Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 859
Filtrar
1.
Life Sci ; 276: 119407, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794254

RESUMO

AIMS: The aim of the study was to investigate the interaction between cannabinoid CB1/CB2 and lysophosphatidic acid (LPA) receptors in controlling neuronal signaling and fate. METHODS: HT22 hippocampal cells were treated with different cannabinoid and LPA receptor agonists and antagonists. Western blot and immunofluorescence microscopy were used to study intracellular signaling and the expression of apoptotic markers. Cell viability was determined by a luminescence assay. KEY FINDINGS: Cannabinoid agonists induced activation of both ERK1/2 and p38 MAP kinases. The effects of the CB1/CB2 receptor agonist HU210 were antagonized by the CB1 antagonist rimonabant, whereas the responses to the CB2 agonist JWH133 were blocked by the CB2 antagonist SR144528. HU210 reduced the apoptotic cell death induced by the pro-inflammatory cytokine TNF-α, whereas JWH133 enhanced the cytokine cytotoxicity. Blockade of ERK1/2 and p38 MAPK activation abrogated the HU210 pro-survival and the JWH133 pro-apoptotic effects, respectively. HU210 and the endocannabinoid anandamide, but not JWH133, potentiated ERK1/2 stimulation by LPA and the tricyclic antidepressant amitriptyline acting through the LPA1 receptor. HU210 enhanced amitriptyline-stimulated CREB phosphorylation and protection against TNF-α-induced apoptosis, whereas JWH133 had no effect. ERK1/2 stimulation by either HU210 or amitriptyline was dependent on fibroblast growth factor receptor (FGF-R) kinase activity and the combination of the two stimulants induced FGF-R phosphorylation. Moreover, the CB1 receptor was found to co-immunoprecipitate with the LPA1 receptor. CONCLUSIONS: In HT22 hippocampal cells CB1 and CB2 receptors differentially regulate TNF-α-induced apoptosis and CB1 receptors positively interact with amitriptyline-stimulated LPA1 in promoting FGF-R-mediated ERK1/2 signaling and neuroprotection.


Assuntos
Apoptose , Agonistas de Receptores de Canabinoides/farmacologia , Hipocampo/patologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Inibidores da Captação Adrenérgica/farmacologia , Amitriptilina/farmacologia , Animais , Sobrevivência Celular , Células Cultivadas , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Receptores de Ácidos Lisofosfatídicos/genética , Transdução de Sinais
2.
Eur J Med Chem ; 210: 113087, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321261

RESUMO

The development of selective CB2 receptor agonists is a promising therapeutic approach for the treatment of inflammatory diseases, without CB1 receptor mediated psychoactive side effects. Preliminary structure-activity relationship studies on pyrazoylidene benzamide agonists revealed the -ylidene benzamide moiety was crucial for functional activity at the CB2 receptor. A small library of compounds with varying linkage moieties between the pyrazole and substituted phenyl group has culminated in the discovery of a potent and selective pyrazolo-[2,3-e]-[1,2,4]-triazine agonist 19 (CB2R EC50 = 19 nM, CB1R EC50 > 10 µM). Docking studies have revealed key structural features of the linkage group that are important for potent functional activity.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Descoberta de Drogas , Receptor CB2 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
3.
J Med Chem ; 64(1): 385-403, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33382613

RESUMO

Synthetic cannabinoids, as exemplified by SDB-001 (1), bind to both CB1 and CB2 receptors and exert cannabimimetic effects similar to (-)-trans-Δ9-tetrahydrocannabinol, the main psychoactive component present in the cannabis plant. As CB1 receptor ligands were found to have severe adverse psychiatric effects, increased attention was turned to exploiting the potential therapeutic value of the CB2 receptor. In our efforts to discover novel and selective CB2 receptor agonists, 1 was selected as a starting point for hit molecule identification and a class of 1H-pyrazole-3-carboxamide derivatives were thus designed, synthesized, and biologically evaluated. Systematic structure-activity relationship investigations resulted in the identification of the most promising compound 66 as a selective CB2 receptor agonist with favorable pharmacokinetic profiles. Especially, 66 treatment significantly attenuated dermal inflammation and fibrosis in a bleomycin-induced mouse model of systemic sclerosis, supporting that CB2 receptor agonists might serve as potential therapeutics for treating systemic sclerosis.


Assuntos
Drogas Desenhadas/química , Descoberta de Drogas , Receptor CB2 de Canabinoide/agonistas , Escleroderma Sistêmico/tratamento farmacológico , Drogas Desenhadas/farmacocinética , Humanos , Relação Estrutura-Atividade
4.
Microvasc Res ; 133: 104077, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979391

RESUMO

While activation of cannabinoid (CB2) receptors has been shown to be neuroprotective, no studies have examined whether this neuroprotection is directed at cerebral arterioles and no studies have examined whether activation of CB2 receptors can rescue cerebrovascular dysfunction during a chronic disease state such as type 1 diabetes (T1D). Our goal was to test the hypothesis that administration of a CB2 agonist (JWH-133) would improve impaired endothelial (eNOS)- and neuronal (nNOS)-dependent dilation of cerebral arterioles during T1D. In vivo diameter of cerebral arterioles in nondiabetic and T1D rats was measured in response to an eNOS-dependent agonist (adenosine 5'-diphosphate; ADP), an nNOS-dependent agonist (N-methyl-d-aspartate; NMDA), and an NOS-independent agonist (nitroglycerin) before and 1 h following JWH-133 (1 mg/kg IP). Dilation of cerebral arterioles to ADP and NMDA was greater in nondiabetic than in T1D rats. Treatment with JWH-133 increased responses of cerebral arterioles to ADP and NMDA in both nondiabetic and T1D rats. Responses of cerebral arterioles to nitroglycerin were similar between nondiabetic and T1D rats, and JWH-133 did not influence responses to nitroglycerin in either group. The restoration in responses to the agonists by JWH-133 could be inhibited by treatment with a specific inhibitor of CB2 receptors (AM-630; 3 mg/kg IP). Thus, activation of CB2 receptors can potentiate reactivity of cerebral arterioles during physiologic and pathophysiologic states. We speculate that treatment with CB2 receptor agonists may have potential therapeutic benefits for the treatment of cerebral vascular diseases via a mechanism that can increase cerebral blood flow.


Assuntos
Arteríolas/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Transtornos Cerebrovasculares/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Receptor CB2 de Canabinoide/agonistas , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Arteríolas/enzimologia , Encéfalo/irrigação sanguínea , Transtornos Cerebrovasculares/enzimologia , Transtornos Cerebrovasculares/fisiopatologia , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/fisiopatologia , Masculino , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais
5.
Life Sci ; 260: 118424, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949586

RESUMO

AIMS: Cannabinoid receptor 2 (CB2R) is an important regulator of immunoinflammatory responses. Interestingly, studies have demonstrated that CB2R was expressed in metabolically active tissue, so we speculated that CB2R might have a crucial impact on energy balance. We thus examined the anti-inflammatory activities of CB2R and a CB2R agonist, JWH-133, in diet-induced obese in mice as well as in cultured macrophages. MATERIALS AND METHODS: We evaluated the in vivo effect of JWH-133 on diet-induced adipose tissue inflammation. We also assessed the in vitro effects of JWH-133 on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages, with a focus on the nuclear factor E2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathway. KEY FINDINGS: We found that JWH-133 reduced body weight gain, relieved glucose tolerance, and enhanced insulin sensitivity in a mouse model. It also down-regulated the expression of M1 macrophage biomarkers (tumor necrosis factor-α, interleukin (IL)-6, inducible nitric oxide synthase (iNOS), IL-1ß, CC motif chemokine ligand 2, and C-X-C motif chemokine 10) in vivo and in vitro, but up-regulated levels of M2 macrophage biomarkers (IL-10 and arginase-1) in both mice and cultured macrophages. Furthermore, the underlying mechanisms were studied in an LPS-treated RAW264.7 cell line. We found a role for JWH-133 in controlling M1 macrophage polarization by activating the Nrf2/HO-1 pathway, while the effect of JWH-133 was diminished by a HO-1 inhibitor, Sn(IV) protoporphyrin IX dichloride. SIGNIFICANCE: JWH-133 showed anti-obesity effects that ameliorated pro-inflammatory M1 macrophage polarization through the Nrf2/HO-1 pathway. Therefore, our results provide a new proof for the potential use of the CB2R agonist, JWH-133, in the treatment of obesity.


Assuntos
Canabinoides/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Obesidade/etiologia , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Animais , Peso Corporal/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/etiologia , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/complicações , Obesidade/patologia , Paniculite/tratamento farmacológico , Paniculite/patologia , Células RAW 264.7 , Receptor CB2 de Canabinoide/agonistas
6.
J Med Chem ; 63(13): 7369-7391, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515588

RESUMO

The hallmark of joint diseases, such as osteoarthritis (OA), is pain, originating from both inflammatory and neuropathic components, and compounds able to modulate the signal transduction pathways of the cannabinoid type-2 receptor (CB2R) can represent a helpful option in the treatment of OA. In this perspective, a set of 18 cannabinoid type-2 receptor (CB2R) ligands was developed based on an unprecedented structure. With the aim of improving the physicochemical properties of previously reported 4-hydroxy-2-quinolone-3-carboxamides, a structural optimization program led to the discovery of isosteric 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives. These new compounds are endowed with high affinity for the CB2R and moderate to good selectivity over the cannabinoid type-1 receptor (CB1R), associated with good physicochemical characteristics. As to the functional activity at the CB2R, compounds able to act either as agonists or as inverse agonists/antagonists were discovered. Among them, compound 51 emerged as a potent CB2R agonist able to reduce pain in rats carrying OA induced by injection of monoiodoacetic acid (MIA).


Assuntos
Antiasmáticos/farmacologia , Condrócitos/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Receptor CB2 de Canabinoide/metabolismo , 4-Quinolonas/química , Animais , Antiasmáticos/química , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/farmacologia , Condrócitos/metabolismo , Condrócitos/patologia , Colforsina/farmacologia , Cricetulus , Modelos Animais de Doenças , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ácido Iodoacético/toxicidade , Ligantes , Masculino , Camundongos , Células NIH 3T3 , Osteoartrite/induzido quimicamente , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Relação Estrutura-Atividade , Caminhada
7.
PLoS One ; 15(5): e0233020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437355

RESUMO

Signaling through the endocannabinoid system is critical to proper functioning of the cerebellar circuit. However, most studies have focused on signaling through cannabinoid type 1 (CB1) receptors, while relatively little is known about signaling through type 2 (CB2) receptors. We show that functional CB2 receptors are expressed in Purkinje cells using a combination of immunohistochemistry and patch-clamp electrophysiology in juvenile mice. Pharmacological activation of CB2 receptors significantly reduces inhibitory synaptic responses and currents mediated by photolytic uncaging of RuBi-GABA in Purkinje cells. CB2 receptor activation does not change the paired-pulse ratio of inhibitory responses and its effects are blocked by inclusion of GDP-ß-S in the internal solution, indicating a postsynaptic mechanism of action. However, CB2 receptors do not contribute to depolarization induced suppression of inhibition (DSI), indicating they are not activated by endocannabinoids synthesized and released from Purkinje cells using this protocol. This work demonstrates that CB2 receptors inhibit postsynaptic GABAA receptors by a postsynaptic mechanism in Purkinje cells. This represents a novel mechanism by which CB2 receptors may modulate neuronal and circuit function in the central nervous system.


Assuntos
Células de Purkinje/fisiologia , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de GABA-A/metabolismo , Animais , Canabinoides/farmacologia , Cicloexanos/farmacologia , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Morfolinas/farmacologia , Técnicas de Patch-Clamp , Quinolinas/farmacologia , Receptor CB2 de Canabinoide/agonistas , Membranas Sinápticas/fisiologia , Transmissão Sináptica
8.
Exp Cell Res ; 389(1): 111881, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006556

RESUMO

Human adipose tissue includes large quantities of mesenchymal stromal cells (atMSCs), which represent an abundant cell source for therapeutic applications in the field of regenerative medicine. Adipose tissue secrets various soluble factors including endocannabinoids, and atMSCs express the cannabinoid receptors CB1 and CB2. This indicates that adipose tissue possesses an endocannabinoid system (ECS). The ECS is also ascribed great significance for wound repair, e.g. by modulating inflammation. However, the exact effects of CB1/CB2 activation in human atMSCs have not been investigated, yet. In the present study, we stimulated human atMSCs with increasing concentrations (1-30 µM) of the unspecific cannabinoid receptor ligand WIN55,212-2 and the specific CB2 agonist JWH-133, either alone or co-applied with the receptor antagonist Rimonabant (CB1) or AM 630 (CB2). We investigated the effects on metabolic activity, cell number, differentiation and cytokine release, which are important processes during tissue regeneration. WIN decreased metabolic activity and cell number, which was reversed by Rimonabant. This suggests a CB1 dependent mechanism, whereas the number of atMSCs was increased after CB2 ligation. WIN and JWH increased the release of VEGF, TGF-ß1 and HGF. Adipogenesis was enhanced by WIN, which could be reversed by blocking CB1. There was no effect on osteogenesis, and only WIN increased chondrogenic differentiation. Our results indicate that definite activation of the cannabinoid receptors exerted different effects in atMSCs, which could be of specific value in cell-based therapy for wound regeneration.


Assuntos
Tecido Adiposo/citologia , Autorrenovação Celular , Células-Tronco Mesenquimais/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Regeneração , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/agonistas , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/farmacologia , Humanos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Morfolinas/farmacologia , Naftalenos/farmacologia , Cultura Primária de Células , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Rimonabanto/farmacologia
9.
Cell ; 180(4): 645-654.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004460

RESUMO

Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptor CB2 de Canabinoide/química , Transdução de Sinais , Animais , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/farmacologia , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Células Sf9 , Spodoptera
10.
Phytomedicine ; 67: 153160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31901889

RESUMO

BACKGROUND: Increasing evidence indicated that the cannabinoid receptors were involved in the pathogenesis of organ fibrogenesis. PURPOSE: The purpose of this study was to discover novel cannabinoid receptor 2 (CB2) agonist and assess the potential of CB2 activation in treating systemic sclerosis. METHODS: A gaussia princeps luciferase-based split luciferase complementation assay (SLCA) was developed for detection of the interaction between CB2 and ß-arrestin2. A library of 366 natural products was then screened as potential CB2 agonist using SLCA approach. Several GPCR functional assays, including HTRF-based cAMP assay and calcium mobilization were also utilized to evaluated CB2 activation. Bleomycin-induced experimental systemic sclerosis was used to assess the in vivo anti-fibrotic effects. Dermal thickness and collagen content were evaluated via H&E and sirius red staining. RESULTS: Celastrol was identified as a new agonist of CB2 by using SLCA. Furthermore, celastrol triggers several CB2-mediated downstream signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, and receptor desensitization in a dose-dependent manner, and it has a moderate selectivity on CB1. In addition, celastrol exhibited the anti-inflammatory properties on lipopolysaccharide (LPS) treated murine Raw 264.7 macrophages and primary macrophages. Finally, we found that celastrol exerts anti-fibrotic effects in the bleomycin-induced systemic sclerosis mouse model accompanied by reduced inflammatory conditions. CONCLUSION: Taken together, celastrol is identified a novel selective CB2 agonist using a new developed arrestin-based SLCA, and CB2 activation by celastrol reduces the inflammatory response, and prevents the development of dermal fibrosis in bleomycin-induced systemic sclerosis mouse model.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Receptor CB2 de Canabinoide/agonistas , Escleroderma Sistêmico/tratamento farmacológico , Triterpenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Arrestina/metabolismo , Bleomicina/toxicidade , Cálcio/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Fibrose , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Triterpenos/química
11.
J Cardiovasc Pharmacol ; 75(1): 54-63, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31815823

RESUMO

Evidence suggests that the activation of the endocannabinoid system offers cardioprotection. Aberrant energy production by impaired mitochondria purportedly contributes to various aspects of cardiovascular disease. We investigated whether cannabinoid (CB) receptor activation would attenuate mitochondrial dysfunction induced by endothelin-1 (ET1). Acute exposure to ET1 (4 hours) in the presence of palmitate as primary energy substrate induced mitochondrial membrane depolarization and decreased mitochondrial bioenergetics and expression of genes related to fatty acid oxidation (ie, peroxisome proliferator-activated receptor-gamma coactivator-1α, a driver of mitochondrial biogenesis, and carnitine palmitoyltransferase-1ß, facilitator of fatty acid uptake). A CB1/CB2 dual agonist with limited brain penetration, CB-13, corrected these parameters. AMP-activated protein kinase (AMPK), an important regulator of energy homeostasis, mediated the ability of CB-13 to rescue mitochondrial function. In fact, the ability of CB-13 to rescue fatty acid oxidation-related bioenergetics, as well as expression of proliferator-activated receptor-gamma coactivator-1α and carnitine palmitoyltransferase-1ß, was abolished by pharmacological inhibition of AMPK using compound C and shRNA knockdown of AMPKα1/α2, respectively. Interventions that target CB/AMPK signaling might represent a novel therapeutic approach to address the multifactorial problem of cardiovascular disease.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Endotelina-1/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais
12.
Neurourol Urodyn ; 39(1): 158-169, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31729056

RESUMO

PURPOSE: Cannabinoids have been shown to exert analgesic and anti-inflammatory effects, and the effects of cannabinoids are mediated primarily by cannabinoid receptors 1 and 2 (CB1 and CB2). The objective of this study was to determine efficacy and mechanism of CB2 activation on cyclophosphamide (CYP)-induced cystitis in vivo. METHODS: Cystitis was induced by intraperitoneal (IP) injection of CYP in female C57BL/6J mice. Mice were pretreated with CB2 agonist JWH-133 (1 mg/kg, intraperitoneally), CB2 antagonist AM-630 (1 mg/kg, intraperitoneally) or autophagy inhibitor 3-methyladenine (3-MA) (50 mM, intraperitoneally) before IP injection of CYP. Peripheral nociception and spontaneous voiding were investigated in these mice. Bladders were collected, weighed, and processed for real-time polymerase chain reaction, immunoblotting analysis, histological and immunohistochemical analysis. RESULTS: Twenty-four hours after IP injection of CYP, the bladder of CYP-treated mice showed histological evidence of inflammation. The expression of CB2 in bladder was significantly increased in CYP-treated mice. Mechanical sensitivity was significantly increased in CYP-treated mice and CB2 agonist JWH-133 attenuated this effect (P < .05). The number of urine spots was significantly increased after CYP treatment and it was decreased in JWH-133 treated mice (P < .05). Activating CB2 with JWH-133 significantly alleviated bladder tissue inflammatory responses and oxidative stress induced by CYP. Activation of CB2 by JWH-133 increased the expression of LC3-II/LC3-I ratio, and decreased the expression of SQSTM1/p62 in the bladder of cystitis mice, whereas AM-630 induced inverse effects. Further study indicated that JWH-133 could promote autophagy and blocking autophagy by 3-MA dismissed the effort of CB2 in alleviating bladder tissue inflammatory responses and oxidative stress injury. Furthermore, treatment with 3-MA decreased the expression of p-AMPK and induced the phosphorylation of mTOR in the presence of JWH-133 stimulation in cystitis model. CONCLUSIONS: Activation of CB2 decreased severity of CYP-induced cystitis and ameliorated bladder inflammation. CB2 activation is protective in cystitis through the activation of autophagy and AMPK-mTOR pathway may be involved in the initiation of autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Cistite/metabolismo , Receptor CB2 de Canabinoide/agonistas , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Ciclofosfamida , Cistite/induzido quimicamente , Feminino , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Receptor CB2 de Canabinoide/antagonistas & inibidores , Micção/efeitos dos fármacos
13.
Int Immunopharmacol ; 78: 105978, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31767546

RESUMO

Uncontrolled infection and increased inflammatory mediators might cause systemic inflammatory response. It is already known that Cannabinoid Type 2 (CB2) receptors, which are commonly expressed in immune cells and in many other tissues, have an effect on the regulation of immune response. In the present study of ours, the effects of CB2 receptor agonist JWH-133 was investigated on cecal ligation and puncture (CLP)-induced polymicrobial sepsis model in rats. In the present study, Sprague-Dawley rats were divided into 5 groups (i.e. the Sham, CLP, JWH-133 0.2 mg/kg, JWH-133 1 mg/kg, and JWH-133 5 mg/kg Groups). Except for the Sham Group, the CLP-induced sepsis model was applied to all groups. The histopathological damage in brain, lung, liver and, heart was examined and the caspase-3, p-NF-κB, TNF-α, IL-1ß and IL-6 levels were determined immunohistochemically. The serum TNF-α, IL-1ß, IL-6, IL-10 levels were examined with the ELISA Method. The JWH-133 treatment decreased the histopathological damage in brain, heart, lung, and liver and reduced the caspase-3, p-NF-κB, TNF-α, IL-1ß, IL-6 levels in these tissues. In addition to this, JWH-133 treatment also decreased the serum TNF-α, IL-1ß, IL-6 levels, which were increased due to CLP, and increased the anti-inflammatory cytokine IL-10 levels. In the present study, it was determined that the CB2 receptor agonist JWH-133 decreases the CLP-induced inflammation, and reduces the damage in brain, lung, liver and heart. Our findings show the therapeutic potential of the activation of CB2 receptors with JWH-133 in sepsis.


Assuntos
Canabinoides/uso terapêutico , Receptor CB2 de Canabinoide/agonistas , Sepse/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Canabinoides/farmacologia , Ceco , Citocinas/sangue , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Ligadura , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Sepse/metabolismo , Sepse/patologia
14.
J Pharmacol Exp Ther ; 372(3): 339-353, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31818916

RESUMO

The serine hydrolase monoacylglycerol lipase (MAGL) is the rate-limiting enzyme responsible for the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. Inhibition of 2-AG degradation leads to elevation of 2-AG, the most abundant endogenous agonist of the cannabinoid receptors (CBs) CB1 and CB2. Activation of these receptors has demonstrated beneficial effects on mood, appetite, pain, and inflammation. Therefore, MAGL inhibitors have the potential to produce therapeutic effects in a vast array of complex human diseases. The present report describes the pharmacologic characterization of [1-(4-fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone (JNJ-42226314), a reversible and highly selective MAGL inhibitor. JNJ-42226314 inhibits MAGL in a competitive mode with respect to the 2-AG substrate. In rodent brain, the compound time- and dose-dependently bound to MAGL, indirectly led to CB1 occupancy by raising 2-AG levels, and raised norepinephrine levels in cortex. In vivo, the compound exhibited antinociceptive efficacy in both the rat complete Freund's adjuvant-induced radiant heat hypersensitivity and chronic constriction injury-induced cold hypersensitivity models of inflammatory and neuropathic pain, respectively. Though 30 mg/kg induced hippocampal synaptic depression, altered sleep onset, and decreased electroencephalogram gamma power, 3 mg/kg still provided approximately 80% enzyme occupancy, significantly increased 2-AG and norepinephrine levels, and produced neuropathic antinociception without synaptic depression or decreased gamma power. Thus, it is anticipated that the profile exhibited by this compound will allow for precise modulation of 2-AG levels in vivo, supporting potential therapeutic application in several central nervous system disorders. SIGNIFICANCE STATEMENT: Potentiation of endocannabinoid signaling activity via inhibition of the serine hydrolase monoacylglycerol lipase (MAGL) is an appealing strategy in the development of treatments for several disorders, including ones related to mood, pain, and inflammation. [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone is presented in this report to be a novel, potent, selective, and reversible noncovalent MAGL inhibitor that demonstrates dose-dependent enhancement of the major endocannabinoid 2-arachidonoylglycerol as well as efficacy in models of neuropathic and inflammatory pain.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Monoacilglicerol Lipases/antagonistas & inibidores , Piperazinas/farmacologia , Animais , Ligação Competitiva , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/sangue , Escherichia coli/enzimologia , Escherichia coli/genética , Células HeLa , Humanos , Cinética , Leucócitos Mononucleares/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Monoacilglicerol Lipases/genética , Dor/tratamento farmacológico , Piperazinas/sangue , Ligação Proteica , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Sono REM/efeitos dos fármacos , Especificidade por Substrato
15.
Psychopharmacology (Berl) ; 237(2): 385-394, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31667531

RESUMO

RATIONALE: Cocaine is a psychostimulant drug that facilitates monoaminergic neurotransmission. The endocannabinoid system, comprising the cannabinoid receptors (CB1R and CB2R), the endocannabinoids, and their metabolizing-enzymes, modulates the mesolimbic dopaminergic pathway and represents a potential target for the treatment of addiction. OBJECTIVES: Here, we tested the hypothesis that the cannabinoid receptors are implicated in cocaine-induced motor sensitization, conditioned place preference (CPP), and hippocampal activation. METHODS: Male Swiss mice received injections of AM251 (CB1R antagonist; 0.3-10 mg/kg) or JWH133 (CB2R agonist; 1-10 mg/kg) before acquisition or expression of cocaine (20 mg/kg)-induced sensitization and CPP. After the CPP test, cFos-staining was employed as a marker of neuronal activation in the hippocampus. RESULTS: AM251 inhibited the acquisition (0.3, 1, and 3 mg/kg) and expression (1 and 3 mg/kg) of sensitization, as well as the acquisition (10 mg/kg) of CPP. JWH133 inhibited the acquisition (0.3 and 1 mg/kg) and expression (1 and 3 mg/kg) of both sensitization and CPP. JWH133 effects were reversed by AM630 (CB2R antagonist; 5 mg/kg). AM251 and JWH133 also prevented neuronal activation (c-Fos expression) in the hippocampus of CPP-exposed animals. CONCLUSIONS: CB1R and CB2R have opposite roles in modulating cocaine-induced sensitization and CPP, possibly by preventing neuronal activation in the hippocampus.


Assuntos
Cocaína/farmacologia , Condicionamento Clássico/fisiologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/fisiologia , Animais , Canabinoides/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Camundongos , Piperidinas/farmacologia , Pirazóis/farmacologia
16.
Clin Toxicol (Phila) ; 58(2): 82-98, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31524007

RESUMO

Introduction: The emergence of novel psychoactive substances has changed the epidemiology of drugs used recreationally throughout Europe and have posed significant challenges for clinicians, researchers and regulators. Synthetic cannabinoid receptor agonists have made up a large proportion of these novel psychoactive substances. Developed for legitimate scientific research, synthetic cannabinoid receptor agonists are potent agonists at CB1 and CB2 receptors and there have been many case reports of severe or fatal toxicity following their recreational use. At least 180 analytically confirmed compounds belonging to this group of drugs have been reported in Europe as of January 2019. Synthetic cannabinoid receptor agonists have a complex molecular structure, consisting of four pharmacophore components termed the 'core', 'tail', 'linker' and 'linked' groups. This structural complexity offers multiple opportunities for chemical modification to evade drug control legislation based on chemical structure, and this explains the large numbers of individual products that have been detected.Objectives: To discuss the chemical structure of synthetic cannabinoid receptor agonists and to describe the different nomenclature used to identify individual compounds thereby increasing understanding of their chemical heterogenicity and the potential relevance of their molecular structure to the risk of toxicity.Methods: The European Database on New Drugs (EDND) and EMCDDA-Europol annual implementation reports (2010-2017) was searched for compounds with known agonist activity at CB1 and/or CB2 receptors. Information on the different names and chemical structures of each compound was extracted and analysed for patterns. PUBMED, Google Scholar and MEDLINE databases were searched, in addition to non-peer reviewed sources, for data on structure, structure-activity relationships and nomenclatures for each compound.Nomenclature of synthetic cannabinoid receptor agonists: The structural complexity of synthetic cannabinoid receptor agonists presents challenges for nomenclature. There are several nomenclature systems in use.Colloquial and clandestine names: Non-scientific names (e.g. AKB-48, 2NEI, XLR-11) have been used to refer to specific compounds and most have probably been invented by vendors, presumably for the purpose of successful marketing of recreational products, however such names do not convey useful information about structure.Systematic chemical names: Each compound has a systematic chemical name that describes its exact structure; however, it is complex, unwieldy, inaccessible to non-chemists and not suitable for routine communication or clinical use.Serial names: Represent iterative designations assigned to compounds produced as a series in a laboratory (e.g. 'WIN-', 'HU-', 'CP-', 'JWH-' and 'AM-'). This nomenclature does not provide structural information or reflect structural similarities between compounds.Systematic abbreviated names: Succinctly describe each compound utilising structural pharmacophores. The chemical motif in each pharmacophore group is assigned a unique code-letter and assembled into a name with the format of 'Linked Group - TailCoreLinker'. Frequently encountered groups include indole and indazole cores, amino-acid-like like groups, most notably methyl-3,3-dimethylbutanoate (MDMB), methanone linker groups and pentyl, 5-fluoropentyl and 4-fluorobenzyl tails. There has been inconsistent usage of this nomenclature, likely due to a lack of consensus and identification of code-letters for several chemical motifs.Emerging compounds and practices: Tricyclic carbazole and γ-carbolinone core analogues have been identified and may represent the next significant structural analogues to emerge onto the recreational market. There is a need to establish basic pharmacological and toxicological data for these analogues.Conclusions: There is a need for international consensus on the nomenclature used to name synthetic cannabinoid receptor agonists to ensure precise and effective communication between professional groups in the clinic and for the purposes of research and regulation, especially with the emergence of analogues of existing compounds and novel structural motifs. A well-defined nomenclature system also supports quick and accurate communication of the structure-activity of these compounds, potentially highlighting compounds that carry a significant risk of toxicity.


Assuntos
Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/classificação , Drogas Desenhadas/química , Drogas Desenhadas/classificação , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Animais , Agonistas de Receptores de Canabinoides/síntese química , Bases de Dados de Produtos Farmacêuticos , Drogas Desenhadas/síntese química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Terminologia como Assunto
17.
Fundam Clin Pharmacol ; 34(1): 80-90, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31373049

RESUMO

Ischemia and reperfusion of intestinal tissue (intestinal I/R) induce disruption of ileal contractility and chain responses of inflammatory. The aim of this study was to reveal whether therapeutic value of cannabinoid 2 (CB2) receptor activity in the intestinal I/R, via to the exogenous administration of CB2 agonist (AM-1241). Intestinal I/R injury were performed through 30-min ischemia and 150-min reperfusion of mesenteric artery in Wistar rats. The pre-administered doses of 0.1, 1, and 5 mg/kg of CB2 agonist were studied to inhibit inflammation of intestinal I/R injury including ileum smooth muscle contractility, polymorphonuclear cell migration, oxidant/antioxidant defense system, and provocative cytokines. Pre-administration with CB2 receptor agonist ensured to consider improving the disrupted contractile responses in ileum smooth muscle along with decreased the formation of MDA that production of lipid peroxidation, reversed the depleted glutathione, inhibited the expression of TNF-α and of IL-1ß in the intestinal I/R of rats. Taken together results of this research, the agonistic activity of CB2 receptor for healing of intestinal I/R injury is ensuring associated with anti-inflammatory mechanisms such as the inhibiting of migration of inflammatory polymorphonuclear cells that origin of acute and initial responses of inflammation, the inhibiting of production of provocative and pro-inflammatory cytokines like TNF-α and IL-1ß, the rebalancing of oxidant/antioxidant redox system disrupted in injury of reperfusion period and the supporting of physiologic defensive systems in endothelial and inducible inflammatory cells.


Assuntos
Inflamação/tratamento farmacológico , Receptor CB2 de Canabinoide/agonistas , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Canabinoides/administração & dosagem , Canabinoides/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Inflamação/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor CB2 de Canabinoide/metabolismo , Traumatismo por Reperfusão/fisiopatologia
18.
J Cosmet Sci ; 71(6): 425-437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33413786

RESUMO

Skin functions as a neuro-immuno-endocrine tissue with well-defined neuronal networks and functions. The endocannabinoid system has been proven to be an important, homeostatic regulator for homeostatic and inflammatory events. The system comprises endogenous or exogenous ligands and receptors (CB1 and CB2). In the present study, we evaluated the soothing properties of a Pogostemon cablin (patchouli) extract. Agonist AM1241 and antagonist AM630 were used for CB2 receptor activation/inhibition. Expression of CB2 receptor and ß-endorphin was monitored by immunohistochemistry. Skin inflammation was induced with ultraviolet B (UVB) or lipopolysaccharide (LPS), and the following markers were used to highlight the anti-inflammatory properties of the extract: transient receptor potential vanilloid 1 (TRPV1), interleukin receptors 1 (IL1R1), and the interleukin 6 signal transducer (IL6ST). Our results demonstrated the implication of the CB2 receptor in the skin inflammation process. The expression of CB2 receptor and ß-endorphin was increased 48 hours after application of the extract. Furthermore, patchouli extract application helped to reduce IL1R1, IL6ST, and TRPV1 expression, in skin exposed to UVB or LPS. In conclusion, the application of the patchouli extract helps maintain skin integrity and reduce skin discomfort via modulation of CB2 receptor stimulation and the subsequent ß-endorphin release.


Assuntos
Extratos Vegetais , Pogostemon , Receptor CB2 de Canabinoide , Pele , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Dermatite/tratamento farmacológico , Humanos , Extratos Vegetais/farmacologia , Pogostemon/química , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Pele/efeitos dos fármacos
19.
Int Immunopharmacol ; 77: 105923, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31711937

RESUMO

Multiple Sclerosis (MS) is one of the most common inflammatory diseases with the essential role of immune system in the demyelination, damage and inflammation of the central nervous system neurons (CNS). ß-Caryophyllene (BCP), a natural and selective CB2 agonist, possesses several protective effects. In the present study, we evaluated the protective effects of low dose of BCP (5 mg/kg), sphingomyelinase (SMase) inhibitor imipramine (IMP, 10 mg/kg), and the combination of BCP (2.5 and 5 mg/kg) with IMP in the treatment of experimental autoimmune encephalomyelitis (EAE) mice as a known model of chronic MS. These effects were assessed on the levels of pro- or anti-inflammatory cytokines as well as the polarization of spleen lymphocytes and microglia, in EAE mice. Our results indicated that low dose of BCP, IMP and BCP combined with a SMase inhibitor IMP exert protective effects in treatment of EAE mice. We also found that they reduced the clinical and pathological defects in EAE mice through modulation of both local (microglia) and systemic (lymphocytes and blood) immunity from inflammatory (Th1/Th17/M1) towards anti-inflammatory (Th2/Treg/M2) phenotypes. Therefore, it can be suggested that a low dose of BCP alone or combined with IMP as a known SMase inhibitor deserve a therapeutic position for treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Imipramina/uso terapêutico , Sesquiterpenos Policíclicos/uso terapêutico , Receptor CB2 de Canabinoide/agonistas , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Citocinas/sangue , Quimioterapia Combinada , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia
20.
Sci Rep ; 9(1): 17034, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745152

RESUMO

The cannabinoid receptor type 2 (CB2) is the peripheral receptor for cannabinoids, involved in the homeostatic control of several physiological functions. Male mitotic germ cells express a high level of CB2, whose activation promotes their differentiation in both in vitro and in vivo experiments, controlling the correct progression of spermatogenesis. However, it remains elusive if CB2 activation in spermatogonia could affect reproductive success in terms of fertility and healthy pregnancy outcomes. In this study, we explored the effects of male CB2 activation on sperm number and quality and its influence on next generation health. We show that exposure of male mice to JWH-133, a selective CB2 agonist, decreased sperm count, impaired placental development and reduced offspring growth. These defects were associated with altered DNA methylation/hydroxymethylation levels at imprinted genes in sperm and conserved in placenta. Our findings reveal that paternal selective activation of CB2 alters the sperm epigenome and compromises offspring growth. This study demonstrates, for the first time, a new role of CB2 signaling in male gametes in causing epigenetic alterations that can be transmitted to the next generation by sperm, highlighting potential risks induced by recreational cannabinoid exposure.


Assuntos
Canabinoides/farmacologia , Cannabis/efeitos adversos , Desenvolvimento Embrionário/efeitos dos fármacos , Placentação/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo , Espermatogênese/efeitos dos fármacos , Animais , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Feminino , Masculino , Camundongos , Placenta/embriologia , Gravidez , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , Contagem de Espermatozoides , Espermatogônias/metabolismo , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...