856784

RESUMO

Characterizing the structural basis of ligand recognition of adenosine A2A receptor (AA2AR) will facilitate its rational design and development of small molecules with high affinity and selectivity, as well as optimal therapeutic effects for pain, cancers, drug abuse disorders, etc. In the present work, we applied our reported algorithm, molecular complex characterizing system (MCCS), to characterize the binding features of AA2AR based on its reported 3D structures of protein-ligand complexes. First, we compared the binding score to the reported experimental binding affinities of each compound. Then, we calculated an output example of residue energy contribution using MCCS and compared the results with data obtained from MM/GBSA. The consistency in results indicated that MCCS is a powerful, fast, and accurate method. Sequentially, using a receptor-ligand data set of 57 crystallized structures of AA2ARs, we characterized the binding features of the binding pockets in AA2AR, summarized the key residues that distinguish antagonist from agonist, produced heatmaps of residue energy contribution for clustering various statuses of AA2ARs, explored the selectivity between AA2AR and AA1AR, etc. All the information provided new insights into the protein features of AA2AR and will facilitate its rational drug design.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Receptor A2A de Adenosina , Adenosina , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Ligantes , Ligação Proteica , Receptor A2A de Adenosina/metabolismo
15.
Cancer Lett ; 509: 53-62, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33845122

RESUMO

Accumulating evidence suggests that the intestinal microbiota is associated with the antitumor efficacy of immune checkpoint inhibitors (ICIs) and the occurrence of immune-related adverse events (irAEs) following ICI treatment. However, the mechanisms underlying these interactions remain unclear. Recent technological advances have allowed more extensive investigation into the interplay between the intestinal microbiota and the tumor immune microenvironment. Breakthroughs by two research groups revealed that Bifidobacterium enhanced the efficacy of ICIs via the stimulator of interferon genes (STING) and adenosine 2A receptor (A2AR) signaling pathways, highlighting the molecular mechanisms through which the intestinal microbiota modulates immunotherapy. In this review, we summarize recent findings related to the potential role and mechanisms of the gut microbiota in ICI therapy, available microbiota-targeting strategies, and ongoing clinical trials. Further we discuss the associated challenges that remain in this field of research. The current review aims to evaluate the potential of the intestinal microbiota in maximizing the antitumor efficacy of ICIs while minimizing their toxic effects and guiding the development of more specific treatment regimens.


Assuntos
Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Intestinos/microbiologia , Neoplasias/tratamento farmacológico , Animais , Biotransformação , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais , Microambiente Tumoral
16.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799994

RESUMO

We aimed to investigate A2A receptors in the basal ganglia of a DYT1 mouse model of dystonia. A2A was studied in control Tor1a+/+ and Tor1a+/- knock-out mice. A2A expression was assessed by anti-A2A antibody immunofluorescence and Western blotting. The co-localization of A2A was studied in striatal cholinergic interneurons identified by anti-choline-acetyltransferase (ChAT) antibody. A2A mRNA and cyclic adenosine monophosphate (cAMP) contents were also assessed. In Tor1a+/+, Western blotting detected an A2A 45 kDa band, which was stronger in the striatum and the globus pallidus than in the entopeduncular nucleus. Moreover, in Tor1a+/+, immunofluorescence showed A2A roundish aggregates, 0.3-0.4 µm in diameter, denser in the neuropil of the striatum and the globus pallidus than in the entopeduncular nucleus. In Tor1a+/-, A2A Western blotting expression and immunofluorescence aggregates appeared either increased in the striatum and the globus pallidus, or reduced in the entopeduncular nucleus. Moreover, in Tor1a+/-, A2A aggregates appeared increased in number on ChAT positive interneurons compared to Tor1a+/+. Finally, in Tor1a+/-, an increased content of cAMP signal was detected in the striatum, while significant levels of A2A mRNA were neo-expressed in the globus pallidus. In Tor1a+/-, opposite changes of A2A receptors' expression in the striatal-pallidal complex and the entopeduncular nucleus suggest that the pathophysiology of dystonia is critically dependent on a composite functional imbalance of the indirect over the direct pathway in basal ganglia.


Assuntos
Gânglios da Base/metabolismo , Distonia Muscular Deformante/genética , Receptor A2A de Adenosina/metabolismo , Animais , Gânglios da Base/patologia , Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Distonia Muscular Deformante/metabolismo , Distonia Muscular Deformante/patologia , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Chaperonas Moleculares/genética , RNA Mensageiro , Receptor A2A de Adenosina/genética
17.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803075

RESUMO

Methamphetamine is, worldwide, one of the most consumed drugs of abuse. One important side effect is neurodegeneration leading to a decrease in life expectancy. The aim of this paper was to check whether the drug affects one of the receptors involved in neurodegeneration/neuroprotection events, namely the adenosine A2A receptor (A2AR). First, we noticed that methamphetamine does not affect A2A functionality if the receptor is expressed in a heterologous system. However, A2AR becomes sensitive to the drug upon complexes formation with the cannabinoid CB1 receptor (CB1R) and the sigma 1 receptor (σ1R). Signaling via both adenosine A2AR and cannabinoid CB1R was affected by methamphetamine in cells co-expressing the two receptors. In striatal primary cultures, the A2AR-CB1R heteromer complex was detected and methamphetamine not only altered its expression but completely blocked the A2AR- and the CB1R-mediated activation of the mitogen activated protein kinase (MAPK) pathway. In conclusion, methamphetamine, with the participation of σ1R, alters the expression and function of two interacting receptors, A2AR, which is a therapeutic target for neuroprotection, and CB1R, which is the most abundant G protein-coupled receptor (GPCR) in the brain.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Corpo Estriado/metabolismo , Metanfetamina/farmacologia , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores sigma/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos
18.
J Alzheimers Dis ; 80(3): 1105-1117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33646165

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative pathology covering about 70%of all cases of dementia. Adenosine, a ubiquitous nucleoside, plays a key role in neurodegeneration, through interaction with four receptor subtypes. The A2A receptor is upregulated in peripheral blood cells of patients affected by Parkinson's and Huntington's diseases, reflecting the same alteration found in brain tissues. However, whether these changes are also present in AD pathology has not been determined. OBJECTIVE: In this study we verified any significant difference between AD cases and controls in both brain and platelets and we evaluated whether peripheral A2A receptors may reflect the status of neuronal A2A receptors. METHODS: We evaluated the expression of A2A receptors in frontal white matter, frontal gray matter, and hippocampus/entorhinal cortex, in postmortem AD patients and control subjects, through [3H]ZM 241385 binding experiments. The same analysis was performed in peripheral platelets from AD patients versus controls. RESULTS: The expression of A2A receptors in frontal white matter, frontal gray matter, and hippocampus/entorhinal cortex, revealed a density (Bmax) of 174±29, 219±33, and 358±84 fmol/mg of proteins, respectively, in postmortem AD patients in comparison to 104±16, 103±19, and 121±20 fmol/mg of proteins in controls (p < 0.01). The same trend was observed in peripheral platelets from AD patients versus controls (Bmax of 214±17 versus 95±4 fmol/mg of proteins, respectively, p < 0.01). CONCLUSION: AD subjects show significantly higher A2A receptor density than controls. Values on platelets seem to correlate with those in the brain supporting a role for A2A receptor as a possible marker of AD pathology and drug target for novel therapies able to modify the progression of dementia.


Assuntos
Doença de Alzheimer/sangue , Biomarcadores/sangue , Plaquetas/metabolismo , Córtex Cerebral/metabolismo , Receptor A2A de Adenosina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Regulação para Cima
19.
Am J Chin Med ; 49(3): 661-676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33683190

RESUMO

Ulcerative Colitis (UC) is a chronic inflammation disease, and the incidence of UC is increasing recently. Both clinical trials and animal experiments show that moxibustion is a complementary and alternative treatment for UC. Previous studies showed that moxibustion can improve UC by regulating the balance of Tregs and Th17 (Sun et al., 2017). Treg cells is one subset of CD4[Formula: see text] T cells that exert the immunosuppressive function. CD39 and CD73, expressed on the surface of Tregs, hydrolyze ATP to AMP and are further involved in the immunosuppressive function of Tregs. In this study, we investigated the effect of moxibustion on CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in dextran sulfate sodium (DSS) induced UC mice. The A2a receptor (A2aR), one of the targets of adenosine, was also detected. The results showed that moxibustion could increase the expression of CD39, CD73, and A2aR in colonic tissue and improve the proportion of CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in peripheral blood, inguinal draining lymph nodes and spleen in the UC model. Additionally, A2aR agonists enhanced the cell viability of colonic epithelial cells and inhibit the production of cytokines IL-6 and TNF-[Formula: see text] in vitro, which may further influence the pathway of ATP purine signal metabolism and alleviates the gut inflammation of UC mice. Taken together, this study provides supplemental evidence to reveal the immune related mechanism of moxibustion in the treatment of UC.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , Sulfato de Dextrana/efeitos adversos , Moxibustão/métodos , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Sobrevivência Celular , Colite Ulcerativa/etiologia , Colite Ulcerativa/metabolismo , Colo/citologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Interleucina-6/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
20.
Biophys J ; 120(9): 1641-1649, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675761

RESUMO

Because of their surface localization, G protein-coupled receptors (GPCRs) are often pharmaceutical targets as they respond to a variety of extracellular stimuli (e.g., light, hormones, small molecules) that may activate or inhibit a downstream signaling response. The adenosine A2A receptor (A2AR) is a well-characterized GPCR that is expressed widely throughout the human body, with over 10 crystal structures determined. Truncation of the A2AR C-terminus is necessary for crystallization as this portion of the receptor is long and unstructured; however, previous work suggests shortening of the A2AR C-terminus from 412 to 316 amino acids (A2AΔ316R) ablates downstream signaling, as measured by cAMP production, to below that of constitutive full-length A2AR levels. As cAMP production is downstream of the first activation event-coupling of G protein to its receptor-investigating that first step in activation is important in understanding how the truncation effects native GPCR function. Here, using purified receptor and Gαs proteins, we characterize the association of A2AR and A2AΔ316R to Gαs with and without GDP or GTPγs using surface plasmon resonance (SPR). Gαs affinity for A2AR was greatest for apo-Gαs, moderately affected in the presence of GDP and nearly completely ablated by the addition of GTPγs. Truncation of the A2AR C-terminus (A2AΔ316R) decreased the affinity of the unliganded receptor for Gαs by ∼20%, suggesting small changes to binding can greatly impact downstream signaling.


Assuntos
Transdução de Sinais , Ressonância de Plasmônio de Superfície , Proteínas de Ligação ao GTP/metabolismo , Humanos , Cinética , Ligação Proteica , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...